1
0
Fork 0
flightgear/src/Network/nmea.cxx
Scott Giese d605294348 Maintenance: nmea
use vector.empty instead of vector.size == 0.
convert atof (c) to stod (c++)
2021-02-21 20:26:45 -06:00

436 lines
12 KiB
C++

// nmea.cxx -- NMEA protocol class
//
// Written by Curtis Olson, started November 1999.
//
// Copyright (C) 1999 Curtis L. Olson - http://www.flightgear.org/~curt
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//
// $Id$
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <simgear/debug/logstream.hxx>
#include <simgear/math/sg_geodesy.hxx>
#include <simgear/io/iochannel.hxx>
#include <simgear/timing/sg_time.hxx>
#include <FDM/flightProperties.hxx>
#include <Main/fg_props.hxx>
#include <Main/globals.hxx>
#include "nmea.hxx"
FGNMEA::FGNMEA() :
mLength(0),
mNmeaMessages(NMEA::SET),
// by default, expect 2 messages per iteration (input)
mMaxReceiveLines(2),
mBiDirectionalSupport(false), // protocol normally only supports input _or_ output
mLineFeed("\n")
{
}
FGNMEA::~FGNMEA() {
}
// calculate the NMEA check sum
void FGNMEA::add_with_checksum(char *sentence, unsigned int buf_size) {
unsigned int i;
unsigned char sum = 0;
for (i = 1; sentence[i] != 0; i++ ) {
sum ^= sentence[i];
}
if (i + 6 < buf_size)
snprintf( &sentence[i], 6, "*%02X%s", sum, mLineFeed);
SG_LOG( SG_IO, SG_DEBUG, sentence );
mNmeaSentence += sentence;
}
// generate NMEA message
bool FGNMEA::gen_message()
{
char dir;
int deg;
double min;
char nmea[256];
SGTime *t = globals->get_time_params();
char utc[10];
snprintf( utc, sizeof(utc), "%02d%02d%02d",
t->getGmt()->tm_hour, t->getGmt()->tm_min, t->getGmt()->tm_sec );
char lat[20];
{
double latd = mFdm.get_Latitude() * SGD_RADIANS_TO_DEGREES;
if ( latd < 0.0 ) {
latd = -latd;
dir = 'S';
} else {
dir = 'N';
}
deg = (int)(latd);
min = (latd - (double)deg) * 60.0;
snprintf( lat, sizeof(lat), "%02d%07.4f,%c", abs(deg), min, dir);
}
char lon[20];
{
double lond = mFdm.get_Longitude() * SGD_RADIANS_TO_DEGREES;
if ( lond < 0.0 ) {
lond = -lond;
dir = 'W';
} else {
dir = 'E';
}
deg = (int)(lond);
min = (lond - (double)deg) * 60.0;
snprintf( lon, sizeof(lon), "%03d%07.4f,%c", abs(deg), min, dir);
}
double vn = fgGetDouble( "/velocities/speed-north-fps" );
double ve = fgGetDouble( "/velocities/speed-east-fps" );
char speed[10];
{
double fps = sqrt( vn*vn + ve*ve );
double mps = fps * SG_FEET_TO_METER;
double kts = mps * SG_METER_TO_NM * 3600;
snprintf( speed, sizeof(speed), "%.1f", kts );
}
char heading[10];
{
double hdg_true = atan2( ve, vn ) * SGD_RADIANS_TO_DEGREES;
if ( hdg_true < 0 ) {
hdg_true += 360.0;
}
snprintf( heading, sizeof(heading), "%.1f", hdg_true );
}
double altitude_ft = mFdm.get_Altitude();
char date[16];
{
unsigned short tm_mday = t->getGmt()->tm_mday;
unsigned short tm_mon = t->getGmt()->tm_mon + 1;
unsigned short tm_year = t->getGmt()->tm_year % 100;
snprintf(date, sizeof(date), "%02u%02u%02u", tm_mday, tm_mon, tm_year);
}
char magvar[10];
{
float magdeg = fgGetDouble( "/environment/magnetic-variation-deg" );
if ( magdeg < 0.0 ) {
magdeg = -magdeg;
dir = 'W';
} else {
dir = 'E';
}
snprintf( magvar, sizeof(magvar), "%.1f,%c", magdeg, dir );
}
// RMC sentence
if (mNmeaMessages & NMEA::GPRMC)
{
// $GPRMC,HHMMSS,A,DDMM.MMMM,N,DDDMM.MMMM,W,XXX.X,XXX.X,DDMMYY,XXX.X,E,A*XX
snprintf( nmea, sizeof(nmea), "$GPRMC,%s,A,%s,%s,%s,%s,%s,%s,A",
utc, lat, lon, speed, heading, date, magvar );
add_with_checksum(nmea, 256);
}
// GGA sentence
if (mNmeaMessages & NMEA::GPGGA)
{
// $GPGGA,HHMMSS,DDMM.MMMM,N,DDDMM.MMMM,W,1,NN,H.H,AAAA.A,M,GG.G,M,,*XX
snprintf( nmea, sizeof(nmea), "$GPGGA,%s,%s,%s,1,08,0.9,%.1f,M,0.0,M,,",
utc, lat, lon, altitude_ft * SG_FEET_TO_METER );
add_with_checksum(nmea, 256);
}
// GSA sentence (totally faked)
if (mNmeaMessages & NMEA::GPGSA)
{
snprintf( nmea, sizeof(nmea), "%s%s",
"$GPGSA,A,3,01,02,03,,05,,07,,09,,11,12,0.9,0.9,2.0*38", mLineFeed );
SG_LOG( SG_IO, SG_DEBUG, nmea );
mNmeaSentence += nmea;
}
return true;
}
// parse NMEA message. messages will look something like the
// following:
//
// $GPRMC,163227,A,3321.173,N,11039.855,W,000.1,270.0,171199,0.000,E*61
// $GPGGA,163227,3321.173,N,11039.855,W,1,,,3333,F,,,,*0F
void FGNMEA::parse_line() {
SG_LOG( SG_IO, SG_DEBUG, "parse nmea message" );
if (mLength > FG_MAX_MSG_SIZE-1)
mLength = FG_MAX_MSG_SIZE-1;
SG_LOG( SG_IO, SG_DEBUG, "entire message = " << mBuf );
// test leading character
if (mBuf[0] != '$')
{
SG_LOG( SG_IO, SG_DEBUG, " invalid NMEA start character = " << mBuf[0]);
return;
}
// get rid of checksum and "*" delimiter
while ((mLength > 0)&&(mBuf[mLength]!='*'))
{
mLength--;
}
mBuf[mLength] = 0;
// split string to tokens
std::vector<std::string> tokens;
for (unsigned int pos=1;pos < mLength;pos++)
{
const char* pCurrent = &mBuf[pos];
while ((mBuf[pos]!=',')&&(pos<mLength))
pos++;
if (mBuf[pos]==',')
mBuf[pos] = 0;
tokens.push_back(pCurrent);
}
if (tokens.empty())
return;
if (tokens.size()>1)
{
for (unsigned int i=0;i<tokens.size();i++)
{
SG_LOG( SG_IO, SG_DEBUG, " NMEA token # " << i << ": " << tokens[i]);
}
parse_message(tokens);
}
}
void FGNMEA::parse_message(const std::vector<std::string>& tokens)
{
double lon_deg, lon_min, lat_deg, lat_min;
double lon, lat;
// string::size_type begin = 0, end;
if (tokens[0] == "GPRMC" ) {
// $GPRMC,HHMMSS,A,DDMM.MMMM,N,DDDMM.MMMM,W,XXX.X,XXX.X,DDMMYY,XXX.X,E,A*XX
if ( tokens.size()<9)
return;
// #1: time
const string& utc = tokens[1];
SG_LOG( SG_IO, SG_DEBUG, " utc = " << utc );
// #2: junk
SG_LOG( SG_IO, SG_DEBUG, " junk = " << tokens[2] );
// #3: lat val
lat_deg = std::stod(tokens[3].substr(0, 2));
lat_min = std::stod(tokens[3].substr(2));
lat = lat_deg + ( lat_min / 60.0 );
// #4: lat dir
if ( tokens[4] == "S" )
lat *= -1;
mFdm.set_Latitude( lat * SGD_DEGREES_TO_RADIANS );
// #5: lon val
lon_deg = std::stod(tokens[5].substr(0, 3));
lon_min = std::stod(tokens[5].substr(3));
lon = lon_deg + ( lon_min / 60.0 );
// #6: lon dir
if ( tokens[6] == "W" )
lon *= -1;
mFdm.set_Longitude( lon * SGD_DEGREES_TO_RADIANS );
SG_LOG( SG_IO, SG_DEBUG, " lat = " << lat << ", lon = " << lon );
#if 0
double sl_radius, lat_geoc;
sgGeodToGeoc( mFdm.get_Latitude(),
mFdm.get_Altitude(),
&sl_radius, &lat_geoc );
mFdm.set_Geocentric_Position( lat_geoc,
mFdm.get_Longitude(),
sl_radius + mFdm.get_Altitude() );
#endif
// #7: speed
double speed = std::stod(tokens[7]);
mFdm.set_V_calibrated_kts( speed );
// mFdm.set_V_ground_speed( speed );
SG_LOG( SG_IO, SG_DEBUG, " speed = " << speed );
// #8: heading
double heading = std::stod(tokens[8]);
mFdm.set_Euler_Angles( mFdm.get_Phi(),
mFdm.get_Theta(),
heading * SGD_DEGREES_TO_RADIANS );
SG_LOG( SG_IO, SG_DEBUG, " heading = " << heading );
} else
if (tokens[0] == "GPGGA" ) {
if ( tokens.size()<11)
return;
// #1: time
const string& utc = tokens[1];
SG_LOG( SG_IO, SG_DEBUG, " utc = " << utc );
// #2: lat val
lat_deg = std::stod(tokens[2].substr(0, 2));
lat_min = std::stod(tokens[2].substr(2));
lat = lat_deg + ( lat_min / 60.0 );
// #3: lat dir
if ( tokens[4] == "S" )
lat *= -1;
mFdm.set_Latitude( lat * SGD_DEGREES_TO_RADIANS );
// #4: lon val
lon_deg = std::stod(tokens[4].substr(0, 3));
lon_min = std::stod(tokens[4].substr(3));
lon = lon_deg + ( lon_min / 60.0 );
// #5: lon dir
if ( tokens[5] == "W" )
lon *= -1;
mFdm.set_Longitude( lon * SGD_DEGREES_TO_RADIANS );
SG_LOG( SG_IO, SG_DEBUG, " lat = " << lat << ", lon = " << lon );
// #6: junk
SG_LOG( SG_IO, SG_DEBUG, " junk = " << tokens[6] );
// #7: junk
SG_LOG( SG_IO, SG_DEBUG, " junk = " << tokens[7] );
// #8: junk
SG_LOG( SG_IO, SG_DEBUG, " junk = " << tokens[8] );
// #9: altitude
double altitude = std::stod(tokens[9]);
// #10: altitude unit
const string& alt_units = tokens[10];
if ( alt_units != "F" && alt_units != "f" ) {
altitude *= SG_METER_TO_FEET;
}
mFdm.set_Altitude( altitude );
SG_LOG( SG_IO, SG_DEBUG, " altitude = " << altitude );
}
}
// open hailing frequencies
bool FGNMEA::open() {
if ( is_enabled() ) {
SG_LOG( SG_IO, SG_ALERT, "This shouldn't happen, but the channel "
<< "is already in use, ignoring" );
return false;
}
// bidirectional support does not make sense for NMEA (and Garmin) protocols
if ((get_direction() == SG_IO_BI)&&
(!mBiDirectionalSupport))
{
SG_LOG( SG_IO, SG_ALERT, "NMEA protocol does not support bidirectional communication. "
"Use 'in' or 'out' instead of 'bi'.");
return false;
}
SGIOChannel *io = get_io_channel();
if ( ! io->open( get_direction() ) ) {
SG_LOG( SG_IO, SG_ALERT, "Error opening channel communication layer." );
return false;
}
set_enabled( true );
return true;
}
// process work for this port
bool FGNMEA::process() {
SGIOChannel *io = get_io_channel();
if (( get_direction() == SG_IO_OUT )||
( get_direction() == SG_IO_BI))
{
// process output
gen_message();
if ((!mNmeaSentence.empty())&&
(!io->write( mNmeaSentence.c_str(), mNmeaSentence.length() )))
{
SG_LOG( SG_IO, SG_WARN, "Error writing data." );
}
mNmeaSentence = "";
}
if (( get_direction() == SG_IO_IN )||
( get_direction() == SG_IO_BI))
{
// process input lines (normally expecting 2 messages per cycle)
for (unsigned int i=0;i<mMaxReceiveLines;i++)
{
if ( (mLength = io->readline( mBuf, FG_MAX_MSG_SIZE )) > 0 ) {
parse_line();
} else {
SG_LOG( SG_IO, SG_WARN, "Error reading data." );
}
}
}
return true; // return value is unused
}
// close the channel
bool FGNMEA::close() {
SGIOChannel *io = get_io_channel();
set_enabled( false );
return io->close();
}