1
0
Fork 0
flightgear/src/Objects/obj.cxx

838 lines
28 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// obj.cxx -- routines to handle loading scenery and building the plib
// scene graph.
//
// Written by Curtis Olson, started October 1997.
//
// Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#ifdef SG_MATH_EXCEPTION_CLASH
# include <math.h>
#endif
#include <stdio.h>
#include <string.h>
#include <simgear/compiler.h>
#include <simgear/sg_inlines.h>
#include <simgear/io/sg_binobj.hxx>
#include STL_STRING
#include <map> // STL
#include <vector> // STL
#include <ctype.h> // isdigit()
#include <simgear/constants.h>
#include <simgear/debug/logstream.hxx>
#include <simgear/math/point3d.hxx>
#include <simgear/math/polar3d.hxx>
#include <simgear/math/sg_geodesy.hxx>
#include <simgear/math/sg_random.h>
#include <simgear/math/vector.hxx>
#include <simgear/misc/sgstream.hxx>
#include <simgear/misc/stopwatch.hxx>
#include <simgear/misc/texcoord.hxx>
#include <simgear/scene/material/mat.hxx>
#include <simgear/scene/material/matlib.hxx>
#include <simgear/scene/tgdb/leaf.hxx>
#include <simgear/scene/tgdb/pt_lights.hxx>
#include <Main/globals.hxx>
#include <Main/fg_props.hxx>
#include <Time/light.hxx>
#include "obj.hxx"
SG_USING_STD(string);
SG_USING_STD(vector);
typedef vector < int > int_list;
typedef int_list::iterator int_list_iterator;
typedef int_list::const_iterator int_point_list_iterator;
// not used because plib branches don't honor call backs.
static int
runway_lights_pretrav (ssgEntity * e, int mask)
{
// Turn on lights only at night
float sun_angle = cur_light_params.sun_angle * SGD_RADIANS_TO_DEGREES;
return int((sun_angle > 85.0) ||
(fgGetDouble("/environment/visibility-m") < 5000.0));
}
// Generate an ocean tile
bool fgGenTile( const string& path, SGBucket b,
Point3D *center, double *bounding_radius,
SGMaterialLib *matlib, ssgBranch* geometry )
{
ssgSimpleState *state = NULL;
geometry->setName( (char *)path.c_str() );
double tex_width = 1000.0;
// double tex_height;
// find Ocean material in the properties list
SGMaterial *mat = matlib->find( "Ocean" );
if ( mat != NULL ) {
// set the texture width and height values for this
// material
tex_width = mat->get_xsize();
// tex_height = newmat->get_ysize();
// set ssgState
state = mat->get_state();
} else {
SG_LOG( SG_TERRAIN, SG_ALERT,
"Ack! unknown usemtl name = " << "Ocean"
<< " in " << path );
}
// Calculate center point
double clon = b.get_center_lon();
double clat = b.get_center_lat();
double height = b.get_height();
double width = b.get_width();
*center = sgGeodToCart( Point3D(clon*SGD_DEGREES_TO_RADIANS,
clat*SGD_DEGREES_TO_RADIANS,
0.0) );
// cout << "center = " << center << endl;;
// Caculate corner vertices
Point3D geod[4];
geod[0] = Point3D( clon - width/2.0, clat - height/2.0, 0.0 );
geod[1] = Point3D( clon + width/2.0, clat - height/2.0, 0.0 );
geod[2] = Point3D( clon + width/2.0, clat + height/2.0, 0.0 );
geod[3] = Point3D( clon - width/2.0, clat + height/2.0, 0.0 );
Point3D rad[4];
int i;
for ( i = 0; i < 4; ++i ) {
rad[i] = Point3D( geod[i].x() * SGD_DEGREES_TO_RADIANS,
geod[i].y() * SGD_DEGREES_TO_RADIANS,
geod[i].z() );
}
Point3D cart[4], rel[4];
for ( i = 0; i < 4; ++i ) {
cart[i] = sgGeodToCart(rad[i]);
rel[i] = cart[i] - *center;
// cout << "corner " << i << " = " << cart[i] << endl;
}
// Calculate bounding radius
*bounding_radius = center->distance3D( cart[0] );
// cout << "bounding radius = " << t->bounding_radius << endl;
// Calculate normals
Point3D normals[4];
for ( i = 0; i < 4; ++i ) {
double length = cart[i].distance3D( Point3D(0.0) );
normals[i] = cart[i] / length;
// cout << "normal = " << normals[i] << endl;
}
// Calculate texture coordinates
point_list geod_nodes;
geod_nodes.clear();
geod_nodes.reserve(4);
int_list rectangle;
rectangle.clear();
rectangle.reserve(4);
for ( i = 0; i < 4; ++i ) {
geod_nodes.push_back( geod[i] );
rectangle.push_back( i );
}
point_list texs = calc_tex_coords( b, geod_nodes, rectangle,
1000.0 / tex_width );
// Allocate ssg structure
ssgVertexArray *vl = new ssgVertexArray( 4 );
ssgNormalArray *nl = new ssgNormalArray( 4 );
ssgTexCoordArray *tl = new ssgTexCoordArray( 4 );
ssgColourArray *cl = new ssgColourArray( 1 );
sgVec4 color;
sgSetVec4( color, 1.0, 1.0, 1.0, 1.0 );
cl->add( color );
// sgVec3 *vtlist = new sgVec3 [ 4 ];
// t->vec3_ptrs.push_back( vtlist );
// sgVec3 *vnlist = new sgVec3 [ 4 ];
// t->vec3_ptrs.push_back( vnlist );
// sgVec2 *tclist = new sgVec2 [ 4 ];
// t->vec2_ptrs.push_back( tclist );
sgVec2 tmp2;
sgVec3 tmp3;
for ( i = 0; i < 4; ++i ) {
sgSetVec3( tmp3,
rel[i].x(), rel[i].y(), rel[i].z() );
vl->add( tmp3 );
sgSetVec3( tmp3,
normals[i].x(), normals[i].y(), normals[i].z() );
nl->add( tmp3 );
sgSetVec2( tmp2, texs[i].x(), texs[i].y());
tl->add( tmp2 );
}
ssgLeaf *leaf =
new ssgVtxTable ( GL_TRIANGLE_FAN, vl, nl, tl, cl );
leaf->setState( state );
geometry->addKid( leaf );
return true;
}
static void random_pt_inside_tri( float *res,
float *n1, float *n2, float *n3 )
{
double a = sg_random();
double b = sg_random();
if ( a + b > 1.0 ) {
a = 1.0 - a;
b = 1.0 - b;
}
double c = 1 - a - b;
res[0] = n1[0]*a + n2[0]*b + n3[0]*c;
res[1] = n1[1]*a + n2[1]*b + n3[1]*c;
res[2] = n1[2]*a + n2[2]*b + n3[2]*c;
}
/**
* User data for populating leaves when they come in range.
*/
class LeafUserData : public ssgBase
{
public:
bool is_filled_in;
ssgLeaf *leaf;
SGMaterial *mat;
ssgBranch *branch;
float sin_lat;
float cos_lat;
float sin_lon;
float cos_lon;
void setup_triangle( int i );
};
/**
* User data for populating triangles when they come in range.
*/
class TriUserData : public ssgBase
{
public:
bool is_filled_in;
float * p1;
float * p2;
float * p3;
sgVec3 center;
double area;
SGMaterial::ObjectGroup * object_group;
ssgBranch * branch;
LeafUserData * leafData;
unsigned int seed;
void fill_in_triangle();
void add_object_to_triangle(SGMaterial::Object * object);
void makeWorldMatrix (sgMat4 ROT, double hdg_deg );
};
/**
* Fill in a triangle with randomly-placed objects.
*
* This method is invoked by a callback when the triangle is in range
* but not yet populated.
*
*/
void TriUserData::fill_in_triangle ()
{
// generate a repeatable random seed
sg_srandom(seed);
int nObjects = object_group->get_object_count();
for (int i = 0; i < nObjects; i++) {
SGMaterial::Object * object = object_group->get_object(i);
double num = area / object->get_coverage_m2();
// place an object each unit of area
while ( num > 1.0 ) {
add_object_to_triangle(object);
num -= 1.0;
}
// for partial units of area, use a zombie door method to
// create the proper random chance of an object being created
// for this triangle
if ( num > 0.0 ) {
if ( sg_random() <= num ) {
// a zombie made it through our door
add_object_to_triangle(object);
}
}
}
}
void TriUserData::add_object_to_triangle (SGMaterial::Object * object)
{
// Set up the random heading if required.
double hdg_deg = 0;
if (object->get_heading_type() == SGMaterial::Object::HEADING_RANDOM)
hdg_deg = sg_random() * 360;
sgMat4 mat;
makeWorldMatrix(mat, hdg_deg);
ssgTransform * pos = new ssgTransform;
pos->setTransform(mat);
pos->addKid( object->get_random_model( globals->get_model_loader(),
globals->get_fg_root(),
globals->get_props(),
globals->get_sim_time_sec() )
);
branch->addKid(pos);
}
void TriUserData::makeWorldMatrix (sgMat4 mat, double hdg_deg )
{
if (hdg_deg == 0) {
mat[0][0] = leafData->sin_lat * leafData->cos_lon;
mat[0][1] = leafData->sin_lat * leafData->sin_lon;
mat[0][2] = -leafData->cos_lat;
mat[0][3] = SG_ZERO;
mat[1][0] = -leafData->sin_lon;
mat[1][1] = leafData->cos_lon;
mat[1][2] = SG_ZERO;
mat[1][3] = SG_ZERO;
} else {
float sin_hdg = sin( hdg_deg * SGD_DEGREES_TO_RADIANS ) ;
float cos_hdg = cos( hdg_deg * SGD_DEGREES_TO_RADIANS ) ;
mat[0][0] = cos_hdg * leafData->sin_lat * leafData->cos_lon - sin_hdg * leafData->sin_lon;
mat[0][1] = cos_hdg * leafData->sin_lat * leafData->sin_lon + sin_hdg * leafData->cos_lon;
mat[0][2] = -cos_hdg * leafData->cos_lat;
mat[0][3] = SG_ZERO;
mat[1][0] = -sin_hdg * leafData->sin_lat * leafData->cos_lon - cos_hdg * leafData->sin_lon;
mat[1][1] = -sin_hdg * leafData->sin_lat * leafData->sin_lon + cos_hdg * leafData->cos_lon;
mat[1][2] = sin_hdg * leafData->cos_lat;
mat[1][3] = SG_ZERO;
}
mat[2][0] = leafData->cos_lat * leafData->cos_lon;
mat[2][1] = leafData->cos_lat * leafData->sin_lon;
mat[2][2] = leafData->sin_lat;
mat[2][3] = SG_ZERO;
// translate to random point in triangle
sgVec3 result;
random_pt_inside_tri(result, p1, p2, p3);
sgSubVec3(mat[3], result, center);
mat[3][3] = SG_ONE ;
}
/**
* SSG callback for an in-range triangle of randomly-placed objects.
*
* This pretraversal callback is attached to a branch that is traversed
* only when a triangle is in range. If the triangle is not currently
* populated with randomly-placed objects, this callback will populate
* it.
*
* @param entity The entity to which the callback is attached (not used).
* @param mask The entity's traversal mask (not used).
* @return Always 1, to allow traversal and culling to continue.
*/
static int
tri_in_range_callback (ssgEntity * entity, int mask)
{
TriUserData * data = (TriUserData *)entity->getUserData();
if (!data->is_filled_in) {
data->fill_in_triangle();
data->is_filled_in = true;
}
return 1;
}
/**
* SSG callback for an out-of-range triangle of randomly-placed objects.
*
* This pretraversal callback is attached to a branch that is traversed
* only when a triangle is out of range. If the triangle is currently
* populated with randomly-placed objects, the objects will be removed.
*
*
* @param entity The entity to which the callback is attached (not used).
* @param mask The entity's traversal mask (not used).
* @return Always 0, to prevent any further traversal or culling.
*/
static int
tri_out_of_range_callback (ssgEntity * entity, int mask)
{
TriUserData * data = (TriUserData *)entity->getUserData();
if (data->is_filled_in) {
data->branch->removeAllKids();
data->is_filled_in = false;
}
return 0;
}
/**
* ssgEntity with a dummy bounding sphere, to fool culling.
*
* This forces the in-range and out-of-range branches to be visited
* when appropriate, even if they have no children. It's ugly, but
* it works and seems fairly efficient (since branches can still
* be culled when they're out of the view frustum).
*/
class DummyBSphereEntity : public ssgBranch
{
public:
DummyBSphereEntity (float radius)
{
bsphere.setCenter(0, 0, 0);
bsphere.setRadius(radius);
}
virtual ~DummyBSphereEntity () {}
virtual void recalcBSphere () { bsphere_is_invalid = false; }
};
/**
* Calculate the bounding radius of a triangle from its center.
*
* @param center The triangle center.
* @param p1 The first point in the triangle.
* @param p2 The second point in the triangle.
* @param p3 The third point in the triangle.
* @return The greatest distance any point lies from the center.
*/
static inline float
get_bounding_radius( sgVec3 center, float *p1, float *p2, float *p3)
{
return sqrt( SG_MAX3( sgDistanceSquaredVec3(center, p1),
sgDistanceSquaredVec3(center, p2),
sgDistanceSquaredVec3(center, p3) ) );
}
/**
* Set up a triangle for randomly-placed objects.
*
* No objects will be added unless the triangle comes into range.
*
*/
void LeafUserData::setup_triangle (int i )
{
short n1, n2, n3;
leaf->getTriangle(i, &n1, &n2, &n3);
float * p1 = leaf->getVertex(n1);
float * p2 = leaf->getVertex(n2);
float * p3 = leaf->getVertex(n3);
// Set up a single center point for LOD
sgVec3 center;
sgSetVec3(center,
(p1[0] + p2[0] + p3[0]) / 3.0,
(p1[1] + p2[1] + p3[1]) / 3.0,
(p1[2] + p2[2] + p3[2]) / 3.0);
double area = sgTriArea(p1, p2, p3);
// maximum radius of an object from center.
double bounding_radius = get_bounding_radius(center, p1, p2, p3);
// Set up a transformation to the center
// point, so that everything else can
// be specified relative to it.
ssgTransform * location = new ssgTransform;
sgMat4 TRANS;
sgMakeTransMat4(TRANS, center);
location->setTransform(TRANS);
branch->addKid(location);
// Iterate through all the object types.
int num_groups = mat->get_object_group_count();
for (int j = 0; j < num_groups; j++) {
// Look up the random object.
SGMaterial::ObjectGroup * group = mat->get_object_group(j);
// Set up the range selector for the entire
// triangle; note that we use the object
// range plus the bounding radius here, to
// allow for objects far from the center.
float ranges[] = { 0,
group->get_range_m() + bounding_radius,
SG_MAX };
ssgRangeSelector * lod = new ssgRangeSelector;
lod->setRanges(ranges, 3);
location->addKid(lod);
// Create the in-range and out-of-range
// branches.
ssgBranch * in_range = new ssgBranch;
ssgBranch * out_of_range = new ssgBranch;
// Set up the user data for if/when
// the random objects in this triangle
// are filled in.
TriUserData * data = new TriUserData;
data->is_filled_in = false;
data->p1 = p1;
data->p2 = p2;
data->p3 = p3;
sgCopyVec3 (data->center, center);
data->area = area;
data->object_group = group;
data->branch = in_range;
data->leafData = this;
data->seed = (unsigned int)(p1[0] * j);
// Set up the in-range node.
in_range->setUserData(data);
in_range->setTravCallback(SSG_CALLBACK_PRETRAV,
tri_in_range_callback);
lod->addKid(in_range);
// Set up the out-of-range node.
out_of_range->setUserData(data);
out_of_range->setTravCallback(SSG_CALLBACK_PRETRAV,
tri_out_of_range_callback);
out_of_range->addKid(new DummyBSphereEntity(bounding_radius));
lod->addKid(out_of_range);
}
}
/**
* SSG callback for an in-range leaf of randomly-placed objects.
*
* This pretraversal callback is attached to a branch that is
* traversed only when a leaf is in range. If the leaf is not
* currently prepared to be populated with randomly-placed objects,
* this callback will prepare it (actual population is handled by
* the tri_in_range_callback for individual triangles).
*
* @param entity The entity to which the callback is attached (not used).
* @param mask The entity's traversal mask (not used).
* @return Always 1, to allow traversal and culling to continue.
*/
static int
leaf_in_range_callback (ssgEntity * entity, int mask)
{
LeafUserData * data = (LeafUserData *)entity->getUserData();
if (!data->is_filled_in) {
// Iterate through all the triangles
// and populate them.
int num_tris = data->leaf->getNumTriangles();
for ( int i = 0; i < num_tris; ++i ) {
data->setup_triangle(i);
}
data->is_filled_in = true;
}
return 1;
}
/**
* SSG callback for an out-of-range leaf of randomly-placed objects.
*
* This pretraversal callback is attached to a branch that is
* traversed only when a leaf is out of range. If the leaf is
* currently prepared to be populated with randomly-placed objects (or
* is actually populated), the objects will be removed.
*
* @param entity The entity to which the callback is attached (not used).
* @param mask The entity's traversal mask (not used).
* @return Always 0, to prevent any further traversal or culling.
*/
static int
leaf_out_of_range_callback (ssgEntity * entity, int mask)
{
LeafUserData * data = (LeafUserData *)entity->getUserData();
if (data->is_filled_in) {
data->branch->removeAllKids();
data->is_filled_in = false;
}
return 0;
}
/**
* Randomly place objects on a surface.
*
* The leaf node provides the geometry of the surface, while the
* material provides the objects and placement density. Latitude
* and longitude are required so that the objects can be rotated
* to the world-up vector. This function does not actually add
* any objects; instead, it attaches an ssgRangeSelector to the
* branch with callbacks to generate the objects when needed.
*
* @param leaf The surface where the objects should be placed.
* @param branch The branch that will hold the randomly-placed objects.
* @param center The center of the leaf in FlightGear coordinates.
* @param material_name The name of the surface's material.
*/
static void
gen_random_surface_objects (ssgLeaf *leaf,
ssgBranch *branch,
Point3D *center,
SGMaterial *mat )
{
// If the surface has no triangles, return
// now.
int num_tris = leaf->getNumTriangles();
if (num_tris < 1)
return;
// If the material has no randomly-placed
// objects, return now.
if (mat->get_object_group_count() < 1)
return;
// Calculate the geodetic centre of
// the tile, for aligning automatic
// objects.
double lon_deg, lat_rad, lat_deg, alt_m, sl_radius_m;
Point3D geoc = sgCartToPolar3d(*center);
lon_deg = geoc.lon() * SGD_RADIANS_TO_DEGREES;
sgGeocToGeod(geoc.lat(), geoc.radius(),
&lat_rad, &alt_m, &sl_radius_m);
lat_deg = lat_rad * SGD_RADIANS_TO_DEGREES;
// LOD for the leaf
// max random object range: 20000m
float ranges[] = { 0, 20000, 1000000 };
ssgRangeSelector * lod = new ssgRangeSelector;
lod->setRanges(ranges, 3);
branch->addKid(lod);
// Create the in-range and out-of-range
// branches.
ssgBranch * in_range = new ssgBranch;
ssgBranch * out_of_range = new ssgBranch;
lod->addKid(in_range);
lod->addKid(out_of_range);
LeafUserData * data = new LeafUserData;
data->is_filled_in = false;
data->leaf = leaf;
data->mat = mat;
data->branch = in_range;
data->sin_lat = sin(lat_deg * SGD_DEGREES_TO_RADIANS);
data->cos_lat = cos(lat_deg * SGD_DEGREES_TO_RADIANS);
data->sin_lon = sin(lon_deg * SGD_DEGREES_TO_RADIANS);
data->cos_lon = cos(lon_deg * SGD_DEGREES_TO_RADIANS);
in_range->setUserData(data);
in_range->setTravCallback(SSG_CALLBACK_PRETRAV, leaf_in_range_callback);
out_of_range->setUserData(data);
out_of_range->setTravCallback(SSG_CALLBACK_PRETRAV,
leaf_out_of_range_callback);
out_of_range
->addKid(new DummyBSphereEntity(leaf->getBSphere()->getRadius()));
}
////////////////////////////////////////////////////////////////////////
// Scenery loaders.
////////////////////////////////////////////////////////////////////////
// Load an Binary obj file
bool fgBinObjLoad( const string& path, const bool is_base,
Point3D *center,
double *bounding_radius,
SGMaterialLib *matlib,
ssgBranch* geometry,
ssgBranch* rwy_lights,
ssgBranch* taxi_lights,
ssgVertexArray *ground_lights )
{
SGBinObject obj;
bool use_random_objects =
fgGetBool("/sim/rendering/random-objects", true);
if ( ! obj.read_bin( path ) ) {
return false;
}
geometry->setName( (char *)path.c_str() );
// reference point (center offset/bounding sphere)
*center = obj.get_gbs_center();
*bounding_radius = obj.get_gbs_radius();
point_list const& nodes = obj.get_wgs84_nodes();
// point_list const& colors = obj.get_colors();
point_list const& normals = obj.get_normals();
point_list const& texcoords = obj.get_texcoords();
string material;
int_list tex_index;
group_list::size_type i;
// generate points
string_list const& pt_materials = obj.get_pt_materials();
group_list const& pts_v = obj.get_pts_v();
group_list const& pts_n = obj.get_pts_n();
for ( i = 0; i < pts_v.size(); ++i ) {
// cout << "pts_v.size() = " << pts_v.size() << endl;
if ( pt_materials[i].substr(0, 3) == "RWY" ) {
sgVec3 up;
sgSetVec3( up, center->x(), center->y(), center->z() );
// returns a transform -> lod -> leaf structure
ssgBranch *branch = gen_directional_lights( nodes, normals,
pts_v[i], pts_n[i],
matlib, pt_materials[i],
up );
// branches don't honor callbacks as far as I know so I'm
// commenting this out to avoid a plib runtime warning.
branch->setTravCallback( SSG_CALLBACK_PRETRAV,
runway_lights_pretrav );
if ( pt_materials[i].substr(0, 16) == "RWY_BLUE_TAXIWAY" ) {
taxi_lights->addKid( branch );
} else {
rwy_lights->addKid( branch );
}
} else {
material = pt_materials[i];
tex_index.clear();
ssgLeaf *leaf = sgMakeLeaf( path, GL_POINTS, matlib, material,
nodes, normals, texcoords,
pts_v[i], pts_n[i], tex_index,
false, ground_lights );
geometry->addKid( leaf );
}
}
// Put all randomly-placed objects under a separate branch
// (actually an ssgRangeSelector) named "random-models".
ssgBranch * random_object_branch = 0;
if (use_random_objects) {
float ranges[] = { 0, 20000 }; // Maximum 20km range for random objects
ssgRangeSelector * object_lod = new ssgRangeSelector;
object_lod->setRanges(ranges, 2);
object_lod->setName("random-models");
geometry->addKid(object_lod);
random_object_branch = new ssgBranch;
object_lod->addKid(random_object_branch);
}
// generate triangles
string_list const& tri_materials = obj.get_tri_materials();
group_list const& tris_v = obj.get_tris_v();
group_list const& tris_n = obj.get_tris_n();
group_list const& tris_tc = obj.get_tris_tc();
for ( i = 0; i < tris_v.size(); ++i ) {
ssgLeaf *leaf = sgMakeLeaf( path, GL_TRIANGLES, matlib,
tri_materials[i],
nodes, normals, texcoords,
tris_v[i], tris_n[i], tris_tc[i],
is_base, ground_lights );
if ( use_random_objects ) {
SGMaterial *mat = matlib->find( tri_materials[i] );
if ( mat == NULL ) {
SG_LOG( SG_INPUT, SG_ALERT,
"Unknown material for random surface objects = "
<< tri_materials[i] );
}
gen_random_surface_objects( leaf, random_object_branch,
center, mat );
}
geometry->addKid( leaf );
}
// generate strips
string_list const& strip_materials = obj.get_strip_materials();
group_list const& strips_v = obj.get_strips_v();
group_list const& strips_n = obj.get_strips_n();
group_list const& strips_tc = obj.get_strips_tc();
for ( i = 0; i < strips_v.size(); ++i ) {
ssgLeaf *leaf = sgMakeLeaf( path, GL_TRIANGLE_STRIP,
matlib, strip_materials[i],
nodes, normals, texcoords,
strips_v[i], strips_n[i], strips_tc[i],
is_base, ground_lights );
if ( use_random_objects ) {
SGMaterial *mat = matlib->find( strip_materials[i] );
if ( mat == NULL ) {
SG_LOG( SG_INPUT, SG_ALERT,
"Unknown material for random surface objects = "
<< strip_materials[i] );
}
gen_random_surface_objects( leaf, random_object_branch,
center, mat );
}
geometry->addKid( leaf );
}
// generate fans
string_list const& fan_materials = obj.get_fan_materials();
group_list const& fans_v = obj.get_fans_v();
group_list const& fans_n = obj.get_fans_n();
group_list const& fans_tc = obj.get_fans_tc();
for ( i = 0; i < fans_v.size(); ++i ) {
ssgLeaf *leaf = sgMakeLeaf( path, GL_TRIANGLE_FAN,
matlib, fan_materials[i],
nodes, normals, texcoords,
fans_v[i], fans_n[i], fans_tc[i],
is_base, ground_lights );
if ( use_random_objects ) {
SGMaterial *mat = matlib->find( fan_materials[i] );
if ( mat == NULL ) {
SG_LOG( SG_INPUT, SG_ALERT,
"Unknown material for random surface objects = "
<< fan_materials[i] );
}
gen_random_surface_objects( leaf, random_object_branch,
center, mat );
}
geometry->addKid( leaf );
}
return true;
}