278 lines
8.5 KiB
C++
278 lines
8.5 KiB
C++
#include "Math.hpp"
|
|
#include "Integrator.hpp"
|
|
namespace yasim {
|
|
|
|
// Updates a position vector for a body c.g. motion with velocity v
|
|
// over time dt, from orientation o0 to o1. Because the position
|
|
// references the local coordinate origin, but the velocity is that of
|
|
// the c.g., this gets a bit complicated.
|
|
void Integrator::extrapolatePosition(double* pos, float* v, float dt,
|
|
float* o1, float* o2)
|
|
{
|
|
// Remember that it's the c.g. that's moving, so account for
|
|
// changes in orientation. The motion of the coordinate
|
|
// frame will be l2gOLD(cg) + deltaCG - l2gNEW(cg)
|
|
float cg[3], tmp[3];
|
|
|
|
_body->getCG(cg);
|
|
l2gVector(o1, cg, cg); // cg = l2gOLD(cg) ("cg0")
|
|
Math::set3(v, tmp); // tmp = vel
|
|
Math::mul3(dt, tmp, tmp); // = vel*dt ("deltaCG")
|
|
Math::add3(cg, tmp, tmp); // = cg0 + deltaCG
|
|
_body->getCG(cg);
|
|
l2gVector(o2, cg, cg); // cg = l2gNEW(cg) ("cg1")
|
|
Math::sub3(tmp, cg, tmp); // tmp = cg0 + deltaCG - cg1
|
|
|
|
pos[0] += tmp[0]; // p1 = p0 + (cg0+deltaCG-cg1)
|
|
pos[1] += tmp[1]; // (positions are doubles, so we
|
|
pos[2] += tmp[2]; // can't use Math::add3)
|
|
}
|
|
|
|
#if 0
|
|
// A straight euler integration, for reference. Don't use.
|
|
void Integrator::calcNewInterval()
|
|
{
|
|
float tmp[3];
|
|
State s = _s;
|
|
|
|
float dt = _dt / 4;
|
|
|
|
orthonormalize(_s.orient);
|
|
int i;
|
|
for(i=0; i<4; i++) {
|
|
_body->reset();
|
|
_env->calcForces(&s);
|
|
|
|
_body->getAccel(s.acc);
|
|
l2gVector(_s.orient, s.acc, s.acc);
|
|
|
|
_body->getAngularAccel(s.racc);
|
|
l2gVector(_s.orient, s.racc, s.racc);
|
|
|
|
float rotmat[9];
|
|
rotMatrix(s.rot, dt, rotmat);
|
|
Math::mmul33(_s.orient, rotmat, s.orient);
|
|
|
|
extrapolatePosition(s.pos, s.v, dt, _s.orient, s.orient);
|
|
|
|
Math::mul3(dt, s.acc, tmp);
|
|
Math::add3(tmp, s.v, s.v);
|
|
|
|
Math::mul3(dt, s.racc, tmp);
|
|
Math::add3(tmp, s.rot, s.rot);
|
|
|
|
_s = s;
|
|
}
|
|
|
|
_env->newState(&_s);
|
|
}
|
|
#endif
|
|
|
|
void Integrator::calcNewInterval()
|
|
{
|
|
// In principle, these could be changed for something other than
|
|
// a 4th order integration. I doubt if anyone cares.
|
|
const static int NITER=4;
|
|
static float TIMESTEP[] = { 1.0, 0.5, 0.5, 1.0 };
|
|
static float WEIGHTS[] = { 6.0, 3.0, 3.0, 6.0 };
|
|
|
|
// Scratch pads:
|
|
double pos[NITER][3]; float vel[NITER][3]; float acc[NITER][3];
|
|
float ori[NITER][9]; float rot[NITER][3]; float rac[NITER][3];
|
|
|
|
float *currVel = _s.v;
|
|
float *currAcc = _s.acc;
|
|
float *currRot = _s.rot;
|
|
float *currRac = _s.racc;
|
|
|
|
// First off, sanify the initial orientation
|
|
orthonormalize(_s.orient);
|
|
|
|
int i;
|
|
for(i=0; i<NITER; i++) {
|
|
//
|
|
// extrapolate forward based on current values of the
|
|
// derivatives and the ORIGINAL values of the
|
|
// position/orientation.
|
|
//
|
|
float dt = _dt * TIMESTEP[i];
|
|
float tmp[3];
|
|
|
|
// "add" rotation to orientation (generate a rotation matrix)
|
|
float rotmat[9];
|
|
rotMatrix(currRot, dt, rotmat);
|
|
Math::mmul33(_s.orient, rotmat, ori[i]);
|
|
|
|
// add velocity to (original!) position
|
|
int j;
|
|
for(j=0; j<3; j++) pos[i][j] = _s.pos[j];
|
|
extrapolatePosition(pos[i], currVel, dt, _s.orient, ori[i]);
|
|
|
|
// add acceleration to (original!) velocity
|
|
Math::set3(currAcc, tmp);
|
|
Math::mul3(dt, tmp, tmp);
|
|
Math::add3(_s.v, tmp, vel[i]);
|
|
|
|
// add rotational acceleration to rotation
|
|
Math::set3(currRac, tmp);
|
|
Math::mul3(dt, tmp, tmp);
|
|
Math::add3(_s.rot, tmp, rot[i]);
|
|
|
|
//
|
|
// Tell the environment to generate new forces on the body,
|
|
// extract the accelerations, and convert to vectors in the
|
|
// global frame.
|
|
//
|
|
_body->reset();
|
|
|
|
// FIXME. Copying into a state object is clumsy! The
|
|
// per-coordinate arrays should be changed into a single array
|
|
// of State objects. Ick.
|
|
State stmp;
|
|
for(j=0; j<3; j++) {
|
|
stmp.pos[j] = pos[i][j];
|
|
stmp.v[j] = vel[i][j];
|
|
stmp.rot[j] = rot[i][j];
|
|
}
|
|
for(j=0; j<9; j++)
|
|
stmp.orient[j] = ori[i][j];
|
|
_env->calcForces(&stmp);
|
|
|
|
_body->getAccel(acc[i]);
|
|
_body->getAngularAccel(rac[i]);
|
|
l2gVector(_s.orient, acc[i], acc[i]);
|
|
l2gVector(_s.orient, rac[i], rac[i]);
|
|
|
|
//
|
|
// Save the resulting derivatives for the next iteration
|
|
//
|
|
currVel = vel[i]; currAcc = acc[i];
|
|
currRot = rot[i]; currRac = rac[i];
|
|
}
|
|
|
|
// Average the resulting derivatives together according to their
|
|
// weights. Yes, we're "averaging" rotations, which isn't
|
|
// stricly correct -- rotations live in a non-cartesian space.
|
|
// But the space is "locally" cartesian.
|
|
State derivs;
|
|
float tot = 0;
|
|
for(i=0; i<NITER; i++) {
|
|
float wgt = WEIGHTS[i];
|
|
tot += wgt;
|
|
int j;
|
|
for(j=0; j<3; j++) {
|
|
derivs.v[j] += wgt*vel[i][j]; derivs.rot[j] += wgt*rot[i][j];
|
|
derivs.acc[j] += wgt*acc[i][j]; derivs.racc[j] += wgt*rac[i][j];
|
|
}
|
|
}
|
|
float itot = 1/tot;
|
|
for(i=0; i<3; i++) {
|
|
derivs.v[i] *= itot; derivs.rot[i] *= itot;
|
|
derivs.acc[i] *= itot; derivs.racc[i] *= itot;
|
|
}
|
|
|
|
// And finally extrapolate once more, using the averaged
|
|
// derivatives, to the final position and orientation. This code
|
|
// is essentially identical to the position extrapolation step
|
|
// inside the loop.
|
|
|
|
// save the starting orientation
|
|
float orient0[9];
|
|
for(i=0; i<9; i++) orient0[i] = _s.orient[i];
|
|
|
|
float rotmat[9];
|
|
rotMatrix(derivs.rot, _dt, rotmat);
|
|
Math::mmul33(orient0, rotmat, _s.orient);
|
|
|
|
extrapolatePosition(_s.pos, derivs.v, _dt, orient0, _s.orient);
|
|
|
|
float tmp[3];
|
|
Math::mul3(_dt, derivs.acc, tmp);
|
|
Math::add3(_s.v, tmp, _s.v);
|
|
|
|
Math::mul3(_dt, derivs.racc, tmp);
|
|
Math::add3(_s.rot, tmp, _s.rot);
|
|
|
|
for(i=0; i<3; i++) {
|
|
_s.acc[i] = derivs.acc[i];
|
|
_s.racc[i] = derivs.racc[i];
|
|
}
|
|
|
|
// Tell the environment about our decision
|
|
_env->newState(&_s);
|
|
}
|
|
|
|
// Generates a matrix that rotates about axis r through an angle equal
|
|
// to (|r| * dt). That is, a rotation effected by rotating with rate
|
|
// r for dt "seconds" (or whatever time unit is in use).
|
|
// Implementation shamelessly cribbed from the OpenGL specification.
|
|
//
|
|
// NOTE: we're actually returning the _transpose_ of the rotation
|
|
// matrix! This is becuase we store orientations as global-to-local
|
|
// transformations. Thus, we want to rotate the ROWS of the old
|
|
// matrix to get the new one.
|
|
void Integrator::rotMatrix(float* r, float dt, float* out)
|
|
{
|
|
// Normalize the vector, and extract the angle through which we'll
|
|
// rotate.
|
|
float mag = Math::mag3(r);
|
|
float angle = dt*mag;
|
|
|
|
// Tiny rotations result in degenerate (zero-length) rotation
|
|
// vectors, so clamp to an identity matrix. 1e-06 radians
|
|
// per 1/30th of a second (typical dt unit) corresponds to one
|
|
// revolution per 2.4 days, or significantly less than the
|
|
// coriolis rotation. And it's still preserves half the floating
|
|
// point precision of a radian-per-iteration rotation.
|
|
if(angle < 1e-06) {
|
|
out[0] = 1; out[1] = 0; out[2] = 0;
|
|
out[3] = 0; out[4] = 1; out[5] = 0;
|
|
out[6] = 0; out[7] = 0; out[8] = 1;
|
|
return;
|
|
}
|
|
|
|
float runit[3];
|
|
Math::mul3(1/mag, r, runit);
|
|
|
|
float s = Math::sin(angle);
|
|
float c = Math::cos(angle);
|
|
float c1 = 1-c;
|
|
float c1rx = c1*runit[0];
|
|
float c1ry = c1*runit[1];
|
|
float xx = c1rx*runit[0];
|
|
float xy = c1rx*runit[1];
|
|
float xz = c1rx*runit[2];
|
|
float yy = c1ry*runit[1];
|
|
float yz = c1ry*runit[2];
|
|
float zz = c1*runit[2]*runit[2];
|
|
float xs = runit[0]*s;
|
|
float ys = runit[1]*s;
|
|
float zs = runit[2]*s;
|
|
|
|
out[0] = xx+c ; out[3] = xy-zs; out[6] = xz+ys;
|
|
out[1] = xy+zs; out[4] = yy+c ; out[7] = yz-xs;
|
|
out[2] = xz-ys; out[5] = yz+xs; out[8] = zz+c ;
|
|
}
|
|
|
|
// Does a Gram-Schmidt orthonormalization on the rows of a
|
|
// global-to-local orientation matrix. The order of normalization
|
|
// here is x, z, y. This is because of the convention of "x" being
|
|
// the forward vector and "z" being up in the body frame. These two
|
|
// vectors are the most important to keep correct.
|
|
void Integrator::orthonormalize(float* m)
|
|
{
|
|
// The 1st, 2nd and 3rd rows of the matrix store the global frame
|
|
// equivalents of the x, y, and z unit vectors in the local frame.
|
|
float *x = m, *y = m+3, *z = m+6;
|
|
|
|
Math::unit3(x, x); // x = x/|x|
|
|
|
|
float v[3];
|
|
Math::mul3(Math::dot3(x, z), z, v); // v = z(x dot z)
|
|
Math::sub3(z, v, z); // z = z - z*(x dot z)
|
|
Math::unit3(z, z); // z = z/|z|
|
|
|
|
Math::cross3(z, x, y); // y = z cross x
|
|
}
|
|
|
|
}; // namespace yasim
|