1
0
Fork 0
flightgear/src/AIModel/AIBallistic.cxx
2015-06-01 20:53:19 +02:00

1247 lines
39 KiB
C++

// FGAIBallistic - FGAIBase-derived class creates a ballistic object
//
// Written by David Culp, started November 2003.
// - davidculp2@comcast.net
//
// With major additions by Mathias Froehlich & Vivian Meazza 2004-2008
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <simgear/math/sg_random.h>
#include <simgear/math/sg_geodesy.hxx>
#include <simgear/scene/model/modellib.hxx>
#include <Scenery/scenery.hxx>
#include "AIBallistic.hxx"
#include <Main/util.hxx>
#include <Environment/gravity.hxx>
using namespace simgear;
using std::string;
const double FGAIBallistic::slugs_to_kgs = 14.5939029372;
const double FGAIBallistic::slugs_to_lbs = 32.1740485564;
FGAIBallistic::FGAIBallistic(object_type ot) :
FGAIBase(ot, false),
_height(0.0),
_speed(0),
_ht_agl_ft(0.0),
_azimuth(0.0),
_elevation(0.0),
_rotation(0.0),
hs(0),
_elapsed_time(0),
_az_random_error(0.0),
_el_random_error(0.0),
_aero_stabilised(false),
_drag_area(0.007),
_cd(0.029),
_init_cd(0.029),
_cd_randomness(0.0),
_buoyancy(0),
_life_timer(0.0),
_wind(true),
_mass(0),
_random(false),
_life_randomness(0.0),
_load_resistance(0),
_solid(false),
_force_stabilised(false),
_slave_to_ac(false),
_slave_load_to_ac(false),
_contents_lb(0),
_report_collision(false),
_report_impact(false),
_external_force(false),
_report_expiry(false),
_impact_report_node(fgGetNode("/ai/models/model-impact", true))
{
no_roll = false;
}
FGAIBallistic::~FGAIBallistic() {
}
void FGAIBallistic::readFromScenario(SGPropertyNode* scFileNode) {
if (!scFileNode){
return;
}
FGAIBase::readFromScenario(scFileNode);
//setPath(scFileNode->getStringValue("model", "Models/Geometry/rocket.ac"));
setRandom(scFileNode->getBoolValue("random", false));
setAzimuth(scFileNode->getDoubleValue("azimuth", 0.0));
setElevation(scFileNode->getDoubleValue("elevation", 0));
setDragArea(scFileNode->getDoubleValue("eda", 0.007));
setLife(scFileNode->getDoubleValue("life", 900.0));
setBuoyancy(scFileNode->getDoubleValue("buoyancy", 0));
//setWind_from_east(scFileNode->getDoubleValue("wind_from_east", 0));
//setWind_from_north(scFileNode->getDoubleValue("wind_from_north", 0));
setWind(scFileNode->getBoolValue("wind", false));
setRoll(scFileNode->getDoubleValue("roll", 0.0));
setCd(scFileNode->getDoubleValue("cd", 0.029));
//setMass(scFileNode->getDoubleValue("mass", 0.007));
setWeight(scFileNode->getDoubleValue("weight", 0.25));
setStabilisation(scFileNode->getBoolValue("aero-stabilised", false));
setNoRoll(scFileNode->getBoolValue("no-roll", false));
setImpact(scFileNode->getBoolValue("impact", false));
setExpiry(scFileNode->getBoolValue("expiry", false));
setCollision(scFileNode->getBoolValue("collision", false));
setImpactReportNode(scFileNode->getStringValue("impact-reports"));
setName(scFileNode->getStringValue("name", "Rocket"));
setFuseRange(scFileNode->getDoubleValue("fuse-range", 0.0));
setSMPath(scFileNode->getStringValue("submodel-path", ""));
setSubID(scFileNode->getIntValue("SubID", 0));
setExternalForce(scFileNode->getBoolValue("external-force", false));
setForcePath(scFileNode->getStringValue("force-path", ""));
setForceStabilisation(scFileNode->getBoolValue("force-stabilised", false));
setXoffset(scFileNode->getDoubleValue("x-offset", 0.0));
setYoffset(scFileNode->getDoubleValue("y-offset", 0.0));
setZoffset(scFileNode->getDoubleValue("z-offset", 0.0));
setPitchoffset(scFileNode->getDoubleValue("pitch-offset", 0.0));
setRolloffset(scFileNode->getDoubleValue("roll-offset", 0.0));
setYawoffset(scFileNode->getDoubleValue("yaw-offset", 0.0));
setGroundOffset(scFileNode->getDoubleValue("ground-offset", 0.0));
setLoadOffset(scFileNode->getDoubleValue("load-offset", 0.0));
setSlaved(scFileNode->getBoolValue("slaved", false));
setSlavedLoad(scFileNode->getBoolValue("slaved-load", false));
setContentsPath(scFileNode->getStringValue("contents"));
setParentName(scFileNode->getStringValue("parent"));
}
bool FGAIBallistic::init(bool search_in_AI_path) {
FGAIBase::init(search_in_AI_path);
reinit();
return true;
}
void FGAIBallistic::reinit() {
_impact_reported = false;
_collision_reported = false;
_expiry_reported = false;
_impact_lat = 0;
_impact_lon = 0;
_impact_elev = 0;
_impact_hdg = 0;
_impact_pitch = 0;
_impact_roll = 0;
_impact_speed = 0;
invisible = false;
_elapsed_time += (sg_random() * 100);
_life_timer = 0;
props->setStringValue("material/name", "");
props->setStringValue("name", _name.c_str());
props->setStringValue("submodels/path", _path.c_str());
if (_slave_to_ac) {
props->setStringValue("force/path", _force_path.c_str());
props->setStringValue("contents/path", _contents_path.c_str());
}
//cout << "init: name " << _name.c_str() << " _life_timer " << _life_timer
// << endl;
//if(_parent != ""){
// setParentNode();
//}
//setParentNodes(_selected_ac);
//props->setStringValue("vector/path", _vector_path.c_str());
// start with high value so that animations don't trigger yet
_ht_agl_ft = 1e10;
hdg = _azimuth;
pitch = _elevation;
roll = _rotation;
Transform();
if (_parent != "") {
setParentNode();
}
setParentNodes(_selected_ac);
FGAIBase::reinit();
}
void FGAIBallistic::bind() {
// FGAIBase::bind();
_tiedProperties.setRoot(props);
tie("sim/time/elapsed-sec",
SGRawValueMethods<FGAIBallistic,double>(*this,
&FGAIBallistic::_getTime, &FGAIBallistic::setTime));
//tie("mass-slug",
// SGRawValueMethods<FGAIBallistic,double>(*this,
// &FGAIBallistic::getMass));
tie("material/solid",
SGRawValuePointer<bool>(&_solid));
tie("altitude-agl-ft",
SGRawValuePointer<double>(&_ht_agl_ft));
tie("controls/slave-to-ac",
SGRawValueMethods<FGAIBallistic,bool>
(*this, &FGAIBallistic::getSlaved, &FGAIBallistic::setSlaved));
tie("controls/invisible",
SGRawValuePointer<bool>(&invisible));
if (_external_force || _slave_to_ac) {
tie("controls/force_stabilized",
SGRawValuePointer<bool>(&_force_stabilised));
tie("position/global-x",
SGRawValueMethods<FGAIBase,double>(*this, &FGAIBase::_getCartPosX, 0));
tie("position/global-y",
SGRawValueMethods<FGAIBase,double>(*this, &FGAIBase::_getCartPosY, 0));
tie("position/global-z",
SGRawValueMethods<FGAIBase,double>(*this, &FGAIBase::_getCartPosZ, 0));
tie("velocities/vertical-speed-fps",
SGRawValuePointer<double>(&vs));
tie("velocities/true-airspeed-kt",
SGRawValuePointer<double>(&speed));
tie("velocities/horizontal-speed-fps",
SGRawValuePointer<double>(&hs));
tie("position/altitude-ft",
SGRawValueMethods<FGAIBase,double>(*this, &FGAIBase::_getElevationFt, &FGAIBase::_setAltitude));
tie("position/latitude-deg",
SGRawValueMethods<FGAIBase,double>(*this, &FGAIBase::_getLatitude, &FGAIBase::_setLatitude));
tie("position/longitude-deg",
SGRawValueMethods<FGAIBase,double>(*this, &FGAIBase::_getLongitude, &FGAIBase::_setLongitude));
tie("orientation/hdg-deg",
SGRawValuePointer<double>(&hdg));
tie("orientation/pitch-deg",
SGRawValuePointer<double>(&pitch));
tie("orientation/roll-deg",
SGRawValuePointer<double>(&roll));
tie("controls/slave-load-to-ac",
SGRawValueMethods<FGAIBallistic,bool>
(*this, &FGAIBallistic::getSlavedLoad, &FGAIBallistic::setSlavedLoad));
tie("position/load-offset",
SGRawValueMethods<FGAIBallistic,double>
(*this, &FGAIBallistic::getLoadOffset, &FGAIBallistic::setLoadOffset));
tie("load/distance-to-hitch-ft",
SGRawValueMethods<FGAIBallistic,double>
(*this, &FGAIBallistic::getDistanceToHitch));
tie("load/elevation-to-hitch-deg",
SGRawValueMethods<FGAIBallistic,double>
(*this, &FGAIBallistic::getElevToHitch));
tie("load/bearing-to-hitch-deg",
SGRawValueMethods<FGAIBallistic,double>
(*this, &FGAIBallistic::getBearingToHitch));
tie("material/load-resistance",
SGRawValuePointer<double>(&_load_resistance));
}
}
void FGAIBallistic::update(double dt)
{
FGAIBase::update(dt);
if (_slave_to_ac) {
slaveToAC(dt);
Transform();
}
else if (!invisible) {
Run(dt);
Transform();
}
}
void FGAIBallistic::setAzimuth(double az) {
if (_random)
hdg = _azimuth = az - _az_random_error + 2 * _az_random_error * sg_random();
else
hdg = _azimuth = az;
}
void FGAIBallistic::setAzimuthRandomError(double error) {
_az_random_error = error;
}
void FGAIBallistic::setElevationRandomError(double error) {
_el_random_error = error;
}
void FGAIBallistic::setElevation(double el) {
if (_random)
pitch = _elevation = el - _el_random_error + 2 * _el_random_error * sg_random();
else
pitch = _elevation = el;
}
void FGAIBallistic::setRoll(double rl) {
roll = _rotation = rl;
}
void FGAIBallistic::setStabilisation(bool val) {
_aero_stabilised = val;
}
void FGAIBallistic::setForceStabilisation(bool val) {
_force_stabilised = val;
}
void FGAIBallistic::setNoRoll(bool nr) {
no_roll = nr;
}
void FGAIBallistic::setDragArea(double a) {
_drag_area = a;
}
void FGAIBallistic::setLife(double seconds) {
if (_random)
life = seconds * _life_randomness + (seconds * (1 -_life_randomness) * sg_random());
else
life = seconds;
}
void FGAIBallistic::setBuoyancy(double fpss) {
_buoyancy = fpss;
}
void FGAIBallistic::setWind_from_east(double fps) {
_wind_from_east = fps;
}
void FGAIBallistic::setWind_from_north(double fps) {
_wind_from_north = fps;
}
void FGAIBallistic::setWind(bool val) {
_wind = val;
}
void FGAIBallistic::setCd(double cd) {
_cd = cd;
_init_cd = cd;
}
void FGAIBallistic::setCdRandomness(double randomness) {
_cd_randomness = randomness;
}
void FGAIBallistic::setMass(double m) {
_mass = m;
}
void FGAIBallistic::setWeight(double w) {
_weight_lb = w;
}
void FGAIBallistic::setLifeRandomness(double randomness) {
_life_randomness = randomness;
}
void FGAIBallistic::setRandom(bool r) {
_random = r;
}
void FGAIBallistic::setImpact(bool i) {
_report_impact = i;
}
void FGAIBallistic::setCollision(bool c) {
_report_collision = c;
}
void FGAIBallistic::setExpiry(bool e) {
_report_expiry = e;
}
void FGAIBallistic::setExternalForce(bool f) {
_external_force = f;
}
void FGAIBallistic::setImpactReportNode(const string& path) {
if (!path.empty())
_impact_report_node = fgGetNode(path.c_str(), true);
}
void FGAIBallistic::setSMPath(const string& s) {
_path = s;
//cout << "submodel path " << _path << endl;
}
void FGAIBallistic::setFuseRange(double f) {
_fuse_range = f;
}
void FGAIBallistic::setSubID(int i) {
_subID = i;
}
void FGAIBallistic::setSubmodel(const string& s) {
_submodel = s;
}
void FGAIBallistic::setGroundOffset(double g) {
_ground_offset = g;
}
void FGAIBallistic::setLoadOffset(double l) {
_load_offset = l;
}
double FGAIBallistic::getLoadOffset() const {
return _load_offset;
}
void FGAIBallistic::setSlaved(bool s) {
_slave_to_ac = s;
}
void FGAIBallistic::setContentsPath(const string& path) {
_contents_path = path;
if (!path.empty()) {
_contents_node = fgGetNode(path.c_str(), true);
}
}
void FGAIBallistic::setContentsNode(SGPropertyNode_ptr node) {
if (node != 0) {
_contents_node = node;
_contents_path = _contents_node->getDisplayName();
}
}
void FGAIBallistic::setParentNodes(SGPropertyNode_ptr node) {
if (node != 0) {
_pnode = node;
_p_pos_node = _pnode->getChild("position", 0, true);
_p_lat_node = _p_pos_node->getChild("latitude-deg", 0, true);
_p_lon_node = _p_pos_node->getChild("longitude-deg", 0, true);
_p_alt_node = _p_pos_node->getChild("altitude-ft", 0, true);
_p_agl_node = _p_pos_node->getChild("altitude-agl-ft", 0, true);
_p_ori_node = _pnode->getChild("orientation", 0, true);
_p_pch_node = _p_ori_node->getChild("pitch-deg", 0, true);
_p_rll_node = _p_ori_node->getChild("roll-deg", 0, true);
_p_hdg_node = _p_ori_node->getChild("true-heading-deg",0, true);
_p_vel_node = _pnode->getChild("velocities", 0, true);
_p_spd_node = _p_vel_node->getChild("true-airspeed-kt", 0, true);
}
}
void FGAIBallistic::setParentPos() {
if (_pnode != 0) {
double lat = _p_lat_node->getDoubleValue();
double lon = _p_lon_node->getDoubleValue();
double alt = _p_alt_node->getDoubleValue();
_parentpos.setLongitudeDeg(lon);
_parentpos.setLatitudeDeg(lat);
_parentpos.setElevationFt(alt);
}
}
bool FGAIBallistic::getSlaved() const {
return _slave_to_ac;
}
double FGAIBallistic::getMass() const {
return _mass;
}
double FGAIBallistic::getContents() {
if (_contents_node) {
_contents_lb = _contents_node->getChild("level-lbs", 0, 1)->getDoubleValue();
}
return _contents_lb;
}
void FGAIBallistic::setContents(double c) {
if (_contents_node)
_contents_lb = _contents_node->getChild("level-gal_us", 0, 1)->setDoubleValue(c);
}
void FGAIBallistic::setSlavedLoad(bool l) {
_slave_load_to_ac = l;
}
bool FGAIBallistic::getSlavedLoad() const {
return _slave_load_to_ac;
}
void FGAIBallistic::setForcePath(const string& p) {
_force_path = p;
if (!_force_path.empty()) {
SGPropertyNode *fnode = fgGetNode(_force_path.c_str(), 0, true );
_force_node = fnode->getChild("force-lb", 0, true);
_force_azimuth_node = fnode->getChild("force-azimuth-deg", 0, true);
_force_elevation_node = fnode->getChild("force-elevation-deg", 0, true);
}
}
bool FGAIBallistic::getHtAGL(double start) {
const simgear::BVHMaterial* mat = 0;
if (getGroundElevationM(SGGeod::fromGeodM(pos, start),
_elevation_m, &mat)) {
const SGMaterial* material = dynamic_cast<const SGMaterial*>(mat);
_ht_agl_ft = pos.getElevationFt() - _elevation_m * SG_METER_TO_FEET;
if (material) {
const std::vector<string>& names = material->get_names();
_solid = material->get_solid();
_load_resistance = material->get_load_resistance();
_frictionFactor = material->get_friction_factor();
if (!names.empty())
props->setStringValue("material/name", names[0].c_str());
else
props->setStringValue("material/name", "");
_mat_name = names[0];
//cout << "material " << _mat_name
//<< " solid " << _solid
//<< " load " << _load_resistance
//<< " frictionFactor " << _frictionFactor
//<< endl;
}
return true;
}
else {
return false;
}
}
double FGAIBallistic::getRecip(double az) {
// calculate the reciprocal of the input azimuth
if (az - 180 < 0) {
return az + 180;
}
else {
return az - 180;
}
}
void FGAIBallistic::setPch(double e, double dt, double coeff) {
double c = dt / (coeff + dt);
pitch = (e * c) + (pitch * (1 - c));
}
void FGAIBallistic::setBnk(double r, double dt, double coeff) {
double c = dt / (coeff + dt);
roll = (r * c) + (roll * (1 - c));
}
void FGAIBallistic::setSpd(double s, double dt, double coeff) {
double c = dt / (coeff + dt);
_speed = (s * c) + (_speed * (1 - c));
}
void FGAIBallistic::setHt(double h, double dt, double coeff) {
double c = dt / (coeff + dt);
_height = (h * c) + (_height * (1 - c));
}
int FGAIBallistic::setHdg(double tgt_hdg, double dt, double coeff) {
double recip = getRecip(hdg);
double c = dt / (coeff + dt);
//cout << "set heading " << tgt_hdg << endl;
//we need to ensure that we turn the short way to the new hdg
if (tgt_hdg < recip && tgt_hdg < hdg && hdg > 180) {
hdg = ((tgt_hdg + 360) * c) + (hdg * (1 - c));
// cout << "case 1: right turn" << endl;
} else if (tgt_hdg > recip && tgt_hdg > hdg && hdg <= 180){
hdg = ((tgt_hdg - 360) * c) + (hdg * (1 - c));
// cout << "case 2: left turn" << endl;
} else {
hdg = (tgt_hdg * c) + (hdg * (1 - c));
// cout << "case 4: left turn" << endl;
}
return -1;
}
double FGAIBallistic::getTgtXOffset() const {
return _tgt_x_offset;
}
double FGAIBallistic::getTgtYOffset() const {
return _tgt_y_offset;
}
double FGAIBallistic::getTgtZOffset() const {
return _tgt_z_offset;
}
void FGAIBallistic::setTgtXOffset(double x) {
_tgt_x_offset = x;
}
void FGAIBallistic::setTgtYOffset(double y) {
_tgt_y_offset = y;
}
void FGAIBallistic::setTgtZOffset(double z) {
_tgt_z_offset = z;
}
void FGAIBallistic::slaveToAC(double dt) {
if (invisible)
return;
double hdg, pch, rll;//, agl = 0;
if (_pnode != 0) {
setParentPos();
hdg = _p_hdg_node->getDoubleValue();
pch = _p_pch_node->getDoubleValue();
rll = _p_rll_node->getDoubleValue();
// agl = _p_agl_node->getDoubleValue();
setOffsetPos(_parentpos, hdg, pch, rll);
setSpeed(_p_spd_node->getDoubleValue());
}
else {
hdg = manager->get_user_heading();
pch = manager->get_user_pitch();
rll = manager->get_user_roll();
// agl = manager->get_user_agl();
setOffsetPos(globals->get_aircraft_position(), hdg, pch, rll);
setSpeed(manager->get_user_speed());
}
pos.setLatitudeDeg(_offsetpos.getLatitudeDeg());
pos.setLongitudeDeg(_offsetpos.getLongitudeDeg());
pos.setElevationFt(_offsetpos.getElevationFt());
setHeading(hdg);
setPitch(pch + _pitch_offset);
setBank(rll + _roll_offset);
setOffsetVelocity(dt, pos);
setTime(0);
//update the mass (slugs)
_mass = (_weight_lb + getContents()) / slugs_to_lbs;
_impact_reported = false;
//cout << _name << " _mass "<<_mass <<" " << getContents()
//<< " " << getContents() / slugs_to_lbs << " weight " << _weight_lb << endl;
// cout << _name << " update hs " << hs << " vs " << vs << endl;
}
void FGAIBallistic::Run(double dt) {
_life_timer += dt;
//_pass += 1;
//cout<<"AIBallistic run: name " << _name.c_str()
// << " dt " << dt << " _life_timer " << _life_timer << " pass " << _pass << endl;
// if life = -1 the object does not die
if (_life_timer > life && life != -1) {
if (_report_expiry && !_expiry_reported && !_impact_reported && !_collision_reported) {
//cout<<"AIBallistic run: name " << _name.c_str() << " expiry "
//<< " _life_timer " << _life_timer<< endl;
handle_expiry();
}
else {
//cout<<"AIBallistic run: name " << _name.c_str()
// << " die " << " _life_timer " << _life_timer << endl;
setDie(true);
}
setTime(0);
}
// Set the contents in the appropriate tank or other property in the parent to zero
setContents(0);
if (_random) {
// Keep the new Cd within +- 10% of the current Cd to avoid a fluctuating value
double cd_min = _cd * 0.9;
double cd_max = _cd * 1.1;
// Randomize Cd by +- a certain percentage of the initial Cd
_cd = _init_cd * (1 - _cd_randomness + 2 * _cd_randomness * sg_random());
if (_cd < cd_min) _cd = cd_min;
if (_cd > cd_max) _cd = cd_max;
}
// Adjust Cd by Mach number. The equations are based on curves
// for a conventional shell/bullet (no boat-tail).
double Cdm;
if (Mach < 0.7)
Cdm = 0.0125 * Mach + _cd;
else if (Mach < 1.2)
Cdm = 0.3742 * pow(Mach, 2) - 0.252 * Mach + 0.0021 + _cd;
else
Cdm = 0.2965 * pow(Mach, -1.1506) + _cd;
//cout <<_name << " Mach " << Mach << " Cdm " << Cdm
// << " ballistic speed kts "<< speed << endl;
// drag = Cd * 0.5 * rho * speed * speed * drag_area;
// rho is adjusted for altitude in void FGAIBase::update,
// using Standard Atmosphere (sealevel temperature 15C)
// acceleration = drag/mass;
// adjust speed by drag
speed -= (Cdm * 0.5 * rho * speed * speed * _drag_area/_mass) * dt;
// don't let speed become negative
if (speed < 0.0)
speed = 0.0;
// double speed_fps = speed * SG_KT_TO_FPS;
// calculate vertical and horizontal speed components
calcVSHS();
//resolve horizontal speed into north and east components:
//and convert horizontal speed (fps) to degrees per second
calcNE();
// If wind not required, set to zero
if (!_wind) {
_wind_from_north = 0;
_wind_from_east = 0;
}
else {
_wind_from_north = manager->get_wind_from_north();
_wind_from_east = manager->get_wind_from_east();
}
// Calculate velocity due to external force
double force_speed_north_deg_sec = 0;
double force_speed_east_deg_sec = 0;
double hs_force_fps = 0;
double v_force_acc_fpss = 0;
double force_speed_north_fps = 0;
double force_speed_east_fps = 0;
double h_force_lbs = 0;
double normal_force_lbs = 0;
double normal_force_fpss = 0;
double static_friction_force_lbs = 0;
double dynamic_friction_force_lbs = 0;
double friction_force_speed_north_fps = 0;
double friction_force_speed_east_fps = 0;
double friction_force_speed_north_deg_sec = 0;
double friction_force_speed_east_deg_sec = 0;
double force_elevation_deg = 0;
double force_azimuth_deg = 0;
double force_lbs = 0;
if (_external_force) {
//cout << _name << " external force " << hdg << " az " << _azimuth << endl;
SGPropertyNode *n = fgGetNode(_force_path.c_str(), true);
force_lbs = n->getChild("force-lb", 0, true)->getDoubleValue();
force_elevation_deg = n->getChild("force-elevation-deg", 0, true)->getDoubleValue();
force_azimuth_deg = n->getChild("force-azimuth-deg", 0, true)->getDoubleValue();
// Resolve force into vertical and horizontal components:
double v_force_lbs = force_lbs * sin( force_elevation_deg * SG_DEGREES_TO_RADIANS );
h_force_lbs = force_lbs * cos( force_elevation_deg * SG_DEGREES_TO_RADIANS );
// Perform ground interaction if impacts are not calculated
if (!_report_impact && getHtAGL(10000)) {
double deadzone = 0.1;
if (_ht_agl_ft <= (0 + _ground_offset + deadzone) && _solid) {
normal_force_lbs = (_mass * slugs_to_lbs) - v_force_lbs;
if (normal_force_lbs < 0)
normal_force_lbs = 0;
pos.setElevationFt(0 + _ground_offset);
if (vs < 0)
vs = -vs * 0.5;
// Calculate friction. We assume a static coefficient of
// friction (mu) of 0.62 (wood on concrete)
double mu = 0.62;
static_friction_force_lbs = mu * normal_force_lbs * _frictionFactor;
// Adjust horizontal force. We assume that a speed of <= 5 fps is static
if (h_force_lbs <= static_friction_force_lbs && hs <= 5) {
h_force_lbs = hs = 0;
_speed_north_fps = _speed_east_fps = 0;
}
else
dynamic_friction_force_lbs = (static_friction_force_lbs * 0.95);
// Ignore wind when on the ground for now
//TODO fix this
_wind_from_north = 0;
_wind_from_east = 0;
}
}
//acceleration = (force(lbsf)/mass(slugs))
v_force_acc_fpss = v_force_lbs / _mass;
normal_force_fpss = normal_force_lbs / _mass;
double h_force_acc_fpss = h_force_lbs / _mass;
double dynamic_friction_acc_fpss = dynamic_friction_force_lbs / _mass;
// velocity = acceleration * dt
hs_force_fps = h_force_acc_fpss * dt;
double friction_force_fps = dynamic_friction_acc_fpss * dt;
//resolve horizontal speeds into north and east components:
force_speed_north_fps = cos(force_azimuth_deg * SG_DEGREES_TO_RADIANS) * hs_force_fps;
force_speed_east_fps = sin(force_azimuth_deg * SG_DEGREES_TO_RADIANS) * hs_force_fps;
friction_force_speed_north_fps = cos(getRecip(hdg) * SG_DEGREES_TO_RADIANS) * friction_force_fps;
friction_force_speed_east_fps = sin(getRecip(hdg) * SG_DEGREES_TO_RADIANS) * friction_force_fps;
// convert horizontal speed (fps) to degrees per second
force_speed_north_deg_sec = force_speed_north_fps / ft_per_deg_lat;
force_speed_east_deg_sec = force_speed_east_fps / ft_per_deg_lon;
friction_force_speed_north_deg_sec = friction_force_speed_north_fps / ft_per_deg_lat;
friction_force_speed_east_deg_sec = friction_force_speed_east_fps / ft_per_deg_lon;
}
// convert wind speed (fps) to degrees lat/lon per second
double wind_speed_from_north_deg_sec = _wind_from_north / ft_per_deg_lat;
double wind_speed_from_east_deg_sec = _wind_from_east / ft_per_deg_lon;
//recombine the horizontal velocity components
hs = sqrt(((_speed_north_fps + force_speed_north_fps + friction_force_speed_north_fps)
* (_speed_north_fps + force_speed_north_fps + friction_force_speed_north_fps))
+ ((_speed_east_fps + force_speed_east_fps + friction_force_speed_east_fps)
* (_speed_east_fps + force_speed_east_fps + friction_force_speed_east_fps)));
if (hs <= 0.00001)
hs = 0;
// adjust vertical speed for acceleration of gravity, buoyancy, and vertical force
double gravity = SG_METER_TO_FEET * (Environment::Gravity::instance()->getGravity(pos));
vs -= (gravity - _buoyancy - v_force_acc_fpss - normal_force_fpss) * dt;
if (vs <= 0.00001 && vs >= -0.00001)
vs = 0;
// set new position
if (_slave_load_to_ac) {
setOffsetPos(pos,
manager->get_user_heading(),
manager->get_user_pitch(),
manager->get_user_roll()
);
pos.setLatitudeDeg(_offsetpos.getLatitudeDeg());
pos.setLongitudeDeg(_offsetpos.getLongitudeDeg());
pos.setElevationFt(_offsetpos.getElevationFt());
if (getHtAGL(10000)) {
double deadzone = 0.1;
if (_ht_agl_ft <= (0 + _ground_offset + deadzone) && _solid) {
pos.setElevationFt(0 + _ground_offset);
}
else {
pos.setElevationFt(_offsetpos.getElevationFt() + _load_offset);
}
}
}
else {
pos.setLatitudeDeg( pos.getLatitudeDeg()
+ (speed_north_deg_sec - wind_speed_from_north_deg_sec
+ force_speed_north_deg_sec + friction_force_speed_north_deg_sec) * dt );
pos.setLongitudeDeg( pos.getLongitudeDeg()
+ (speed_east_deg_sec - wind_speed_from_east_deg_sec
+ force_speed_east_deg_sec + friction_force_speed_east_deg_sec) * dt );
pos.setElevationFt(pos.getElevationFt() + vs * dt);
}
// cout << _name << " run hs " << hs << " vs " << vs << endl;
// recalculate total speed
if ( vs == 0 && hs == 0)
speed = 0;
else
speed = sqrt( vs * vs + hs * hs) / SG_KT_TO_FPS;
// recalculate elevation and azimuth (velocity vectors)
_elevation = atan2( vs, hs ) * SG_RADIANS_TO_DEGREES;
_azimuth = atan2((_speed_east_fps + force_speed_east_fps + friction_force_speed_east_fps),
(_speed_north_fps + force_speed_north_fps + friction_force_speed_north_fps))
* SG_RADIANS_TO_DEGREES;
// rationalise azimuth
if (_azimuth < 0)
_azimuth += 360;
if (_aero_stabilised) { // we simulate rotational moment of inertia by using a filter
//cout<< "_aero_stabilised " << hdg << " az " << _azimuth << endl;
const double coeff = 0.9;
// we assume a symetrical MI about the pitch and yaw axis
setPch(_elevation, dt, coeff);
setHdg(_azimuth, dt, coeff);
}
else if (_force_stabilised) { // we simulate rotational moment of inertia by using a filter
//cout<< "_force_stabilised "<< endl;
const double coeff = 0.9;
double ratio = h_force_lbs/(_mass * slugs_to_lbs);
if (ratio > 1) ratio = 1;
if (ratio < -1) ratio = -1;
double force_pitch = acos(ratio) * SG_RADIANS_TO_DEGREES;
if (force_pitch <= force_elevation_deg)
force_pitch = force_elevation_deg;
// we assume a symetrical MI about the pitch and yaw axis
setPch(force_pitch,dt, coeff);
setHdg(_azimuth, dt, coeff);
}
// Do impacts and collisions
if (_report_impact && !_impact_reported)
handle_impact();
if (_report_collision && !_collision_reported)
handle_collision();
// Set destruction flag if altitude less than sea level -1000
if (altitude_ft < -1000.0 && life != -1)
setDie(true);
}
double FGAIBallistic::_getTime() const {
return _life_timer;
}
void FGAIBallistic::setTime(double s) {
_life_timer = s;
}
void FGAIBallistic::handleEndOfLife(double elevation) {
report_impact(elevation);
// Make the submodel invisible if the submodel is immortal, otherwise kill it if it has no subsubmodels
if (life == -1) {
invisible = true;
}
else if (_subID == 0) {
// Kill the AIObject if there is no subsubmodel
setDie(true);
}
}
void FGAIBallistic::handle_impact() {
// Try terrain intersection
double start = pos.getElevationM() + 100;
if (!getHtAGL(start))
return;
if (_ht_agl_ft <= 0) {
SG_LOG(SG_AI, SG_DEBUG, "AIBallistic: terrain impact material" << _mat_name);
_impact_reported = true;
handleEndOfLife(_elevation_m);
}
}
void FGAIBallistic::handle_expiry() {
_expiry_reported = true;
handleEndOfLife(pos.getElevationM());
}
void FGAIBallistic::handle_collision()
{
const FGAIBase *object = manager->calcCollision(pos.getElevationFt(),
pos.getLatitudeDeg(),pos.getLongitudeDeg(), _fuse_range);
if (object) {
report_impact(pos.getElevationM(), object);
_collision_reported = true;
}
}
void FGAIBallistic::report_impact(double elevation, const FGAIBase *object)
{
_impact_lat = pos.getLatitudeDeg();
_impact_lon = pos.getLongitudeDeg();
_impact_elev = elevation;
_impact_speed = speed * SG_KT_TO_MPS;
_impact_hdg = hdg;
_impact_pitch = pitch;
_impact_roll = roll;
SGPropertyNode *n = props->getNode("impact", true);
if (object)
n->setStringValue("type", object->getTypeString());
else
n->setStringValue("type", "terrain");
SG_LOG(SG_AI, SG_DEBUG, "AIBallistic: object impact " << _name
<< " lon " <<_impact_lon << " lat " <<_impact_lat << " sec " << _life_timer);
n->setDoubleValue("longitude-deg", _impact_lon);
n->setDoubleValue("latitude-deg", _impact_lat);
n->setDoubleValue("elevation-m", _impact_elev);
n->setDoubleValue("heading-deg", _impact_hdg);
n->setDoubleValue("pitch-deg", _impact_pitch);
n->setDoubleValue("roll-deg", _impact_roll);
n->setDoubleValue("speed-mps", _impact_speed);
_impact_report_node->setStringValue(props->getPath());
}
SGVec3d FGAIBallistic::getCartHitchPos() const {
// convert geodetic positions to geocentered
SGVec3d cartuserPos = globals->get_aircraft_position_cart();
//SGVec3d cartPos = getCartPos();
// Transform to the right coordinate frame, configuration is done in
// the x-forward, y-right, z-up coordinates (feet), computation
// in the simulation usual body x-forward, y-right, z-down coordinates
// (meters) )
SGVec3d _off(_x_offset * SG_FEET_TO_METER,
_y_offset * SG_FEET_TO_METER,
-_z_offset * SG_FEET_TO_METER);
// Transform the user position to the horizontal local coordinate system.
SGQuatd hlTrans = SGQuatd::fromLonLat(globals->get_aircraft_position());
// and postrotate the orientation of the user model wrt the horizontal
// local frame
hlTrans *= SGQuatd::fromYawPitchRollDeg(
manager->get_user_heading(),
manager->get_user_pitch(),
manager->get_user_roll());
// The offset converted to the usual body fixed coordinate system
// rotated to the earth-fixed coordinates axis
SGVec3d off = hlTrans.backTransform(_off);
// Add the position offset of the user model to get the geocentered position
SGVec3d offsetPos = cartuserPos + off;
return offsetPos;
}
void FGAIBallistic::setOffsetPos(SGGeod inpos, double heading, double pitch, double roll) {
// Convert the hitch geocentered position to geodetic
SGVec3d cartoffsetPos = getCartOffsetPos(inpos, heading, pitch, roll);
SGGeodesy::SGCartToGeod(cartoffsetPos, _offsetpos);
}
double FGAIBallistic::getDistanceToHitch() const {
//calculate the distance load to hitch
SGVec3d carthitchPos = getCartHitchPos();
SGVec3d cartPos = getCartPos();
SGVec3d diff = carthitchPos - cartPos;
double distance = norm(diff);
return distance * SG_METER_TO_FEET;
}
double FGAIBallistic::getElevToHitch() const {
// now the angle, positive angles are upwards
double distance = getDistanceToHitch() * SG_FEET_TO_METER;
double angle = 0;
double daltM = _offsetpos.getElevationM() - pos.getElevationM();
if (fabs(distance) < SGLimits<float>::min()) {
angle = 0;
} else {
double sAngle = daltM/distance;
sAngle = SGMiscd::min(1, SGMiscd::max(-1, sAngle));
angle = SGMiscd::rad2deg(asin(sAngle));
}
return angle;
}
double FGAIBallistic::getBearingToHitch() const {
//calculate the bearing and range of the second pos from the first
double distance = getDistanceToHitch() * SG_FEET_TO_METER;
double az1, az2;
geo_inverse_wgs_84(pos, _offsetpos, &az1, &az2, &distance);
return az1;
}
double FGAIBallistic::getRelBrgHitchToUser() const {
//calculate the relative bearing
double az1, az2, distance;
geo_inverse_wgs_84(_offsetpos, globals->get_aircraft_position(), &az1, &az2, &distance);
double rel_brg = az1 - hdg;
SG_NORMALIZE_RANGE(rel_brg, -180.0, 180.0);
return rel_brg;
}
double FGAIBallistic::getElevHitchToUser() const {
// Calculate the distance from the user position
SGVec3d carthitchPos = getCartHitchPos();
SGVec3d cartuserPos = globals->get_aircraft_position_cart();
SGVec3d diff = cartuserPos - carthitchPos;
double distance = norm(diff);
double angle = 0;
double daltM = globals->get_aircraft_position().getElevationM() - _offsetpos.getElevationM();
// Now the angle, positive angles are upwards
if (fabs(distance) < SGLimits<float>::min()) {
angle = 0;
}
else {
double sAngle = daltM/distance;
sAngle = SGMiscd::min(1, SGMiscd::max(-1, sAngle));
angle = SGMiscd::rad2deg(asin(sAngle));
}
return angle;
}
void FGAIBallistic::setTgtOffsets(double dt, double coeff) {
double c = dt / (coeff + dt);
_x_offset = (_tgt_x_offset * c) + (_x_offset * (1 - c));
_y_offset = (_tgt_y_offset * c) + (_y_offset * (1 - c));
_z_offset = (_tgt_z_offset * c) + (_z_offset * (1 - c));
}
void FGAIBallistic::calcVSHS() {
// Calculate vertical and horizontal speed components
double speed_fps = speed * SG_KT_TO_FPS;
if (speed == 0.0) {
hs = vs = 0.0;
}
else {
vs = sin( _elevation * SG_DEGREES_TO_RADIANS ) * speed_fps;
hs = cos( _elevation * SG_DEGREES_TO_RADIANS ) * speed_fps;
}
}
void FGAIBallistic::calcNE() {
// Resolve horizontal speed into north and east components:
_speed_north_fps = cos(_azimuth / SG_RADIANS_TO_DEGREES) * hs;
_speed_east_fps = sin(_azimuth / SG_RADIANS_TO_DEGREES) * hs;
// Convert horizontal speed (fps) to degrees per second
speed_north_deg_sec = _speed_north_fps / ft_per_deg_lat;
speed_east_deg_sec = _speed_east_fps / ft_per_deg_lon;
}
SGVec3d FGAIBallistic::getCartOffsetPos(SGGeod inpos, double user_heading,
double user_pitch, double user_roll
) const {
// Convert geodetic positions to geocentered
SGVec3d cartuserPos = SGVec3d::fromGeod(inpos);
// Transform to the right coordinate frame, configuration is done in
// the x-forward, y-right, z-up coordinates (feet), computation
// in the simulation usual body x-forward, y-right, z-down coordinates
// (meters) )
SGVec3d _off(_x_offset * SG_FEET_TO_METER,
_y_offset * SG_FEET_TO_METER,
-_z_offset * SG_FEET_TO_METER);
// Transform the user position to the horizontal local coordinate system.
SGQuatd hlTrans = SGQuatd::fromLonLat(inpos);
// And postrotate the orientation of the user model wrt the horizontal
// local frame
hlTrans *= SGQuatd::fromYawPitchRollDeg(
user_heading,
user_pitch,
user_roll);
// The offset converted to the usual body fixed coordinate system
// rotated to the earth-fixed coordinates axis
SGVec3d off = hlTrans.backTransform(_off);
// Add the position offset of the user model to get the geocentered position
SGVec3d offsetPos = cartuserPos + off;
return offsetPos;
}
void FGAIBallistic::setOffsetVelocity(double dt, SGGeod offsetpos) {
// Calculate the distance from the previous offset position
SGVec3d cartoffsetPos = SGVec3d::fromGeod(offsetpos);
SGVec3d diff = cartoffsetPos - _oldcartoffsetPos;
double distance = norm(diff);
// Calculate speed knots
speed = (distance / dt) * SG_MPS_TO_KT;
// Now calulate the angle between the old and current postion positions (degrees)
double angle = 0;
double daltM = offsetpos.getElevationM() - _oldoffsetpos.getElevationM();
if (fabs(distance) < SGLimits<float>::min()) {
angle = 0;
}
else {
double sAngle = daltM / distance;
sAngle = SGMiscd::min(1, SGMiscd::max(-1, sAngle));
angle = SGMiscd::rad2deg(asin(sAngle));
}
_elevation = angle;
// Calculate vertical and horizontal speed components
calcVSHS();
// Calculate the bearing of the new offset position from the old
// Don't do this if speed is low
//cout << "speed " << speed << endl;
if (speed > 0.1) {
double az1, az2, dist;
geo_inverse_wgs_84(_oldoffsetpos, offsetpos, &az1, &az2, &dist);
_azimuth = az1;
//cout << "offset az " << _azimuth << endl;
}
else {
_azimuth = hdg;
//cout << " slow offset az " << _azimuth << endl;
}
// Resolve horizontal speed into north and east components
calcNE();
// And finally store the new values
_oldcartoffsetPos = cartoffsetPos;
_oldoffsetpos = offsetpos;
}