838 lines
28 KiB
C++
838 lines
28 KiB
C++
// obj.cxx -- routines to handle loading scenery and building the plib
|
||
// scene graph.
|
||
//
|
||
// Written by Curtis Olson, started October 1997.
|
||
//
|
||
// Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com
|
||
//
|
||
// This program is free software; you can redistribute it and/or
|
||
// modify it under the terms of the GNU General Public License as
|
||
// published by the Free Software Foundation; either version 2 of the
|
||
// License, or (at your option) any later version.
|
||
//
|
||
// This program is distributed in the hope that it will be useful, but
|
||
// WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
// General Public License for more details.
|
||
//
|
||
// You should have received a copy of the GNU General Public License
|
||
// along with this program; if not, write to the Free Software
|
||
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||
//
|
||
// $Id$
|
||
|
||
|
||
#ifdef HAVE_CONFIG_H
|
||
# include <config.h>
|
||
#endif
|
||
|
||
#ifdef SG_MATH_EXCEPTION_CLASH
|
||
# include <math.h>
|
||
#endif
|
||
|
||
#include <stdio.h>
|
||
#include <string.h>
|
||
|
||
#include <simgear/compiler.h>
|
||
#include <simgear/sg_inlines.h>
|
||
#include <simgear/io/sg_binobj.hxx>
|
||
|
||
#include STL_STRING
|
||
#include <map> // STL
|
||
#include <vector> // STL
|
||
#include <ctype.h> // isdigit()
|
||
|
||
#include <simgear/constants.h>
|
||
#include <simgear/debug/logstream.hxx>
|
||
#include <simgear/math/point3d.hxx>
|
||
#include <simgear/math/polar3d.hxx>
|
||
#include <simgear/math/sg_geodesy.hxx>
|
||
#include <simgear/math/sg_random.h>
|
||
#include <simgear/math/vector.hxx>
|
||
#include <simgear/misc/sgstream.hxx>
|
||
#include <simgear/misc/stopwatch.hxx>
|
||
#include <simgear/misc/texcoord.hxx>
|
||
#include <simgear/scene/material/mat.hxx>
|
||
#include <simgear/scene/material/matlib.hxx>
|
||
#include <simgear/scene/tgdb/leaf.hxx>
|
||
#include <simgear/scene/tgdb/pt_lights.hxx>
|
||
|
||
#include <Main/globals.hxx>
|
||
#include <Main/fg_props.hxx>
|
||
#include <Time/light.hxx>
|
||
|
||
|
||
#include "obj.hxx"
|
||
|
||
SG_USING_STD(string);
|
||
SG_USING_STD(vector);
|
||
|
||
|
||
typedef vector < int > int_list;
|
||
typedef int_list::iterator int_list_iterator;
|
||
typedef int_list::const_iterator int_point_list_iterator;
|
||
|
||
|
||
// not used because plib branches don't honor call backs.
|
||
static int
|
||
runway_lights_pretrav (ssgEntity * e, int mask)
|
||
{
|
||
// Turn on lights only at night
|
||
float sun_angle = cur_light_params.sun_angle * SGD_RADIANS_TO_DEGREES;
|
||
return int((sun_angle > 85.0) ||
|
||
(fgGetDouble("/environment/visibility-m") < 5000.0));
|
||
}
|
||
|
||
|
||
// Generate an ocean tile
|
||
bool fgGenTile( const string& path, SGBucket b,
|
||
Point3D *center, double *bounding_radius,
|
||
SGMaterialLib *matlib, ssgBranch* geometry )
|
||
{
|
||
ssgSimpleState *state = NULL;
|
||
|
||
geometry->setName( (char *)path.c_str() );
|
||
|
||
double tex_width = 1000.0;
|
||
// double tex_height;
|
||
|
||
// find Ocean material in the properties list
|
||
SGMaterial *mat = matlib->find( "Ocean" );
|
||
if ( mat != NULL ) {
|
||
// set the texture width and height values for this
|
||
// material
|
||
tex_width = mat->get_xsize();
|
||
// tex_height = newmat->get_ysize();
|
||
|
||
// set ssgState
|
||
state = mat->get_state();
|
||
} else {
|
||
SG_LOG( SG_TERRAIN, SG_ALERT,
|
||
"Ack! unknown usemtl name = " << "Ocean"
|
||
<< " in " << path );
|
||
}
|
||
|
||
// Calculate center point
|
||
double clon = b.get_center_lon();
|
||
double clat = b.get_center_lat();
|
||
double height = b.get_height();
|
||
double width = b.get_width();
|
||
|
||
*center = sgGeodToCart( Point3D(clon*SGD_DEGREES_TO_RADIANS,
|
||
clat*SGD_DEGREES_TO_RADIANS,
|
||
0.0) );
|
||
// cout << "center = " << center << endl;;
|
||
|
||
// Caculate corner vertices
|
||
Point3D geod[4];
|
||
geod[0] = Point3D( clon - width/2.0, clat - height/2.0, 0.0 );
|
||
geod[1] = Point3D( clon + width/2.0, clat - height/2.0, 0.0 );
|
||
geod[2] = Point3D( clon + width/2.0, clat + height/2.0, 0.0 );
|
||
geod[3] = Point3D( clon - width/2.0, clat + height/2.0, 0.0 );
|
||
|
||
Point3D rad[4];
|
||
int i;
|
||
for ( i = 0; i < 4; ++i ) {
|
||
rad[i] = Point3D( geod[i].x() * SGD_DEGREES_TO_RADIANS,
|
||
geod[i].y() * SGD_DEGREES_TO_RADIANS,
|
||
geod[i].z() );
|
||
}
|
||
|
||
Point3D cart[4], rel[4];
|
||
for ( i = 0; i < 4; ++i ) {
|
||
cart[i] = sgGeodToCart(rad[i]);
|
||
rel[i] = cart[i] - *center;
|
||
// cout << "corner " << i << " = " << cart[i] << endl;
|
||
}
|
||
|
||
// Calculate bounding radius
|
||
*bounding_radius = center->distance3D( cart[0] );
|
||
// cout << "bounding radius = " << t->bounding_radius << endl;
|
||
|
||
// Calculate normals
|
||
Point3D normals[4];
|
||
for ( i = 0; i < 4; ++i ) {
|
||
double length = cart[i].distance3D( Point3D(0.0) );
|
||
normals[i] = cart[i] / length;
|
||
// cout << "normal = " << normals[i] << endl;
|
||
}
|
||
|
||
// Calculate texture coordinates
|
||
point_list geod_nodes;
|
||
geod_nodes.clear();
|
||
geod_nodes.reserve(4);
|
||
int_list rectangle;
|
||
rectangle.clear();
|
||
rectangle.reserve(4);
|
||
for ( i = 0; i < 4; ++i ) {
|
||
geod_nodes.push_back( geod[i] );
|
||
rectangle.push_back( i );
|
||
}
|
||
point_list texs = calc_tex_coords( b, geod_nodes, rectangle,
|
||
1000.0 / tex_width );
|
||
|
||
// Allocate ssg structure
|
||
ssgVertexArray *vl = new ssgVertexArray( 4 );
|
||
ssgNormalArray *nl = new ssgNormalArray( 4 );
|
||
ssgTexCoordArray *tl = new ssgTexCoordArray( 4 );
|
||
ssgColourArray *cl = new ssgColourArray( 1 );
|
||
|
||
sgVec4 color;
|
||
sgSetVec4( color, 1.0, 1.0, 1.0, 1.0 );
|
||
cl->add( color );
|
||
|
||
// sgVec3 *vtlist = new sgVec3 [ 4 ];
|
||
// t->vec3_ptrs.push_back( vtlist );
|
||
// sgVec3 *vnlist = new sgVec3 [ 4 ];
|
||
// t->vec3_ptrs.push_back( vnlist );
|
||
// sgVec2 *tclist = new sgVec2 [ 4 ];
|
||
// t->vec2_ptrs.push_back( tclist );
|
||
|
||
sgVec2 tmp2;
|
||
sgVec3 tmp3;
|
||
for ( i = 0; i < 4; ++i ) {
|
||
sgSetVec3( tmp3,
|
||
rel[i].x(), rel[i].y(), rel[i].z() );
|
||
vl->add( tmp3 );
|
||
|
||
sgSetVec3( tmp3,
|
||
normals[i].x(), normals[i].y(), normals[i].z() );
|
||
nl->add( tmp3 );
|
||
|
||
sgSetVec2( tmp2, texs[i].x(), texs[i].y());
|
||
tl->add( tmp2 );
|
||
}
|
||
|
||
ssgLeaf *leaf =
|
||
new ssgVtxTable ( GL_TRIANGLE_FAN, vl, nl, tl, cl );
|
||
|
||
leaf->setState( state );
|
||
|
||
geometry->addKid( leaf );
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
static void random_pt_inside_tri( float *res,
|
||
float *n1, float *n2, float *n3 )
|
||
{
|
||
double a = sg_random();
|
||
double b = sg_random();
|
||
if ( a + b > 1.0 ) {
|
||
a = 1.0 - a;
|
||
b = 1.0 - b;
|
||
}
|
||
double c = 1 - a - b;
|
||
|
||
res[0] = n1[0]*a + n2[0]*b + n3[0]*c;
|
||
res[1] = n1[1]*a + n2[1]*b + n3[1]*c;
|
||
res[2] = n1[2]*a + n2[2]*b + n3[2]*c;
|
||
}
|
||
|
||
|
||
/**
|
||
* User data for populating leaves when they come in range.
|
||
*/
|
||
class LeafUserData : public ssgBase
|
||
{
|
||
public:
|
||
bool is_filled_in;
|
||
ssgLeaf *leaf;
|
||
SGMaterial *mat;
|
||
ssgBranch *branch;
|
||
float sin_lat;
|
||
float cos_lat;
|
||
float sin_lon;
|
||
float cos_lon;
|
||
|
||
void setup_triangle( int i );
|
||
};
|
||
|
||
|
||
/**
|
||
* User data for populating triangles when they come in range.
|
||
*/
|
||
class TriUserData : public ssgBase
|
||
{
|
||
public:
|
||
bool is_filled_in;
|
||
float * p1;
|
||
float * p2;
|
||
float * p3;
|
||
sgVec3 center;
|
||
double area;
|
||
SGMaterial::ObjectGroup * object_group;
|
||
ssgBranch * branch;
|
||
LeafUserData * leafData;
|
||
unsigned int seed;
|
||
|
||
void fill_in_triangle();
|
||
void add_object_to_triangle(SGMaterial::Object * object);
|
||
void makeWorldMatrix (sgMat4 ROT, double hdg_deg );
|
||
};
|
||
|
||
|
||
/**
|
||
* Fill in a triangle with randomly-placed objects.
|
||
*
|
||
* This method is invoked by a callback when the triangle is in range
|
||
* but not yet populated.
|
||
*
|
||
*/
|
||
|
||
void TriUserData::fill_in_triangle ()
|
||
{
|
||
// generate a repeatable random seed
|
||
sg_srandom(seed);
|
||
|
||
int nObjects = object_group->get_object_count();
|
||
|
||
for (int i = 0; i < nObjects; i++) {
|
||
SGMaterial::Object * object = object_group->get_object(i);
|
||
double num = area / object->get_coverage_m2();
|
||
|
||
// place an object each unit of area
|
||
while ( num > 1.0 ) {
|
||
add_object_to_triangle(object);
|
||
num -= 1.0;
|
||
}
|
||
// for partial units of area, use a zombie door method to
|
||
// create the proper random chance of an object being created
|
||
// for this triangle
|
||
if ( num > 0.0 ) {
|
||
if ( sg_random() <= num ) {
|
||
// a zombie made it through our door
|
||
add_object_to_triangle(object);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void TriUserData::add_object_to_triangle (SGMaterial::Object * object)
|
||
{
|
||
// Set up the random heading if required.
|
||
double hdg_deg = 0;
|
||
if (object->get_heading_type() == SGMaterial::Object::HEADING_RANDOM)
|
||
hdg_deg = sg_random() * 360;
|
||
|
||
sgMat4 mat;
|
||
makeWorldMatrix(mat, hdg_deg);
|
||
|
||
ssgTransform * pos = new ssgTransform;
|
||
pos->setTransform(mat);
|
||
pos->addKid( object->get_random_model( globals->get_model_loader(),
|
||
globals->get_fg_root(),
|
||
globals->get_props(),
|
||
globals->get_sim_time_sec() )
|
||
);
|
||
branch->addKid(pos);
|
||
}
|
||
|
||
void TriUserData::makeWorldMatrix (sgMat4 mat, double hdg_deg )
|
||
{
|
||
if (hdg_deg == 0) {
|
||
mat[0][0] = leafData->sin_lat * leafData->cos_lon;
|
||
mat[0][1] = leafData->sin_lat * leafData->sin_lon;
|
||
mat[0][2] = -leafData->cos_lat;
|
||
mat[0][3] = SG_ZERO;
|
||
|
||
mat[1][0] = -leafData->sin_lon;
|
||
mat[1][1] = leafData->cos_lon;
|
||
mat[1][2] = SG_ZERO;
|
||
mat[1][3] = SG_ZERO;
|
||
} else {
|
||
float sin_hdg = sin( hdg_deg * SGD_DEGREES_TO_RADIANS ) ;
|
||
float cos_hdg = cos( hdg_deg * SGD_DEGREES_TO_RADIANS ) ;
|
||
mat[0][0] = cos_hdg * leafData->sin_lat * leafData->cos_lon - sin_hdg * leafData->sin_lon;
|
||
mat[0][1] = cos_hdg * leafData->sin_lat * leafData->sin_lon + sin_hdg * leafData->cos_lon;
|
||
mat[0][2] = -cos_hdg * leafData->cos_lat;
|
||
mat[0][3] = SG_ZERO;
|
||
|
||
mat[1][0] = -sin_hdg * leafData->sin_lat * leafData->cos_lon - cos_hdg * leafData->sin_lon;
|
||
mat[1][1] = -sin_hdg * leafData->sin_lat * leafData->sin_lon + cos_hdg * leafData->cos_lon;
|
||
mat[1][2] = sin_hdg * leafData->cos_lat;
|
||
mat[1][3] = SG_ZERO;
|
||
}
|
||
|
||
mat[2][0] = leafData->cos_lat * leafData->cos_lon;
|
||
mat[2][1] = leafData->cos_lat * leafData->sin_lon;
|
||
mat[2][2] = leafData->sin_lat;
|
||
mat[2][3] = SG_ZERO;
|
||
|
||
// translate to random point in triangle
|
||
sgVec3 result;
|
||
random_pt_inside_tri(result, p1, p2, p3);
|
||
sgSubVec3(mat[3], result, center);
|
||
|
||
mat[3][3] = SG_ONE ;
|
||
}
|
||
|
||
/**
|
||
* SSG callback for an in-range triangle of randomly-placed objects.
|
||
*
|
||
* This pretraversal callback is attached to a branch that is traversed
|
||
* only when a triangle is in range. If the triangle is not currently
|
||
* populated with randomly-placed objects, this callback will populate
|
||
* it.
|
||
*
|
||
* @param entity The entity to which the callback is attached (not used).
|
||
* @param mask The entity's traversal mask (not used).
|
||
* @return Always 1, to allow traversal and culling to continue.
|
||
*/
|
||
static int
|
||
tri_in_range_callback (ssgEntity * entity, int mask)
|
||
{
|
||
TriUserData * data = (TriUserData *)entity->getUserData();
|
||
if (!data->is_filled_in) {
|
||
data->fill_in_triangle();
|
||
data->is_filled_in = true;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
|
||
/**
|
||
* SSG callback for an out-of-range triangle of randomly-placed objects.
|
||
*
|
||
* This pretraversal callback is attached to a branch that is traversed
|
||
* only when a triangle is out of range. If the triangle is currently
|
||
* populated with randomly-placed objects, the objects will be removed.
|
||
*
|
||
*
|
||
* @param entity The entity to which the callback is attached (not used).
|
||
* @param mask The entity's traversal mask (not used).
|
||
* @return Always 0, to prevent any further traversal or culling.
|
||
*/
|
||
static int
|
||
tri_out_of_range_callback (ssgEntity * entity, int mask)
|
||
{
|
||
TriUserData * data = (TriUserData *)entity->getUserData();
|
||
if (data->is_filled_in) {
|
||
data->branch->removeAllKids();
|
||
data->is_filled_in = false;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
/**
|
||
* ssgEntity with a dummy bounding sphere, to fool culling.
|
||
*
|
||
* This forces the in-range and out-of-range branches to be visited
|
||
* when appropriate, even if they have no children. It's ugly, but
|
||
* it works and seems fairly efficient (since branches can still
|
||
* be culled when they're out of the view frustum).
|
||
*/
|
||
class DummyBSphereEntity : public ssgBranch
|
||
{
|
||
public:
|
||
DummyBSphereEntity (float radius)
|
||
{
|
||
bsphere.setCenter(0, 0, 0);
|
||
bsphere.setRadius(radius);
|
||
}
|
||
virtual ~DummyBSphereEntity () {}
|
||
virtual void recalcBSphere () { bsphere_is_invalid = false; }
|
||
};
|
||
|
||
|
||
/**
|
||
* Calculate the bounding radius of a triangle from its center.
|
||
*
|
||
* @param center The triangle center.
|
||
* @param p1 The first point in the triangle.
|
||
* @param p2 The second point in the triangle.
|
||
* @param p3 The third point in the triangle.
|
||
* @return The greatest distance any point lies from the center.
|
||
*/
|
||
static inline float
|
||
get_bounding_radius( sgVec3 center, float *p1, float *p2, float *p3)
|
||
{
|
||
return sqrt( SG_MAX3( sgDistanceSquaredVec3(center, p1),
|
||
sgDistanceSquaredVec3(center, p2),
|
||
sgDistanceSquaredVec3(center, p3) ) );
|
||
}
|
||
|
||
|
||
/**
|
||
* Set up a triangle for randomly-placed objects.
|
||
*
|
||
* No objects will be added unless the triangle comes into range.
|
||
*
|
||
*/
|
||
|
||
void LeafUserData::setup_triangle (int i )
|
||
{
|
||
short n1, n2, n3;
|
||
leaf->getTriangle(i, &n1, &n2, &n3);
|
||
|
||
float * p1 = leaf->getVertex(n1);
|
||
float * p2 = leaf->getVertex(n2);
|
||
float * p3 = leaf->getVertex(n3);
|
||
|
||
// Set up a single center point for LOD
|
||
sgVec3 center;
|
||
sgSetVec3(center,
|
||
(p1[0] + p2[0] + p3[0]) / 3.0,
|
||
(p1[1] + p2[1] + p3[1]) / 3.0,
|
||
(p1[2] + p2[2] + p3[2]) / 3.0);
|
||
double area = sgTriArea(p1, p2, p3);
|
||
|
||
// maximum radius of an object from center.
|
||
double bounding_radius = get_bounding_radius(center, p1, p2, p3);
|
||
|
||
// Set up a transformation to the center
|
||
// point, so that everything else can
|
||
// be specified relative to it.
|
||
ssgTransform * location = new ssgTransform;
|
||
sgMat4 TRANS;
|
||
sgMakeTransMat4(TRANS, center);
|
||
location->setTransform(TRANS);
|
||
branch->addKid(location);
|
||
|
||
// Iterate through all the object types.
|
||
int num_groups = mat->get_object_group_count();
|
||
for (int j = 0; j < num_groups; j++) {
|
||
// Look up the random object.
|
||
SGMaterial::ObjectGroup * group = mat->get_object_group(j);
|
||
|
||
// Set up the range selector for the entire
|
||
// triangle; note that we use the object
|
||
// range plus the bounding radius here, to
|
||
// allow for objects far from the center.
|
||
float ranges[] = { 0,
|
||
group->get_range_m() + bounding_radius,
|
||
SG_MAX };
|
||
ssgRangeSelector * lod = new ssgRangeSelector;
|
||
lod->setRanges(ranges, 3);
|
||
location->addKid(lod);
|
||
|
||
// Create the in-range and out-of-range
|
||
// branches.
|
||
ssgBranch * in_range = new ssgBranch;
|
||
ssgBranch * out_of_range = new ssgBranch;
|
||
|
||
// Set up the user data for if/when
|
||
// the random objects in this triangle
|
||
// are filled in.
|
||
TriUserData * data = new TriUserData;
|
||
data->is_filled_in = false;
|
||
data->p1 = p1;
|
||
data->p2 = p2;
|
||
data->p3 = p3;
|
||
sgCopyVec3 (data->center, center);
|
||
data->area = area;
|
||
data->object_group = group;
|
||
data->branch = in_range;
|
||
data->leafData = this;
|
||
data->seed = (unsigned int)(p1[0] * j);
|
||
|
||
// Set up the in-range node.
|
||
in_range->setUserData(data);
|
||
in_range->setTravCallback(SSG_CALLBACK_PRETRAV,
|
||
tri_in_range_callback);
|
||
lod->addKid(in_range);
|
||
|
||
// Set up the out-of-range node.
|
||
out_of_range->setUserData(data);
|
||
out_of_range->setTravCallback(SSG_CALLBACK_PRETRAV,
|
||
tri_out_of_range_callback);
|
||
out_of_range->addKid(new DummyBSphereEntity(bounding_radius));
|
||
lod->addKid(out_of_range);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* SSG callback for an in-range leaf of randomly-placed objects.
|
||
*
|
||
* This pretraversal callback is attached to a branch that is
|
||
* traversed only when a leaf is in range. If the leaf is not
|
||
* currently prepared to be populated with randomly-placed objects,
|
||
* this callback will prepare it (actual population is handled by
|
||
* the tri_in_range_callback for individual triangles).
|
||
*
|
||
* @param entity The entity to which the callback is attached (not used).
|
||
* @param mask The entity's traversal mask (not used).
|
||
* @return Always 1, to allow traversal and culling to continue.
|
||
*/
|
||
static int
|
||
leaf_in_range_callback (ssgEntity * entity, int mask)
|
||
{
|
||
LeafUserData * data = (LeafUserData *)entity->getUserData();
|
||
|
||
if (!data->is_filled_in) {
|
||
// Iterate through all the triangles
|
||
// and populate them.
|
||
int num_tris = data->leaf->getNumTriangles();
|
||
for ( int i = 0; i < num_tris; ++i ) {
|
||
data->setup_triangle(i);
|
||
}
|
||
data->is_filled_in = true;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
|
||
/**
|
||
* SSG callback for an out-of-range leaf of randomly-placed objects.
|
||
*
|
||
* This pretraversal callback is attached to a branch that is
|
||
* traversed only when a leaf is out of range. If the leaf is
|
||
* currently prepared to be populated with randomly-placed objects (or
|
||
* is actually populated), the objects will be removed.
|
||
*
|
||
* @param entity The entity to which the callback is attached (not used).
|
||
* @param mask The entity's traversal mask (not used).
|
||
* @return Always 0, to prevent any further traversal or culling.
|
||
*/
|
||
static int
|
||
leaf_out_of_range_callback (ssgEntity * entity, int mask)
|
||
{
|
||
LeafUserData * data = (LeafUserData *)entity->getUserData();
|
||
if (data->is_filled_in) {
|
||
data->branch->removeAllKids();
|
||
data->is_filled_in = false;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
/**
|
||
* Randomly place objects on a surface.
|
||
*
|
||
* The leaf node provides the geometry of the surface, while the
|
||
* material provides the objects and placement density. Latitude
|
||
* and longitude are required so that the objects can be rotated
|
||
* to the world-up vector. This function does not actually add
|
||
* any objects; instead, it attaches an ssgRangeSelector to the
|
||
* branch with callbacks to generate the objects when needed.
|
||
*
|
||
* @param leaf The surface where the objects should be placed.
|
||
* @param branch The branch that will hold the randomly-placed objects.
|
||
* @param center The center of the leaf in FlightGear coordinates.
|
||
* @param material_name The name of the surface's material.
|
||
*/
|
||
static void
|
||
gen_random_surface_objects (ssgLeaf *leaf,
|
||
ssgBranch *branch,
|
||
Point3D *center,
|
||
SGMaterial *mat )
|
||
{
|
||
// If the surface has no triangles, return
|
||
// now.
|
||
int num_tris = leaf->getNumTriangles();
|
||
if (num_tris < 1)
|
||
return;
|
||
|
||
// If the material has no randomly-placed
|
||
// objects, return now.
|
||
if (mat->get_object_group_count() < 1)
|
||
return;
|
||
|
||
// Calculate the geodetic centre of
|
||
// the tile, for aligning automatic
|
||
// objects.
|
||
double lon_deg, lat_rad, lat_deg, alt_m, sl_radius_m;
|
||
Point3D geoc = sgCartToPolar3d(*center);
|
||
lon_deg = geoc.lon() * SGD_RADIANS_TO_DEGREES;
|
||
sgGeocToGeod(geoc.lat(), geoc.radius(),
|
||
&lat_rad, &alt_m, &sl_radius_m);
|
||
lat_deg = lat_rad * SGD_RADIANS_TO_DEGREES;
|
||
|
||
// LOD for the leaf
|
||
// max random object range: 20000m
|
||
float ranges[] = { 0, 20000, 1000000 };
|
||
ssgRangeSelector * lod = new ssgRangeSelector;
|
||
lod->setRanges(ranges, 3);
|
||
branch->addKid(lod);
|
||
|
||
// Create the in-range and out-of-range
|
||
// branches.
|
||
ssgBranch * in_range = new ssgBranch;
|
||
ssgBranch * out_of_range = new ssgBranch;
|
||
lod->addKid(in_range);
|
||
lod->addKid(out_of_range);
|
||
|
||
LeafUserData * data = new LeafUserData;
|
||
data->is_filled_in = false;
|
||
data->leaf = leaf;
|
||
data->mat = mat;
|
||
data->branch = in_range;
|
||
data->sin_lat = sin(lat_deg * SGD_DEGREES_TO_RADIANS);
|
||
data->cos_lat = cos(lat_deg * SGD_DEGREES_TO_RADIANS);
|
||
data->sin_lon = sin(lon_deg * SGD_DEGREES_TO_RADIANS);
|
||
data->cos_lon = cos(lon_deg * SGD_DEGREES_TO_RADIANS);
|
||
|
||
in_range->setUserData(data);
|
||
in_range->setTravCallback(SSG_CALLBACK_PRETRAV, leaf_in_range_callback);
|
||
out_of_range->setUserData(data);
|
||
out_of_range->setTravCallback(SSG_CALLBACK_PRETRAV,
|
||
leaf_out_of_range_callback);
|
||
out_of_range
|
||
->addKid(new DummyBSphereEntity(leaf->getBSphere()->getRadius()));
|
||
}
|
||
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////
|
||
// Scenery loaders.
|
||
////////////////////////////////////////////////////////////////////////
|
||
|
||
// Load an Binary obj file
|
||
bool fgBinObjLoad( const string& path, const bool is_base,
|
||
Point3D *center,
|
||
double *bounding_radius,
|
||
SGMaterialLib *matlib,
|
||
ssgBranch* geometry,
|
||
ssgBranch* rwy_lights,
|
||
ssgBranch* taxi_lights,
|
||
ssgVertexArray *ground_lights )
|
||
{
|
||
SGBinObject obj;
|
||
bool use_random_objects =
|
||
fgGetBool("/sim/rendering/random-objects", true);
|
||
|
||
if ( ! obj.read_bin( path ) ) {
|
||
return false;
|
||
}
|
||
|
||
geometry->setName( (char *)path.c_str() );
|
||
|
||
// reference point (center offset/bounding sphere)
|
||
*center = obj.get_gbs_center();
|
||
*bounding_radius = obj.get_gbs_radius();
|
||
|
||
point_list const& nodes = obj.get_wgs84_nodes();
|
||
// point_list const& colors = obj.get_colors();
|
||
point_list const& normals = obj.get_normals();
|
||
point_list const& texcoords = obj.get_texcoords();
|
||
|
||
string material;
|
||
int_list tex_index;
|
||
|
||
group_list::size_type i;
|
||
|
||
// generate points
|
||
string_list const& pt_materials = obj.get_pt_materials();
|
||
group_list const& pts_v = obj.get_pts_v();
|
||
group_list const& pts_n = obj.get_pts_n();
|
||
for ( i = 0; i < pts_v.size(); ++i ) {
|
||
// cout << "pts_v.size() = " << pts_v.size() << endl;
|
||
if ( pt_materials[i].substr(0, 3) == "RWY" ) {
|
||
sgVec3 up;
|
||
sgSetVec3( up, center->x(), center->y(), center->z() );
|
||
// returns a transform -> lod -> leaf structure
|
||
ssgBranch *branch = gen_directional_lights( nodes, normals,
|
||
pts_v[i], pts_n[i],
|
||
matlib, pt_materials[i],
|
||
up );
|
||
// branches don't honor callbacks as far as I know so I'm
|
||
// commenting this out to avoid a plib runtime warning.
|
||
branch->setTravCallback( SSG_CALLBACK_PRETRAV,
|
||
runway_lights_pretrav );
|
||
if ( pt_materials[i].substr(0, 16) == "RWY_BLUE_TAXIWAY" ) {
|
||
taxi_lights->addKid( branch );
|
||
} else {
|
||
rwy_lights->addKid( branch );
|
||
}
|
||
} else {
|
||
material = pt_materials[i];
|
||
tex_index.clear();
|
||
ssgLeaf *leaf = sgMakeLeaf( path, GL_POINTS, matlib, material,
|
||
nodes, normals, texcoords,
|
||
pts_v[i], pts_n[i], tex_index,
|
||
false, ground_lights );
|
||
geometry->addKid( leaf );
|
||
}
|
||
}
|
||
|
||
// Put all randomly-placed objects under a separate branch
|
||
// (actually an ssgRangeSelector) named "random-models".
|
||
ssgBranch * random_object_branch = 0;
|
||
if (use_random_objects) {
|
||
float ranges[] = { 0, 20000 }; // Maximum 20km range for random objects
|
||
ssgRangeSelector * object_lod = new ssgRangeSelector;
|
||
object_lod->setRanges(ranges, 2);
|
||
object_lod->setName("random-models");
|
||
geometry->addKid(object_lod);
|
||
random_object_branch = new ssgBranch;
|
||
object_lod->addKid(random_object_branch);
|
||
}
|
||
|
||
// generate triangles
|
||
string_list const& tri_materials = obj.get_tri_materials();
|
||
group_list const& tris_v = obj.get_tris_v();
|
||
group_list const& tris_n = obj.get_tris_n();
|
||
group_list const& tris_tc = obj.get_tris_tc();
|
||
for ( i = 0; i < tris_v.size(); ++i ) {
|
||
ssgLeaf *leaf = sgMakeLeaf( path, GL_TRIANGLES, matlib,
|
||
tri_materials[i],
|
||
nodes, normals, texcoords,
|
||
tris_v[i], tris_n[i], tris_tc[i],
|
||
is_base, ground_lights );
|
||
|
||
if ( use_random_objects ) {
|
||
SGMaterial *mat = matlib->find( tri_materials[i] );
|
||
if ( mat == NULL ) {
|
||
SG_LOG( SG_INPUT, SG_ALERT,
|
||
"Unknown material for random surface objects = "
|
||
<< tri_materials[i] );
|
||
}
|
||
gen_random_surface_objects( leaf, random_object_branch,
|
||
center, mat );
|
||
}
|
||
geometry->addKid( leaf );
|
||
}
|
||
|
||
// generate strips
|
||
string_list const& strip_materials = obj.get_strip_materials();
|
||
group_list const& strips_v = obj.get_strips_v();
|
||
group_list const& strips_n = obj.get_strips_n();
|
||
group_list const& strips_tc = obj.get_strips_tc();
|
||
for ( i = 0; i < strips_v.size(); ++i ) {
|
||
ssgLeaf *leaf = sgMakeLeaf( path, GL_TRIANGLE_STRIP,
|
||
matlib, strip_materials[i],
|
||
nodes, normals, texcoords,
|
||
strips_v[i], strips_n[i], strips_tc[i],
|
||
is_base, ground_lights );
|
||
|
||
if ( use_random_objects ) {
|
||
SGMaterial *mat = matlib->find( strip_materials[i] );
|
||
if ( mat == NULL ) {
|
||
SG_LOG( SG_INPUT, SG_ALERT,
|
||
"Unknown material for random surface objects = "
|
||
<< strip_materials[i] );
|
||
}
|
||
gen_random_surface_objects( leaf, random_object_branch,
|
||
center, mat );
|
||
}
|
||
geometry->addKid( leaf );
|
||
}
|
||
|
||
// generate fans
|
||
string_list const& fan_materials = obj.get_fan_materials();
|
||
group_list const& fans_v = obj.get_fans_v();
|
||
group_list const& fans_n = obj.get_fans_n();
|
||
group_list const& fans_tc = obj.get_fans_tc();
|
||
for ( i = 0; i < fans_v.size(); ++i ) {
|
||
ssgLeaf *leaf = sgMakeLeaf( path, GL_TRIANGLE_FAN,
|
||
matlib, fan_materials[i],
|
||
nodes, normals, texcoords,
|
||
fans_v[i], fans_n[i], fans_tc[i],
|
||
is_base, ground_lights );
|
||
if ( use_random_objects ) {
|
||
SGMaterial *mat = matlib->find( fan_materials[i] );
|
||
if ( mat == NULL ) {
|
||
SG_LOG( SG_INPUT, SG_ALERT,
|
||
"Unknown material for random surface objects = "
|
||
<< fan_materials[i] );
|
||
}
|
||
gen_random_surface_objects( leaf, random_object_branch,
|
||
center, mat );
|
||
}
|
||
geometry->addKid( leaf );
|
||
}
|
||
|
||
return true;
|
||
}
|