689 lines
25 KiB
C++
689 lines
25 KiB
C++
// flight.hxx -- define shared flight model parameters
|
|
//
|
|
// Written by Curtis Olson, started May 1997.
|
|
//
|
|
// Copyright (C) 1997 Curtis L. Olson - http://www.flightgear.org/~curt
|
|
//
|
|
// This program is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of the
|
|
// License, or (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful, but
|
|
// WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
//
|
|
// $Id$
|
|
|
|
|
|
#ifndef _FLIGHT_HXX
|
|
#define _FLIGHT_HXX
|
|
|
|
|
|
#ifndef __cplusplus
|
|
# error This library requires C++
|
|
#endif
|
|
|
|
|
|
/* Required get_()
|
|
|
|
`FGInterface::get_Longitude ()'
|
|
`FGInterface::get_Latitude ()'
|
|
`FGInterface::get_Altitude ()'
|
|
`FGInterface::get_Phi ()'
|
|
`FGInterface::get_Theta ()'
|
|
`FGInterface::get_Psi ()'
|
|
`FGInterface::get_V_equiv_kts ()'
|
|
|
|
`FGInterface::get_V_north ()'
|
|
`FGInterface::get_V_east ()'
|
|
`FGInterface::get_V_down ()'
|
|
|
|
`FGInterface::get_P_Body ()'
|
|
`FGInterface::get_Q_Body ()'
|
|
`FGInterface::get_R_Body ()'
|
|
|
|
`FGInterface::get_Gamma_vert_rad ()'
|
|
`FGInterface::get_Climb_Rate ()'
|
|
`FGInterface::get_Alpha ()'
|
|
`FGInterface::get_Beta ()'
|
|
|
|
`FGInterface::get_Runway_altitude ()'
|
|
|
|
`FGInterface::get_Lon_geocentric ()'
|
|
`FGInterface::get_Lat_geocentric ()'
|
|
`FGInterface::get_Sea_level_radius ()'
|
|
`FGInterface::get_Earth_position_angle ()'
|
|
|
|
`FGInterface::get_Latitude_dot()'
|
|
`FGInterface::get_Longitude_dot()'
|
|
`FGInterface::get_Radius_dot()'
|
|
|
|
`FGInterface::get_Dx_cg ()'
|
|
`FGInterface::get_Dy_cg ()'
|
|
`FGInterface::get_Dz_cg ()'
|
|
|
|
`FGInterface::get_Radius_to_vehicle ()'
|
|
|
|
*/
|
|
|
|
|
|
#include <math.h>
|
|
|
|
#include <list>
|
|
#include <vector>
|
|
#include <string>
|
|
|
|
#include <simgear/compiler.h>
|
|
#include <simgear/constants.h>
|
|
#include <simgear/structure/subsystem_mgr.hxx>
|
|
#include <FDM/groundcache.hxx>
|
|
|
|
SG_USING_STD(list);
|
|
SG_USING_STD(vector);
|
|
SG_USING_STD(string);
|
|
|
|
// This is based heavily on LaRCsim/ls_generic.h
|
|
class FGInterface : public SGSubsystem {
|
|
|
|
private:
|
|
|
|
// Has the init() method been called. This is used to delay
|
|
// initialization until scenery can be loaded and we know the true
|
|
// ground elevation.
|
|
bool inited;
|
|
|
|
// Have we bound to the property system
|
|
bool bound;
|
|
|
|
// periodic update management variable. This is a scheme to run
|
|
// the fdm with a fixed delta-t. We control how many iteration of
|
|
// the fdm to run with the fixed dt based on the elapsed time from
|
|
// the last update. This allows us to maintain sync with the real
|
|
// time clock, even though each frame could take a random amount
|
|
// of time. Since "dt" is unlikely to divide evenly into the
|
|
// elapse time, we keep track of the remainder and add it into the
|
|
// next elapsed time. This yields a small amount of temporal
|
|
// jitter ( < dt ) but in practice seems to work well.
|
|
|
|
double remainder; // remainder time from last run
|
|
|
|
// CG position w.r.t. ref. point
|
|
SGVec3d d_cg_rp_body_v;
|
|
|
|
// Accelerations
|
|
SGVec3d v_dot_local_v;
|
|
SGVec3d v_dot_body_v;
|
|
SGVec3d a_cg_body_v;
|
|
SGVec3d a_pilot_body_v;
|
|
SGVec3d n_cg_body_v;
|
|
SGVec3d omega_dot_body_v;
|
|
|
|
// Velocities
|
|
SGVec3d v_local_v;
|
|
SGVec3d v_local_rel_ground_v; // V rel w.r.t. earth surface
|
|
SGVec3d v_local_airmass_v; // velocity of airmass (steady winds)
|
|
SGVec3d v_wind_body_v; // Wind-relative velocities in body axis
|
|
|
|
SGVec3d omega_body_v; // Angular B rates
|
|
SGVec3d euler_rates_v;
|
|
SGVec3d geocentric_rates_v; // Geocentric linear velocities
|
|
|
|
// Positions
|
|
SGGeod geodetic_position_v;
|
|
SGVec3d cartesian_position_v;
|
|
SGGeoc geocentric_position_v;
|
|
SGVec3d euler_angles_v;
|
|
|
|
// Normal Load Factor
|
|
double nlf;
|
|
|
|
// Velocities
|
|
double v_rel_wind, v_true_kts;
|
|
double v_ground_speed, v_equiv_kts;
|
|
double v_calibrated_kts;
|
|
|
|
// Miscellaneious Quantities
|
|
double alpha, beta; // in radians
|
|
double gamma_vert_rad; // Flight path angles
|
|
double density, mach_number;
|
|
double static_pressure, total_pressure;
|
|
double dynamic_pressure;
|
|
double static_temperature, total_temperature;
|
|
double sea_level_radius, earth_position_angle;
|
|
double runway_altitude;
|
|
double climb_rate; // in feet per second
|
|
double altitude_agl;
|
|
|
|
double daux[16]; // auxilliary doubles
|
|
float faux[16]; // auxilliary floats
|
|
int iaux[16]; // auxilliary ints
|
|
|
|
// the ground cache object itself.
|
|
FGGroundCache ground_cache;
|
|
|
|
protected:
|
|
|
|
int _calc_multiloop (double dt);
|
|
|
|
public:
|
|
|
|
// deliberately not virtual so that
|
|
// FGInterface constructor will call
|
|
// the right version
|
|
void _setup();
|
|
|
|
void _busdump(void);
|
|
void _updatePositionM(const SGVec3d& cartPos);
|
|
void _updatePositionFt(const SGVec3d& cartPos) {
|
|
_updatePositionM(SG_FEET_TO_METER*cartPos);
|
|
}
|
|
void _updatePosition(const SGGeod& geod);
|
|
void _updatePosition(const SGGeoc& geoc);
|
|
|
|
void _updateGeodeticPosition( double lat, double lon, double alt );
|
|
void _updateGeocentricPosition( double lat_geoc, double lon, double alt );
|
|
void _update_ground_elev_at_pos( void );
|
|
|
|
inline void _set_CG_Position( double dx, double dy, double dz ) {
|
|
d_cg_rp_body_v[0] = dx;
|
|
d_cg_rp_body_v[1] = dy;
|
|
d_cg_rp_body_v[2] = dz;
|
|
}
|
|
inline void _set_Accels_Local( double north, double east, double down ) {
|
|
v_dot_local_v[0] = north;
|
|
v_dot_local_v[1] = east;
|
|
v_dot_local_v[2] = down;
|
|
}
|
|
inline void _set_Accels_Body( double u, double v, double w ) {
|
|
v_dot_body_v[0] = u;
|
|
v_dot_body_v[1] = v;
|
|
v_dot_body_v[2] = w;
|
|
}
|
|
inline void _set_Accels_CG_Body( double x, double y, double z ) {
|
|
a_cg_body_v[0] = x;
|
|
a_cg_body_v[1] = y;
|
|
a_cg_body_v[2] = z;
|
|
}
|
|
inline void _set_Accels_Pilot_Body( double x, double y, double z ) {
|
|
a_pilot_body_v[0] = x;
|
|
a_pilot_body_v[1] = y;
|
|
a_pilot_body_v[2] = z;
|
|
}
|
|
inline void _set_Accels_CG_Body_N( double x, double y, double z ) {
|
|
n_cg_body_v[0] = x;
|
|
n_cg_body_v[1] = y;
|
|
n_cg_body_v[2] = z;
|
|
}
|
|
void _set_Nlf(double n) { nlf=n; }
|
|
inline void _set_Velocities_Local( double north, double east, double down ){
|
|
v_local_v[0] = north;
|
|
v_local_v[1] = east;
|
|
v_local_v[2] = down;
|
|
}
|
|
inline void _set_Velocities_Ground(double north, double east, double down) {
|
|
v_local_rel_ground_v[0] = north;
|
|
v_local_rel_ground_v[1] = east;
|
|
v_local_rel_ground_v[2] = down;
|
|
}
|
|
inline void _set_Velocities_Local_Airmass( double north, double east,
|
|
double down)
|
|
{
|
|
v_local_airmass_v[0] = north;
|
|
v_local_airmass_v[1] = east;
|
|
v_local_airmass_v[2] = down;
|
|
}
|
|
inline void _set_Velocities_Wind_Body( double u, double v, double w) {
|
|
v_wind_body_v[0] = u;
|
|
v_wind_body_v[1] = v;
|
|
v_wind_body_v[2] = w;
|
|
}
|
|
inline void _set_V_rel_wind(double vt) { v_rel_wind = vt; }
|
|
inline void _set_V_ground_speed( double v) { v_ground_speed = v; }
|
|
inline void _set_V_equiv_kts( double kts ) { v_equiv_kts = kts; }
|
|
inline void _set_V_calibrated_kts( double kts ) { v_calibrated_kts = kts; }
|
|
inline void _set_Omega_Body( double p, double q, double r ) {
|
|
omega_body_v[0] = p;
|
|
omega_body_v[1] = q;
|
|
omega_body_v[2] = r;
|
|
}
|
|
inline void _set_Euler_Rates( double phi, double theta, double psi ) {
|
|
euler_rates_v[0] = phi;
|
|
euler_rates_v[1] = theta;
|
|
euler_rates_v[2] = psi;
|
|
}
|
|
inline void _set_Geocentric_Rates( double lat, double lon, double rad ) {
|
|
geocentric_rates_v[0] = lat;
|
|
geocentric_rates_v[1] = lon;
|
|
geocentric_rates_v[2] = rad;
|
|
}
|
|
inline void _set_Geocentric_Position( double lat, double lon, double rad ) {
|
|
geocentric_position_v.setLatitudeRad(lat);
|
|
geocentric_position_v.setLongitudeRad(lon);
|
|
geocentric_position_v.setRadiusFt(rad);
|
|
}
|
|
inline void _set_Latitude(double lat) {
|
|
geodetic_position_v.setLatitudeRad(lat);
|
|
}
|
|
inline void _set_Longitude(double lon) {
|
|
geodetic_position_v.setLongitudeRad(lon);
|
|
}
|
|
inline void _set_Altitude(double altitude) {
|
|
geodetic_position_v.setElevationFt(altitude);
|
|
}
|
|
inline void _set_Altitude_AGL(double agl) {
|
|
altitude_agl = agl;
|
|
}
|
|
inline void _set_Geodetic_Position( double lat, double lon, double alt ) {
|
|
geodetic_position_v.setLatitudeRad(lat);
|
|
geodetic_position_v.setLongitudeRad(lon);
|
|
geodetic_position_v.setElevationFt(alt);
|
|
}
|
|
inline void _set_Euler_Angles( double phi, double theta, double psi ) {
|
|
euler_angles_v[0] = phi;
|
|
euler_angles_v[1] = theta;
|
|
euler_angles_v[2] = psi;
|
|
}
|
|
// FIXME, for compatibility with JSBSim
|
|
inline void _set_T_Local_to_Body( int i, int j, double value) { }
|
|
inline void _set_Alpha( double a ) { alpha = a; }
|
|
inline void _set_Beta( double b ) { beta = b; }
|
|
inline void _set_Gamma_vert_rad( double gv ) { gamma_vert_rad = gv; }
|
|
inline void _set_Density( double d ) { density = d; }
|
|
inline void _set_Mach_number( double m ) { mach_number = m; }
|
|
inline void _set_Static_pressure( double sp ) { static_pressure = sp; }
|
|
inline void _set_Static_temperature( double t ) { static_temperature = t; }
|
|
inline void _set_Total_temperature( double tat ) { total_temperature = tat; } //JW
|
|
inline void _set_Sea_level_radius( double r ) { sea_level_radius = r; }
|
|
inline void _set_Earth_position_angle(double a) { earth_position_angle = a; }
|
|
inline void _set_Runway_altitude( double alt ) { runway_altitude = alt; }
|
|
inline void _set_Climb_Rate(double rate) { climb_rate = rate; }
|
|
|
|
inline void _set_daux( int n, double value ) { daux[n] = value; }
|
|
inline void _set_faux( int n, float value ) { faux[n] = value; }
|
|
inline void _set_iaux( int n, int value ) { iaux[n] = value; }
|
|
|
|
public:
|
|
|
|
FGInterface();
|
|
FGInterface( double dt );
|
|
virtual ~FGInterface();
|
|
|
|
virtual void init ();
|
|
virtual void bind ();
|
|
virtual void unbind ();
|
|
virtual void update(double dt);
|
|
virtual bool ToggleDataLogging(bool state) { return false; }
|
|
virtual bool ToggleDataLogging(void) { return false; }
|
|
|
|
// Define the various supported flight models (many not yet implemented)
|
|
enum {
|
|
// Magic Carpet mode
|
|
FG_MAGICCARPET = 0,
|
|
|
|
// The NASA LaRCsim (Navion) flight model
|
|
FG_LARCSIM = 1,
|
|
|
|
// Jon S. Berndt's new FDM written from the ground up in C++
|
|
FG_JSBSIM = 2,
|
|
|
|
// Christian's hot air balloon simulation
|
|
FG_BALLOONSIM = 3,
|
|
|
|
// Aeronautical DEvelopment AGEncy, Bangalore India
|
|
FG_ADA = 4,
|
|
|
|
// The following aren't implemented but are here to spark
|
|
// thoughts and discussions, and maybe even action.
|
|
FG_ACM = 5,
|
|
FG_SUPER_SONIC = 6,
|
|
FG_HELICOPTER = 7,
|
|
FG_AUTOGYRO = 8,
|
|
FG_PARACHUTE = 9,
|
|
|
|
// Driven externally via a serial port, net, file, etc.
|
|
FG_EXTERNAL = 10
|
|
};
|
|
|
|
// initialization
|
|
inline bool get_inited() const { return inited; }
|
|
inline void set_inited( bool value ) { inited = value; }
|
|
|
|
inline bool get_bound() const { return bound; }
|
|
|
|
//perform initializion that is common to all FDM's
|
|
void common_init();
|
|
|
|
// Positions
|
|
virtual void set_Latitude(double lat); // geocentric
|
|
virtual void set_Longitude(double lon);
|
|
virtual void set_Altitude(double alt); // triggers re-calc of AGL altitude
|
|
virtual void set_AltitudeAGL(double altagl); // and vice-versa
|
|
virtual void set_Latitude_deg (double lat) {
|
|
set_Latitude(lat * SGD_DEGREES_TO_RADIANS);
|
|
}
|
|
virtual void set_Longitude_deg (double lon) {
|
|
set_Longitude(lon * SGD_DEGREES_TO_RADIANS);
|
|
}
|
|
|
|
// Speeds -- setting any of these will trigger a re-calc of the rest
|
|
virtual void set_V_calibrated_kts(double vc);
|
|
virtual void set_Mach_number(double mach);
|
|
virtual void set_Velocities_Local( double north, double east, double down );
|
|
inline void set_V_north (double north) {
|
|
set_Velocities_Local(north, v_local_v[1], v_local_v[2]);
|
|
}
|
|
inline void set_V_east (double east) {
|
|
set_Velocities_Local(v_local_v[0], east, v_local_v[2]);
|
|
}
|
|
inline void set_V_down (double down) {
|
|
set_Velocities_Local(v_local_v[0], v_local_v[1], down);
|
|
}
|
|
virtual void set_Velocities_Wind_Body( double u, double v, double w);
|
|
virtual void set_uBody (double uBody) {
|
|
set_Velocities_Wind_Body(uBody, v_wind_body_v[1], v_wind_body_v[2]);
|
|
}
|
|
virtual void set_vBody (double vBody) {
|
|
set_Velocities_Wind_Body(v_wind_body_v[0], vBody, v_wind_body_v[2]);
|
|
}
|
|
virtual void set_wBody (double wBody) {
|
|
set_Velocities_Wind_Body(v_wind_body_v[0], v_wind_body_v[1], wBody);
|
|
}
|
|
|
|
// Euler angles
|
|
virtual void set_Euler_Angles( double phi, double theta, double psi );
|
|
virtual void set_Phi (double phi) {
|
|
set_Euler_Angles(phi, get_Theta(), get_Psi());
|
|
}
|
|
virtual void set_Theta (double theta) {
|
|
set_Euler_Angles(get_Phi(), theta, get_Psi());
|
|
}
|
|
virtual void set_Psi (double psi) {
|
|
set_Euler_Angles(get_Phi(), get_Theta(), psi);
|
|
}
|
|
virtual void set_Phi_deg (double phi) {
|
|
set_Phi(phi * SGD_DEGREES_TO_RADIANS);
|
|
}
|
|
virtual void set_Theta_deg (double theta) {
|
|
set_Theta(theta * SGD_DEGREES_TO_RADIANS);
|
|
}
|
|
virtual void set_Psi_deg (double psi) {
|
|
set_Psi(psi * SGD_DEGREES_TO_RADIANS);
|
|
}
|
|
|
|
// Flight Path
|
|
virtual void set_Climb_Rate( double roc);
|
|
virtual void set_Gamma_vert_rad( double gamma);
|
|
|
|
// Earth
|
|
|
|
virtual void set_Static_pressure(double p);
|
|
virtual void set_Static_temperature(double T);
|
|
virtual void set_Density(double rho);
|
|
|
|
virtual void set_Velocities_Local_Airmass (double wnorth,
|
|
double weast,
|
|
double wdown );
|
|
|
|
// ========== Mass properties and geometry values ==========
|
|
|
|
// CG position w.r.t. ref. point
|
|
inline double get_Dx_cg() const { return d_cg_rp_body_v[0]; }
|
|
inline double get_Dy_cg() const { return d_cg_rp_body_v[1]; }
|
|
inline double get_Dz_cg() const { return d_cg_rp_body_v[2]; }
|
|
|
|
// ========== Accelerations ==========
|
|
|
|
inline double get_V_dot_north() const { return v_dot_local_v[0]; }
|
|
inline double get_V_dot_east() const { return v_dot_local_v[1]; }
|
|
inline double get_V_dot_down() const { return v_dot_local_v[2]; }
|
|
|
|
inline double get_U_dot_body() const { return v_dot_body_v[0]; }
|
|
inline double get_V_dot_body() const { return v_dot_body_v[1]; }
|
|
inline double get_W_dot_body() const { return v_dot_body_v[2]; }
|
|
|
|
inline double get_A_X_cg() const { return a_cg_body_v[0]; }
|
|
inline double get_A_Y_cg() const { return a_cg_body_v[1]; }
|
|
inline double get_A_Z_cg() const { return a_cg_body_v[2]; }
|
|
|
|
inline double get_A_X_pilot() const { return a_pilot_body_v[0]; }
|
|
inline double get_A_Y_pilot() const { return a_pilot_body_v[1]; }
|
|
inline double get_A_Z_pilot() const { return a_pilot_body_v[2]; }
|
|
|
|
inline double get_N_X_cg() const { return n_cg_body_v[0]; }
|
|
inline double get_N_Y_cg() const { return n_cg_body_v[1]; }
|
|
inline double get_N_Z_cg() const { return n_cg_body_v[2]; }
|
|
|
|
inline double get_Nlf(void) const { return nlf; }
|
|
|
|
// ========== Velocities ==========
|
|
|
|
inline double get_V_north() const { return v_local_v[0]; }
|
|
inline double get_V_east() const { return v_local_v[1]; }
|
|
inline double get_V_down() const { return v_local_v[2]; }
|
|
inline double get_uBody () const { return v_wind_body_v[0]; }
|
|
inline double get_vBody () const { return v_wind_body_v[1]; }
|
|
inline double get_wBody () const { return v_wind_body_v[2]; }
|
|
|
|
// Please dont comment these out. fdm=ada uses these (see
|
|
// cockpit.cxx) --->
|
|
inline double get_V_north_rel_ground() const {
|
|
return v_local_rel_ground_v[0];
|
|
}
|
|
inline double get_V_east_rel_ground() const {
|
|
return v_local_rel_ground_v[1];
|
|
}
|
|
inline double get_V_down_rel_ground() const {
|
|
return v_local_rel_ground_v[2];
|
|
}
|
|
// <--- fdm=ada uses these (see cockpit.cxx)
|
|
|
|
inline double get_V_north_airmass() const { return v_local_airmass_v[0]; }
|
|
inline double get_V_east_airmass() const { return v_local_airmass_v[1]; }
|
|
inline double get_V_down_airmass() const { return v_local_airmass_v[2]; }
|
|
|
|
inline double get_U_body() const { return v_wind_body_v[0]; }
|
|
inline double get_V_body() const { return v_wind_body_v[1]; }
|
|
inline double get_W_body() const { return v_wind_body_v[2]; }
|
|
|
|
inline double get_V_rel_wind() const { return v_rel_wind; }
|
|
|
|
inline double get_V_true_kts() const { return v_true_kts; }
|
|
|
|
inline double get_V_ground_speed() const { return v_ground_speed; }
|
|
inline double get_V_ground_speed_kt() const { return v_ground_speed * SG_FEET_TO_METER * 3600 * SG_METER_TO_NM; }
|
|
|
|
inline double get_V_equiv_kts() const { return v_equiv_kts; }
|
|
|
|
inline double get_V_calibrated_kts() const { return v_calibrated_kts; }
|
|
|
|
inline double get_P_body() const { return omega_body_v[0]; }
|
|
inline double get_Q_body() const { return omega_body_v[1]; }
|
|
inline double get_R_body() const { return omega_body_v[2]; }
|
|
|
|
inline double get_Phi_dot() const { return euler_rates_v[0]; }
|
|
inline double get_Theta_dot() const { return euler_rates_v[1]; }
|
|
inline double get_Psi_dot() const { return euler_rates_v[2]; }
|
|
inline double get_Phi_dot_degps() const { return euler_rates_v[0] * SGD_RADIANS_TO_DEGREES; }
|
|
inline double get_Theta_dot_degps() const { return euler_rates_v[1] * SGD_RADIANS_TO_DEGREES; }
|
|
inline double get_Psi_dot_degps() const { return euler_rates_v[2] * SGD_RADIANS_TO_DEGREES; }
|
|
|
|
inline double get_Latitude_dot() const { return geocentric_rates_v[0]; }
|
|
inline double get_Longitude_dot() const { return geocentric_rates_v[1]; }
|
|
inline double get_Radius_dot() const { return geocentric_rates_v[2]; }
|
|
|
|
// ========== Positions ==========
|
|
|
|
inline double get_Lat_geocentric() const {
|
|
return geocentric_position_v.getLatitudeRad();
|
|
}
|
|
inline double get_Lon_geocentric() const {
|
|
return geocentric_position_v.getLongitudeRad();
|
|
}
|
|
inline double get_Radius_to_vehicle() const {
|
|
return geocentric_position_v.getRadiusFt();
|
|
}
|
|
|
|
const SGGeod& getPosition() const { return geodetic_position_v; }
|
|
const SGGeoc& getGeocPosition() const { return geocentric_position_v; }
|
|
const SGVec3d& getCartPosition() const { return cartesian_position_v; }
|
|
|
|
inline double get_Latitude() const {
|
|
return geodetic_position_v.getLatitudeRad();
|
|
}
|
|
inline double get_Longitude() const {
|
|
return geodetic_position_v.getLongitudeRad();
|
|
}
|
|
inline double get_Altitude() const {
|
|
return geodetic_position_v.getElevationFt();
|
|
}
|
|
inline double get_Altitude_AGL(void) const { return altitude_agl; }
|
|
|
|
inline double get_Latitude_deg () const {
|
|
return geodetic_position_v.getLatitudeDeg();
|
|
}
|
|
inline double get_Longitude_deg () const {
|
|
return geodetic_position_v.getLongitudeDeg();
|
|
}
|
|
|
|
inline double get_Phi() const { return euler_angles_v[0]; }
|
|
inline double get_Theta() const { return euler_angles_v[1]; }
|
|
inline double get_Psi() const { return euler_angles_v[2]; }
|
|
inline double get_Phi_deg () const { return get_Phi() * SGD_RADIANS_TO_DEGREES; }
|
|
inline double get_Theta_deg () const { return get_Theta() * SGD_RADIANS_TO_DEGREES; }
|
|
inline double get_Psi_deg () const { return get_Psi() * SGD_RADIANS_TO_DEGREES; }
|
|
|
|
|
|
// ========== Miscellaneous quantities ==========
|
|
|
|
inline double get_Alpha() const { return alpha; }
|
|
inline double get_Alpha_deg() const { return alpha * SGD_RADIANS_TO_DEGREES; }
|
|
inline double get_Beta() const { return beta; }
|
|
inline double get_Beta_deg() const { return beta * SGD_RADIANS_TO_DEGREES; }
|
|
inline double get_Gamma_vert_rad() const { return gamma_vert_rad; }
|
|
|
|
inline double get_Density() const { return density; }
|
|
inline double get_Mach_number() const { return mach_number; }
|
|
|
|
inline double get_Static_pressure() const { return static_pressure; }
|
|
inline double get_Total_pressure() const { return total_pressure; }
|
|
inline double get_Dynamic_pressure() const { return dynamic_pressure; }
|
|
|
|
inline double get_Static_temperature() const { return static_temperature; }
|
|
inline double get_Total_temperature() const { return total_temperature; }
|
|
|
|
inline double get_Sea_level_radius() const { return sea_level_radius; }
|
|
inline double get_Earth_position_angle() const {
|
|
return earth_position_angle;
|
|
}
|
|
|
|
inline double get_Runway_altitude() const { return runway_altitude; }
|
|
inline double get_Runway_altitude_m() const { return SG_FEET_TO_METER * runway_altitude; }
|
|
|
|
inline double get_Climb_Rate() const { return climb_rate; }
|
|
|
|
// Auxilliary variables
|
|
inline double get_daux( int n ) const { return daux[n]; }
|
|
inline float get_faux( int n ) const { return faux[n]; }
|
|
inline int get_iaux( int n ) const { return iaux[n]; }
|
|
|
|
// Note that currently this is the "same" value runway altitude...
|
|
inline double get_ground_elev_ft() const { return runway_altitude; }
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// Ground handling routines
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
enum GroundType {
|
|
Unknown = 0, //??
|
|
Solid, // Whatever we will roll on with infinite load factor.
|
|
Water, // For the beaver ...
|
|
Catapult, // Carrier cats.
|
|
Wire // Carrier wires.
|
|
};
|
|
|
|
// Prepare the ground cache for the wgs84 position pt_*.
|
|
// That is take all vertices in the ball with radius rad around the
|
|
// position given by the pt_* and store them in a local scene graph.
|
|
bool prepare_ground_cache_m(double ref_time, const double pt[3],
|
|
double rad);
|
|
bool prepare_ground_cache_ft(double ref_time, const double pt[3],
|
|
double rad);
|
|
|
|
|
|
// Returns true if the cache is valid.
|
|
// Also the reference time, point and radius values where the cache
|
|
// is valid for are returned.
|
|
bool is_valid_m(double *ref_time, double pt[3], double *rad);
|
|
bool is_valid_ft(double *ref_time, double pt[3], double *rad);
|
|
|
|
// Return the nearest catapult to the given point
|
|
// pt in wgs84 coordinates.
|
|
double get_cat_m(double t, const double pt[3],
|
|
double end[2][3], double vel[2][3]);
|
|
double get_cat_ft(double t, const double pt[3],
|
|
double end[2][3], double vel[2][3]);
|
|
|
|
|
|
// Return the altitude above ground below the wgs84 point pt
|
|
// Search for the nearest triangle to pt.
|
|
// Return ground properties like the ground type, the maximum load
|
|
// this kind kind of ground can carry, the friction factor between
|
|
// 0 and 1 which can be used to model lower friction with wet runways
|
|
// and finally the altitude above ground.
|
|
bool get_agl_m(double t, const double pt[3],
|
|
double contact[3], double normal[3], double vel[3],
|
|
int *type, double *loadCapacity,
|
|
double *frictionFactor, double *agl);
|
|
bool get_agl_m(double t, const double pt[3],
|
|
double contact[3], double normal[3], double vel[3],
|
|
int *type, const SGMaterial **material,double *agl);
|
|
bool get_agl_ft(double t, const double pt[3],
|
|
double contact[3], double normal[3], double vel[3],
|
|
int *type, double *loadCapacity,
|
|
double *frictionFactor, double *agl);
|
|
|
|
// Return the altitude above ground below the wgs84 point pt
|
|
// Search for the nearest triangle to pt.
|
|
// Return ground properties like the ground type, a pointer to the
|
|
// material and finally the altitude above ground.
|
|
bool get_agl_m(double t, const double pt[3], double max_altoff,
|
|
double contact[3], double normal[3], double vel[3],
|
|
int *type, const SGMaterial** material, double *agl);
|
|
bool get_agl_ft(double t, const double pt[3], double max_altoff,
|
|
double contact[3], double normal[3], double vel[3],
|
|
int *type, const SGMaterial** material, double *agl);
|
|
double get_groundlevel_m(double lat, double lon, double alt);
|
|
double get_groundlevel_m(const SGGeod& geod);
|
|
|
|
|
|
// Return 1 if the hook intersects with a wire.
|
|
// That test is done by checking if the quad spanned by the points pt*
|
|
// intersects with the line representing the wire.
|
|
// If the wire is caught, the cache will trace this wires endpoints until
|
|
// the FDM calls release_wire().
|
|
bool caught_wire_m(double t, const double pt[4][3]);
|
|
bool caught_wire_ft(double t, const double pt[4][3]);
|
|
|
|
// Return the location and speed of the wire endpoints.
|
|
bool get_wire_ends_m(double t, double end[2][3], double vel[2][3]);
|
|
bool get_wire_ends_ft(double t, double end[2][3], double vel[2][3]);
|
|
|
|
// Tell the cache code that it does no longer need to care for
|
|
// the wire end position.
|
|
void release_wire(void);
|
|
};
|
|
|
|
extern FGInterface * cur_fdm_state;
|
|
|
|
// Toggle data logging on/off
|
|
void fgToggleFDMdataLogging(void);
|
|
|
|
|
|
#endif // _FLIGHT_HXX
|