1
0
Fork 0
flightgear/src/FDM/YASim/Integrator.cpp
2017-04-21 22:17:27 +02:00

278 lines
8.5 KiB
C++

#include "Math.hpp"
#include "Integrator.hpp"
namespace yasim {
// Updates a position vector for a body c.g. motion with velocity v
// over time dt, from orientation o0 to o1. Because the position
// references the local coordinate origin, but the velocity is that of
// the c.g., this gets a bit complicated.
void Integrator::extrapolatePosition(double* pos, float* v, float dt,
float* o1, float* o2)
{
// Remember that it's the c.g. that's moving, so account for
// changes in orientation. The motion of the coordinate
// frame will be l2gOLD(cg) + deltaCG - l2gNEW(cg)
float cg[3], tmp[3];
_body->getCG(cg);
l2gVector(o1, cg, cg); // cg = l2gOLD(cg) ("cg0")
Math::set3(v, tmp); // tmp = vel
Math::mul3(dt, tmp, tmp); // = vel*dt ("deltaCG")
Math::add3(cg, tmp, tmp); // = cg0 + deltaCG
_body->getCG(cg);
l2gVector(o2, cg, cg); // cg = l2gNEW(cg) ("cg1")
Math::sub3(tmp, cg, tmp); // tmp = cg0 + deltaCG - cg1
pos[0] += tmp[0]; // p1 = p0 + (cg0+deltaCG-cg1)
pos[1] += tmp[1]; // (positions are doubles, so we
pos[2] += tmp[2]; // can't use Math::add3)
}
#if 0
// A straight euler integration, for reference. Don't use.
void Integrator::calcNewInterval()
{
float tmp[3];
State s = _s;
float dt = _dt / 4;
orthonormalize(_s.orient);
int i;
for(i=0; i<4; i++) {
_body->reset();
_env->calcForces(&s);
_body->getAccel(s.acc);
l2gVector(_s.orient, s.acc, s.acc);
_body->getAngularAccel(s.racc);
l2gVector(_s.orient, s.racc, s.racc);
float rotmat[9];
rotMatrix(s.rot, dt, rotmat);
Math::mmul33(_s.orient, rotmat, s.orient);
extrapolatePosition(s.pos, s.v, dt, _s.orient, s.orient);
Math::mul3(dt, s.acc, tmp);
Math::add3(tmp, s.v, s.v);
Math::mul3(dt, s.racc, tmp);
Math::add3(tmp, s.rot, s.rot);
_s = s;
}
_env->newState(&_s);
}
#endif
void Integrator::calcNewInterval()
{
// In principle, these could be changed for something other than
// a 4th order integration. I doubt if anyone cares.
const static int NITER=4;
static float TIMESTEP[] = { 1.0, 0.5, 0.5, 1.0 };
static float WEIGHTS[] = { 6.0, 3.0, 3.0, 6.0 };
// Scratch pads:
double pos[NITER][3]; float vel[NITER][3]; float acc[NITER][3];
float ori[NITER][9]; float rot[NITER][3]; float rac[NITER][3];
float *currVel = _s.v;
float *currAcc = _s.acc;
float *currRot = _s.rot;
float *currRac = _s.racc;
// First off, sanify the initial orientation
orthonormalize(_s.orient);
int i;
for(i=0; i<NITER; i++) {
//
// extrapolate forward based on current values of the
// derivatives and the ORIGINAL values of the
// position/orientation.
//
float dt = _dt * TIMESTEP[i];
float tmp[3];
// "add" rotation to orientation (generate a rotation matrix)
float rotmat[9];
rotMatrix(currRot, dt, rotmat);
Math::mmul33(_s.orient, rotmat, ori[i]);
// add velocity to (original!) position
int j;
for(j=0; j<3; j++) pos[i][j] = _s.pos[j];
extrapolatePosition(pos[i], currVel, dt, _s.orient, ori[i]);
// add acceleration to (original!) velocity
Math::set3(currAcc, tmp);
Math::mul3(dt, tmp, tmp);
Math::add3(_s.v, tmp, vel[i]);
// add rotational acceleration to rotation
Math::set3(currRac, tmp);
Math::mul3(dt, tmp, tmp);
Math::add3(_s.rot, tmp, rot[i]);
//
// Tell the environment to generate new forces on the body,
// extract the accelerations, and convert to vectors in the
// global frame.
//
_body->reset();
// FIXME. Copying into a state object is clumsy! The
// per-coordinate arrays should be changed into a single array
// of State objects. Ick.
State stmp;
for(j=0; j<3; j++) {
stmp.pos[j] = pos[i][j];
stmp.v[j] = vel[i][j];
stmp.rot[j] = rot[i][j];
}
for(j=0; j<9; j++)
stmp.orient[j] = ori[i][j];
_env->calcForces(&stmp);
_body->getAccel(acc[i]);
_body->getAngularAccel(rac[i]);
l2gVector(_s.orient, acc[i], acc[i]);
l2gVector(_s.orient, rac[i], rac[i]);
//
// Save the resulting derivatives for the next iteration
//
currVel = vel[i]; currAcc = acc[i];
currRot = rot[i]; currRac = rac[i];
}
// Average the resulting derivatives together according to their
// weights. Yes, we're "averaging" rotations, which isn't
// stricly correct -- rotations live in a non-cartesian space.
// But the space is "locally" cartesian.
State derivs;
float tot = 0;
for(i=0; i<NITER; i++) {
float wgt = WEIGHTS[i];
tot += wgt;
int j;
for(j=0; j<3; j++) {
derivs.v[j] += wgt*vel[i][j]; derivs.rot[j] += wgt*rot[i][j];
derivs.acc[j] += wgt*acc[i][j]; derivs.racc[j] += wgt*rac[i][j];
}
}
float itot = 1/tot;
for(i=0; i<3; i++) {
derivs.v[i] *= itot; derivs.rot[i] *= itot;
derivs.acc[i] *= itot; derivs.racc[i] *= itot;
}
// And finally extrapolate once more, using the averaged
// derivatives, to the final position and orientation. This code
// is essentially identical to the position extrapolation step
// inside the loop.
// save the starting orientation
float orient0[9];
for(i=0; i<9; i++) orient0[i] = _s.orient[i];
float rotmat[9];
rotMatrix(derivs.rot, _dt, rotmat);
Math::mmul33(orient0, rotmat, _s.orient);
extrapolatePosition(_s.pos, derivs.v, _dt, orient0, _s.orient);
float tmp[3];
Math::mul3(_dt, derivs.acc, tmp);
Math::add3(_s.v, tmp, _s.v);
Math::mul3(_dt, derivs.racc, tmp);
Math::add3(_s.rot, tmp, _s.rot);
for(i=0; i<3; i++) {
_s.acc[i] = derivs.acc[i];
_s.racc[i] = derivs.racc[i];
}
// Tell the environment about our decision
_env->newState(&_s);
}
// Generates a matrix that rotates about axis r through an angle equal
// to (|r| * dt). That is, a rotation effected by rotating with rate
// r for dt "seconds" (or whatever time unit is in use).
// Implementation shamelessly cribbed from the OpenGL specification.
//
// NOTE: we're actually returning the _transpose_ of the rotation
// matrix! This is becuase we store orientations as global-to-local
// transformations. Thus, we want to rotate the ROWS of the old
// matrix to get the new one.
void Integrator::rotMatrix(float* r, float dt, float* out)
{
// Normalize the vector, and extract the angle through which we'll
// rotate.
float mag = Math::mag3(r);
float angle = dt*mag;
// Tiny rotations result in degenerate (zero-length) rotation
// vectors, so clamp to an identity matrix. 1e-06 radians
// per 1/30th of a second (typical dt unit) corresponds to one
// revolution per 2.4 days, or significantly less than the
// coriolis rotation. And it's still preserves half the floating
// point precision of a radian-per-iteration rotation.
if(angle < 1e-06) {
out[0] = 1; out[1] = 0; out[2] = 0;
out[3] = 0; out[4] = 1; out[5] = 0;
out[6] = 0; out[7] = 0; out[8] = 1;
return;
}
float runit[3];
Math::mul3(1/mag, r, runit);
float s = Math::sin(angle);
float c = Math::cos(angle);
float c1 = 1-c;
float c1rx = c1*runit[0];
float c1ry = c1*runit[1];
float xx = c1rx*runit[0];
float xy = c1rx*runit[1];
float xz = c1rx*runit[2];
float yy = c1ry*runit[1];
float yz = c1ry*runit[2];
float zz = c1*runit[2]*runit[2];
float xs = runit[0]*s;
float ys = runit[1]*s;
float zs = runit[2]*s;
out[0] = xx+c ; out[3] = xy-zs; out[6] = xz+ys;
out[1] = xy+zs; out[4] = yy+c ; out[7] = yz-xs;
out[2] = xz-ys; out[5] = yz+xs; out[8] = zz+c ;
}
// Does a Gram-Schmidt orthonormalization on the rows of a
// global-to-local orientation matrix. The order of normalization
// here is x, z, y. This is because of the convention of "x" being
// the forward vector and "z" being up in the body frame. These two
// vectors are the most important to keep correct.
void Integrator::orthonormalize(float* m)
{
// The 1st, 2nd and 3rd rows of the matrix store the global frame
// equivalents of the x, y, and z unit vectors in the local frame.
float *x = m, *y = m+3, *z = m+6;
Math::unit3(x, x); // x = x/|x|
float v[3];
Math::mul3(Math::dot3(x, z), z, v); // v = z(x dot z)
Math::sub3(z, v, z); // z = z - z*(x dot z)
Math::unit3(z, z); // z = z/|z|
Math::cross3(z, x, y); // y = z cross x
}
}; // namespace yasim