1
0
Fork 0
flightgear/src/AIModel/AIBase.cxx
mfranz 9f0397a720 - replace one SGPropertyNode* by SGPropertyNode_ptr to avoid crash with
temporary removeChild(); should be done even after reverting; the node
  is accessed after removal
- cleanup:  if (foo) delete foo  -->  delete foo
2005-06-30 18:34:20 +00:00

401 lines
13 KiB
C++
Raw Blame History

// FGAIBase - abstract base class for AI objects
// Written by David Culp, started Nov 2003, based on
// David Luff's FGAIEntity class.
// - davidculp2@comcast.net
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <simgear/compiler.h>
#include STL_STRING
#include <plib/sg.h>
#include <plib/ssg.h>
#include <simgear/math/point3d.hxx>
#include <simgear/misc/sg_path.hxx>
#include <simgear/scene/model/location.hxx>
#include <simgear/scene/model/model.hxx>
#include <simgear/debug/logstream.hxx>
#include <simgear/props/props.hxx>
#include <Main/globals.hxx>
#include <Scenery/scenery.hxx>
#include "AIBase.hxx"
#include "AIManager.hxx"
const double FGAIBase::e = 2.71828183;
const double FGAIBase::lbs_to_slugs = 0.031080950172; //conversion factor
FGAIBase::FGAIBase()
: fp( NULL ),
model( NULL ),
props( NULL ),
manager( NULL )
{
_type_str = "model";
tgt_roll = roll = tgt_pitch = tgt_yaw = tgt_vs = vs = pitch = 0.0;
bearing = elevation = range = rdot = 0.0;
x_shift = y_shift = rotation = 0.0;
in_range = false;
invisible = true;
no_roll = true;
life = 900;
model_path = "";
_otype = otNull;
index = 0;
delete_me = false;
}
FGAIBase::~FGAIBase() {
// Unregister that one at the scenery manager
globals->get_scenery()->unregister_placement_transform(aip.getTransform());
globals->get_scenery()->get_scene_graph()->removeKid(aip.getSceneGraph());
// unbind();
SGPropertyNode *root = globals->get_props()->getNode("ai/models", true);
root->removeChild(_type_str.c_str(), index);
delete fp;
fp = NULL;
}
void FGAIBase::update(double dt) {
if (_otype == otStatic) return;
if (_otype == otBallistic) CalculateMach();
ft_per_deg_lat = 366468.96 - 3717.12 * cos(pos.lat()*SGD_DEGREES_TO_RADIANS);
ft_per_deg_lon = 365228.16 * cos(pos.lat()*SGD_DEGREES_TO_RADIANS);
}
void FGAIBase::Transform() {
if (!invisible) {
aip.setPosition(pos.lon(), pos.lat(), pos.elev() * SG_METER_TO_FEET);
if (no_roll) {
aip.setOrientation(0.0, pitch, hdg);
} else {
aip.setOrientation(roll, pitch, hdg);
}
aip.update( globals->get_scenery()->get_center() );
}
}
bool FGAIBase::init() {
SGPropertyNode *root = globals->get_props()->getNode("ai/models", true);
index = manager->getNum(_otype) - 1;
props = root->getNode(_type_str.c_str(), index, true);
if (model_path != "") {
model = load3DModel( globals->get_fg_root(),
SGPath(model_path).c_str(),
props,
globals->get_sim_time_sec() );
}
if (model) {
aip.init( model );
aip.setVisible(true);
invisible = false;
globals->get_scenery()->get_scene_graph()->addKid(aip.getSceneGraph());
// Register that one at the scenery manager
globals->get_scenery()->register_placement_transform(aip.getTransform());
} else {
if (model_path != "") {
SG_LOG(SG_INPUT, SG_WARN, "AIBase: Could not load model.");
}
}
setDie(false);
return true;
}
ssgBranch * FGAIBase::load3DModel(const string& fg_root,
const string &path,
SGPropertyNode *prop_root,
double sim_time_sec)
{
// some more code here to check whether a model with this name has already been loaded
// if not load it, otherwise, get the memory pointer and do something like
// SetModel as in ATC/AIEntity.cxx
//SSGBranch *model;
model = manager->getModel(path);
if (!(model))
{
model = sgLoad3DModel(fg_root,
path,
prop_root,
sim_time_sec);
manager->setModel(path, model);
model->ref();
}
//else
// {
// model->ref();
// aip.init(model);
// aip.setVisible(false);
// globals->get_scenery()->get_scene_graph()->addKid(aip.getSceneGraph());
// do some setModel stuff.
return model;
}
bool FGAIBase::isa( object_type otype ) {
if ( otype == _otype ) { return true; }
else { return false; }
}
void FGAIBase::bind() {
props->tie("id", SGRawValueMethods<FGAIBase,int>(*this,
&FGAIBase::_getID));
props->tie("velocities/true-airspeed-kt", SGRawValuePointer<double>(&speed));
props->tie("velocities/vertical-speed-fps",
SGRawValueMethods<FGAIBase,double>(*this,
&FGAIBase::_getVS_fps,
&FGAIBase::_setVS_fps));
props->tie("position/altitude-ft",
SGRawValueMethods<FGAIBase,double>(*this,
&FGAIBase::_getAltitude,
&FGAIBase::_setAltitude));
props->tie("position/latitude-deg",
SGRawValueMethods<FGAIBase,double>(*this,
&FGAIBase::_getLatitude,
&FGAIBase::_setLatitude));
props->tie("position/longitude-deg",
SGRawValueMethods<FGAIBase,double>(*this,
&FGAIBase::_getLongitude,
&FGAIBase::_setLongitude));
props->tie("orientation/pitch-deg", SGRawValuePointer<double>(&pitch));
props->tie("orientation/roll-deg", SGRawValuePointer<double>(&roll));
props->tie("orientation/true-heading-deg", SGRawValuePointer<double>(&hdg));
props->tie("radar/in-range", SGRawValuePointer<bool>(&in_range));
props->tie("radar/bearing-deg", SGRawValuePointer<double>(&bearing));
props->tie("radar/elevation-deg", SGRawValuePointer<double>(&elevation));
props->tie("radar/range-nm", SGRawValuePointer<double>(&range));
props->tie("radar/h-offset", SGRawValuePointer<double>(&horiz_offset));
props->tie("radar/v-offset", SGRawValuePointer<double>(&vert_offset));
props->tie("radar/x-shift", SGRawValuePointer<double>(&x_shift));
props->tie("radar/y-shift", SGRawValuePointer<double>(&y_shift));
props->tie("radar/rotation", SGRawValuePointer<double>(&rotation));
props->tie("controls/lighting/nav-lights",
SGRawValueFunctions<bool>(_isNight));
props->setBoolValue("controls/lighting/beacon", true);
props->setBoolValue("controls/lighting/strobe", true);
props->setBoolValue("controls/glide-path", true);
}
void FGAIBase::unbind() {
props->untie("id");
props->untie("velocities/true-airspeed-kt");
props->untie("velocities/vertical-speed-fps");
props->untie("position/altitude-ft");
props->untie("position/latitude-deg");
props->untie("position/longitude-deg");
props->untie("orientation/pitch-deg");
props->untie("orientation/roll-deg");
props->untie("orientation/true-heading-deg");
props->untie("radar/in-range");
props->untie("radar/bearing-deg");
props->untie("radar/elevation-deg");
props->untie("radar/range-nm");
props->untie("radar/h-offset");
props->untie("radar/v-offset");
props->untie("radar/x-shift");
props->untie("radar/y-shift");
props->untie("radar/rotation");
props->untie("controls/lighting/nav-lights");
}
double FGAIBase::UpdateRadar(FGAIManager* manager)
{
double radar_range_ft2 = fgGetDouble("/instrumentation/radar/range");
radar_range_ft2 *= SG_NM_TO_METER * SG_METER_TO_FEET * 1.1; // + 10%
radar_range_ft2 *= radar_range_ft2;
double user_latitude = manager->get_user_latitude();
double user_longitude = manager->get_user_longitude();
double lat_range = fabs(pos.lat() - user_latitude) * ft_per_deg_lat;
double lon_range = fabs(pos.lon() - user_longitude) * ft_per_deg_lon;
double range_ft2 = lat_range*lat_range + lon_range*lon_range;
//
// Test whether the target is within radar range.
//
in_range = (range_ft2 && (range_ft2 <= radar_range_ft2));
if ( in_range )
{
props->setBoolValue("radar/in-range", true);
// copy values from the AIManager
double user_altitude = manager->get_user_altitude();
double user_heading = manager->get_user_heading();
double user_pitch = manager->get_user_pitch();
double user_yaw = manager->get_user_yaw();
double user_speed = manager->get_user_speed();
// calculate range to target in feet and nautical miles
double range_ft = sqrt( range_ft2 );
range = range_ft / 6076.11549;
// calculate bearing to target
if (pos.lat() >= user_latitude) {
bearing = atan2(lat_range, lon_range) * SG_RADIANS_TO_DEGREES;
if (pos.lon() >= user_longitude) {
bearing = 90.0 - bearing;
} else {
bearing = 270.0 + bearing;
}
} else {
bearing = atan2(lon_range, lat_range) * SG_RADIANS_TO_DEGREES;
if (pos.lon() >= user_longitude) {
bearing = 180.0 - bearing;
} else {
bearing = 180.0 + bearing;
}
}
// calculate look left/right to target, without yaw correction
horiz_offset = bearing - user_heading;
if (horiz_offset > 180.0) horiz_offset -= 360.0;
if (horiz_offset < -180.0) horiz_offset += 360.0;
// calculate elevation to target
elevation = atan2( altitude * SG_METER_TO_FEET - user_altitude, range_ft )
* SG_RADIANS_TO_DEGREES;
// calculate look up/down to target
vert_offset = elevation + user_pitch;
/* this calculation needs to be fixed, but it isn't important anyway
// calculate range rate
double recip_bearing = bearing + 180.0;
if (recip_bearing > 360.0) recip_bearing -= 360.0;
double my_horiz_offset = recip_bearing - hdg;
if (my_horiz_offset > 180.0) my_horiz_offset -= 360.0;
if (my_horiz_offset < -180.0) my_horiz_offset += 360.0;
rdot = (-user_speed * cos( horiz_offset * SG_DEGREES_TO_RADIANS ))
+(-speed * 1.686 * cos( my_horiz_offset * SG_DEGREES_TO_RADIANS ));
*/
// now correct look left/right for yaw
horiz_offset += user_yaw;
// calculate values for radar display
y_shift = range * cos( horiz_offset * SG_DEGREES_TO_RADIANS);
x_shift = range * sin( horiz_offset * SG_DEGREES_TO_RADIANS);
rotation = hdg - user_heading;
if (rotation < 0.0) rotation += 360.0;
}
return range_ft2;
}
/*
* getters and Setters
*/
void FGAIBase::_setLongitude( double longitude ) {
pos.setlon(longitude);
}
void FGAIBase::_setLatitude ( double latitude ) {
pos.setlat(latitude);
}
double FGAIBase::_getLongitude() const {
return pos.lon();
}
double FGAIBase::_getLatitude () const {
return pos.lat();
}
double FGAIBase::_getRdot() const {
return rdot;
}
double FGAIBase::_getVS_fps() const {
return vs*60.0;
}
void FGAIBase::_setVS_fps( double _vs ) {
vs = _vs/60.0;
}
double FGAIBase::_getAltitude() const {
return altitude;
}
void FGAIBase::_setAltitude( double _alt ) {
setAltitude( _alt );
}
bool FGAIBase::_isNight() {
return (fgGetFloat("/sim/time/sun-angle-rad") > 1.57);
}
int FGAIBase::_getID() const {
return (int)(this);
}
void FGAIBase::CalculateMach() {
// Calculate rho at altitude, using standard atmosphere
// For the temperature T and the pressure p,
if (altitude < 36152) { // curve fits for the troposphere
T = 59 - 0.00356 * altitude;
p = 2116 * pow( ((T + 459.7) / 518.6) , 5.256);
} else if ( 36152 < altitude && altitude < 82345 ) { // lower stratosphere
T = -70;
p = 473.1 * pow( e , 1.73 - (0.000048 * altitude) );
} else { // upper stratosphere
T = -205.05 + (0.00164 * altitude);
p = 51.97 * pow( ((T + 459.7) / 389.98) , -11.388);
}
rho = p / (1718 * (T + 459.7));
// calculate the speed of sound at altitude
// a = sqrt ( g * R * (T + 459.7))
// where:
// a = speed of sound [ft/s]
// g = specific heat ratio, which is usually equal to 1.4
// R = specific gas constant, which equals 1716 ft-lb/slug/<2F>R
a = sqrt ( 1.4 * 1716 * (T + 459.7));
// calculate Mach number
Mach = speed/a;
// cout << "Speed(ft/s) "<< speed <<" Altitude(ft) "<< altitude << " Mach " << Mach;
}