1
0
Fork 0
flightgear/src/AIModel/AICarrier.cxx
ehofman 5fe860750e Mathias Fröhlich:
This patch makes use of the vectors now available in simgear with that past
patch. And using that it simplyfies the carrier code somehow.

- Small additional factory's to the quaternion code are done in the simgear
  part. Also more explicit unit names in the factory functions.
- The flightgear part makes use of them and simplyfies some computations
  especially in the carrier code.
- The data part fixes the coordinate frames I used for the park positions in
  the carrier to match the usual ones. I believed that I had done so, but it
  was definitly different. Also there are more parking positions avaliable now.
2006-02-19 17:28:31 +00:00

789 lines
27 KiB
C++

// FGAICarrier - FGAIShip-derived class creates an AI aircraft carrier
//
// Written by David Culp, started October 2004.
// - davidculp2@comcast.net
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <string>
#include <vector>
#include <simgear/math/SGMath.hxx>
#include <simgear/math/point3d.hxx>
#include <simgear/math/sg_geodesy.hxx>
#include <math.h>
#include <Main/util.hxx>
#include <Main/viewer.hxx>
#include "AICarrier.hxx"
/** Value of earth radius (meters) */
#define RADIUS_M SG_EQUATORIAL_RADIUS_M
FGAICarrier::FGAICarrier() : FGAIShip(otCarrier) {
}
FGAICarrier::~FGAICarrier() {
}
void FGAICarrier::readFromScenario(SGPropertyNode* scFileNode) {
if (!scFileNode)
return;
FGAIShip::readFromScenario(scFileNode);
setRadius(scFileNode->getDoubleValue("turn-radius-ft", 2000));
setSign(scFileNode->getStringValue("pennant-number"));
setWind_from_east(scFileNode->getDoubleValue("wind_from_east", 0));
setWind_from_north(scFileNode->getDoubleValue("wind_from_north", 0));
setTACANChannelID(scFileNode->getStringValue("TACAN-channel-ID", "029Y"));
setMaxLat(scFileNode->getDoubleValue("max-lat", 0));
setMinLat(scFileNode->getDoubleValue("min-lat", 0));
setMaxLong(scFileNode->getDoubleValue("max-long", 0));
setMinLong(scFileNode->getDoubleValue("min-long", 0));
SGPropertyNode* flols = scFileNode->getChild("flols-pos");
if (flols) {
// Transform to the right coordinate frame, configuration is done in
// the usual x-back, y-right, z-up coordinates, computations
// in the simulation usual body x-forward, y-right, z-down coordinates
flols_off(0) = - flols->getDoubleValue("x-offset-m", 0);
flols_off(1) = flols->getDoubleValue("y-offset-m", 0);
flols_off(2) = - flols->getDoubleValue("z-offset-m", 0);
} else
flols_off = SGVec3d::zeros();
std::vector<SGPropertyNode_ptr> props = scFileNode->getChildren("wire");
std::vector<SGPropertyNode_ptr>::const_iterator it;
for (it = props.begin(); it != props.end(); ++it) {
std::string s = (*it)->getStringValue();
if (!s.empty())
wire_objects.push_back(s);
}
props = scFileNode->getChildren("catapult");
for (it = props.begin(); it != props.end(); ++it) {
std::string s = (*it)->getStringValue();
if (!s.empty())
catapult_objects.push_back(s);
}
props = scFileNode->getChildren("solid");
for (it = props.begin(); it != props.end(); ++it) {
std::string s = (*it)->getStringValue();
if (!s.empty())
solid_objects.push_back(s);
}
props = scFileNode->getChildren("parking-pos");
for (it = props.begin(); it != props.end(); ++it) {
string name = (*it)->getStringValue("name", "unnamed");
// Transform to the right coordinate frame, configuration is done in
// the usual x-back, y-right, z-up coordinates, computations
// in the simulation usual body x-forward, y-right, z-down coordinates
double offset_x = -(*it)->getDoubleValue("x-offset-m", 0);
double offset_y = (*it)->getDoubleValue("y-offset-m", 0);
double offset_z = -(*it)->getDoubleValue("z-offset-m", 0);
double hd = (*it)->getDoubleValue("heading-offset-deg", 0);
ParkPosition pp(name, SGVec3d(offset_x, offset_y, offset_z), hd);
ppositions.push_back(pp);
}
}
void FGAICarrier::setWind_from_east(double fps) {
wind_from_east = fps;
}
void FGAICarrier::setWind_from_north(double fps) {
wind_from_north = fps;
}
void FGAICarrier::setMaxLat(double deg) {
max_lat = fabs(deg);
}
void FGAICarrier::setMinLat(double deg) {
min_lat = fabs(deg);
}
void FGAICarrier::setMaxLong(double deg) {
max_long = fabs(deg);
}
void FGAICarrier::setMinLong(double deg) {
min_long = fabs(deg);
}
void FGAICarrier::setSign(const string& s) {
sign = s;
}
void FGAICarrier::setTACANChannelID(const string& id) {
TACAN_channel_id = id;
}
void FGAICarrier::getVelocityWrtEarth(sgdVec3& v, sgdVec3& omega, sgdVec3& pivot) {
sgdCopyVec3(v, vel_wrt_earth.sg() );
sgdCopyVec3(omega, rot_wrt_earth.sg() );
sgdCopyVec3(pivot, rot_pivot_wrt_earth.sg() );
}
void FGAICarrier::update(double dt) {
// For computation of rotation speeds we just use finite differences here.
// That is perfectly valid since this thing is not driven by accelerations
// but by just apply discrete changes at its velocity variables.
// Update the velocity information stored in those nodes.
// Transform that one to the horizontal local coordinate system.
SGQuatd ec2hl = SGQuatd::fromLonLatDeg(pos.lon(), pos.lat());
// The orientation of the carrier wrt the horizontal local frame
SGQuatd hl2body = SGQuatd::fromYawPitchRollDeg(hdg, pitch, roll);
// and postrotate the orientation of the AIModel wrt the horizontal
// local frame
SGQuatd ec2body = ec2hl*hl2body;
// The cartesian position of the carrier in the wgs84 world
SGVec3d cartPos = SGGeod::fromDegFt(pos.lon(), pos.lat(), pos.elev());
// Store for later use by the groundcache
rot_pivot_wrt_earth = cartPos;
// Compute the velocity in m/s in the earth centered coordinate system axis
double v_north = 0.51444444*speed*cos(hdg * SGD_DEGREES_TO_RADIANS);
double v_east = 0.51444444*speed*sin(hdg * SGD_DEGREES_TO_RADIANS);
vel_wrt_earth = ec2hl.backTransform(SGVec3d(v_north, v_east, 0));
// Now update the position and heading. This will compute new hdg and
// roll values required for the rotation speed computation.
FGAIShip::update(dt);
//automatic turn into wind with a target wind of 25 kts otd
if(turn_to_launch_hdg){
TurnToLaunch();
} else if(OutsideBox() || returning) {// check that the carrier is inside the operating box
ReturnToBox();
} else {
TurnToBase();
}
// Only change these values if we are able to compute them safely
if (dt < DBL_MIN)
rot_wrt_earth = SGVec3d::zeros();
else {
// Now here is the finite difference ...
// Transform that one to the horizontal local coordinate system.
SGQuatd ec2hlNew = SGQuatd::fromLonLatDeg(pos.lon(), pos.lat());
// compute the new orientation
SGQuatd hl2bodyNew = SGQuatd::fromYawPitchRollDeg(hdg, pitch, roll);
// The rotation difference
SGQuatd dOr = inverse(ec2body)*ec2hlNew*hl2bodyNew;
SGVec3d dOrAngleAxis;
dOr.getAngleAxis(dOrAngleAxis);
// divided by the time difference provides a rotation speed vector
dOrAngleAxis /= dt;
// now rotate the rotation speed vector back into the
// earth centered frames coordinates
dOrAngleAxis = ec2body.backTransform(dOrAngleAxis);
// dOrAngleAxis = hl2body.backTransform(dOrAngleAxis);
// dOrAngleAxis(1) = 0;
// dOrAngleAxis = ec2hl.backTransform(dOrAngleAxis);
rot_wrt_earth = dOrAngleAxis;
}
UpdateWind(dt);
UpdateElevator(dt, transition_time);
// For the flols reuse some computations done above ...
// The position of the eyepoint - at least near that ...
SGVec3d eyePos(globals->get_current_view()->get_absolute_view_pos());
// Add the position offset of the AIModel to gain the earth
// centered position
SGVec3d eyeWrtCarrier = eyePos - cartPos;
// rotate the eyepoint wrt carrier vector into the carriers frame
eyeWrtCarrier = ec2body.transform(eyeWrtCarrier);
// the eyepoints vector wrt the flols position
SGVec3d eyeWrtFlols = eyeWrtCarrier - flols_off;
// the distance from the eyepoint to the flols
dist = norm(eyeWrtFlols);
// now the angle, positive angles are upwards
if (fabs(dist) < SGLimits<float>::min()) {
angle = 0;
} else {
double sAngle = -eyeWrtFlols(2)/dist;
sAngle = SGMiscd::min(1, SGMiscd::max(-1, sAngle));
angle = SGMiscd::rad2deg(asin(sAngle));
}
// set the value of source
if ( angle <= 4.35 && angle > 4.01 )
source = 1;
else if ( angle <= 4.01 && angle > 3.670 )
source = 2;
else if ( angle <= 3.670 && angle > 3.330 )
source = 3;
else if ( angle <= 3.330 && angle > 2.990 )
source = 4;
else if ( angle <= 2.990 && angle > 2.650 )
source = 5;
else if ( angle <= 2.650 )
source = 6;
else
source = 0;
} //end update
bool FGAICarrier::init() {
if (!FGAIShip::init())
return false;
// process the 3d model here
// mark some objects solid, mark the wires ...
// The model should be used for altitude computations.
// To avoid that every detail in a carrier 3D model will end into
// the aircraft local cache, only set the HOT traversal bit on
// selected objects.
ssgEntity *sel = aip.getSceneGraph();
// Clear the HOT traversal flag
mark_nohot(sel);
// Selectively set that flag again for wires/cats/solid objects.
// Attach a pointer to this carrier class to those objects.
mark_wires(sel, wire_objects);
mark_cat(sel, catapult_objects);
mark_solid(sel, solid_objects);
_longitude_node = fgGetNode("/position/longitude-deg", true);
_latitude_node = fgGetNode("/position/latitude-deg", true);
_altitude_node = fgGetNode("/position/altitude-ft", true);
// _elevator_node = fgGetNode("/controls/elevators", true);
_surface_wind_from_deg_node =
fgGetNode("/environment/config/boundary/entry[0]/wind-from-heading-deg", true);
_surface_wind_speed_node =
fgGetNode("/environment/config/boundary/entry[0]/wind-speed-kt", true);
turn_to_launch_hdg = false;
returning = false;
initialpos = pos;
base_course = hdg;
base_speed = speed;
step = 0;
pos_norm = 0;
elevators = false;
transition_time = 150;
time_constant = 0.005;
return true;
}
void FGAICarrier::bind() {
FGAIShip::bind();
props->untie("velocities/true-airspeed-kt");
props->tie("controls/flols/source-lights",
SGRawValuePointer<int>(&source));
props->tie("controls/flols/distance-m",
SGRawValuePointer<double>(&dist));
props->tie("controls/flols/angle-degs",
SGRawValuePointer<double>(&angle));
props->tie("controls/turn-to-launch-hdg",
SGRawValuePointer<bool>(&turn_to_launch_hdg));
props->tie("controls/in-to-wind",
SGRawValuePointer<bool>(&turn_to_launch_hdg));
props->tie("controls/base-course-deg",
SGRawValuePointer<double>(&base_course));
props->tie("controls/base-speed-kts",
SGRawValuePointer<double>(&base_speed));
props->tie("controls/start-pos-lat-deg",
SGRawValuePointer<double>(&initialpos[1]));
props->tie("controls/start-pos-long-deg",
SGRawValuePointer<double>(&initialpos[0]));
props->tie("velocities/speed-kts",
SGRawValuePointer<double>(&speed));
props->tie("environment/surface-wind-speed-true-kts",
SGRawValuePointer<double>(&wind_speed_kts));
props->tie("environment/surface-wind-from-true-degs",
SGRawValuePointer<double>(&wind_from_deg));
props->tie("environment/rel-wind-from-degs",
SGRawValuePointer<double>(&rel_wind_from_deg));
props->tie("environment/rel-wind-from-carrier-hdg-degs",
SGRawValuePointer<double>(&rel_wind));
props->tie("environment/rel-wind-speed-kts",
SGRawValuePointer<double>(&rel_wind_speed_kts));
props->tie("controls/flols/wave-off-lights",
SGRawValuePointer<bool>(&wave_off_lights));
props->tie("controls/elevators",
SGRawValuePointer<bool>(&elevators));
props->tie("surface-positions/elevators-pos-norm",
SGRawValuePointer<double>(&pos_norm));
props->tie("controls/elevators-trans-time-s",
SGRawValuePointer<double>(&transition_time));
props->tie("controls/elevators-time-constant",
SGRawValuePointer<double>(&time_constant));
props->setBoolValue("controls/flols/cut-lights", false);
props->setBoolValue("controls/flols/wave-off-lights", false);
props->setBoolValue("controls/flols/cond-datum-lights", true);
props->setBoolValue("controls/crew", false);
props->setStringValue("navaids/tacan/channel-ID", TACAN_channel_id.c_str());
props->setStringValue("sign", sign.c_str());
}
void FGAICarrier::unbind() {
FGAIShip::unbind();
props->untie("velocities/true-airspeed-kt");
props->untie("controls/flols/source-lights");
props->untie("controls/flols/distance-m");
props->untie("controls/flols/angle-degs");
props->untie("controls/turn-to-launch-hdg");
props->untie("velocities/speed-kts");
props->untie("environment/wind-speed-true-kts");
props->untie("environment/wind-from-true-degs");
props->untie("environment/rel-wind-from-degs");
props->untie("environment/rel-wind-speed-kts");
props->untie("controls/flols/wave-off-lights");
props->untie("controls/elevators");
props->untie("surface-positions/elevators-pos-norm");
props->untie("controls/elevators-trans-time-secs");
props->untie("controls/elevators-time-constant");
}
bool FGAICarrier::getParkPosition(const string& id, SGGeod& geodPos,
double& hdng, SGVec3d& uvw)
{
// FIXME: does not yet cover rotation speeds.
list<ParkPosition>::iterator it = ppositions.begin();
while (it != ppositions.end()) {
// Take either the specified one or the first one ...
if ((*it).name == id || id.empty()) {
ParkPosition ppos = *it;
SGVec3d cartPos = getCartPosAt(ppos.offset);
geodPos = cartPos;
hdng = hdg + ppos.heading_deg;
double shdng = sin(ppos.heading_deg * SGD_DEGREES_TO_RADIANS);
double chdng = cos(ppos.heading_deg * SGD_DEGREES_TO_RADIANS);
double speed_fps = speed*1.6878099;
uvw = SGVec3d(chdng*speed_fps, shdng*speed_fps, 0);
return true;
}
++it;
}
return false;
}
void FGAICarrier::mark_nohot(ssgEntity* e) {
if (e->isAKindOf(ssgTypeBranch())) {
ssgBranch* br = (ssgBranch*)e;
ssgEntity* kid;
for ( kid = br->getKid(0); kid != NULL ; kid = br->getNextKid() )
mark_nohot(kid);
br->clrTraversalMaskBits(SSGTRAV_HOT);
} else if (e->isAKindOf(ssgTypeLeaf())) {
e->clrTraversalMaskBits(SSGTRAV_HOT);
}
}
bool FGAICarrier::mark_wires(ssgEntity* e, const list<string>& wire_objects, bool mark) {
bool found = false;
if (e->isAKindOf(ssgTypeBranch())) {
ssgBranch* br = (ssgBranch*)e;
ssgEntity* kid;
list<string>::const_iterator it;
for (it = wire_objects.begin(); it != wire_objects.end(); ++it)
mark = mark || (e->getName() && (*it) == e->getName());
for ( kid = br->getKid(0); kid != NULL ; kid = br->getNextKid() )
found = mark_wires(kid, wire_objects, mark) || found;
if (found)
br->setTraversalMaskBits(SSGTRAV_HOT);
} else if (e->isAKindOf(ssgTypeLeaf())) {
list<string>::const_iterator it;
for (it = wire_objects.begin(); it != wire_objects.end(); ++it) {
if (mark || (e->getName() && (*it) == e->getName())) {
e->setTraversalMaskBits(SSGTRAV_HOT);
ssgBase* ud = e->getUserData();
if (ud) {
FGAICarrierHardware* ch = dynamic_cast<FGAICarrierHardware*>(ud);
if (ch) {
SG_LOG(SG_GENERAL, SG_WARN,
"AICarrier: Carrier hardware gets marked twice!\n"
" You have probably a whole branch marked as"
" a wire which also includes other carrier hardware.");
} else {
SG_LOG(SG_GENERAL, SG_ALERT,
"AICarrier: Found user data attached to a leaf node which "
"should be marked as a wire!\n ****Skipping!****");
}
} else {
e->setUserData( FGAICarrierHardware::newWire( this ) );
ssgLeaf *l = (ssgLeaf*)e;
if ( l->getNumLines() != 1 ) {
SG_LOG(SG_GENERAL, SG_ALERT,
"AICarrier: Found wires not modeled with exactly one line!");
}
found = true;
}
}
}
}
return found;
}
bool FGAICarrier::mark_solid(ssgEntity* e, const list<string>& solid_objects, bool mark) {
bool found = false;
if (e->isAKindOf(ssgTypeBranch())) {
ssgBranch* br = (ssgBranch*)e;
ssgEntity* kid;
list<string>::const_iterator it;
for (it = solid_objects.begin(); it != solid_objects.end(); ++it)
mark = mark || (e->getName() && (*it) == e->getName());
for ( kid = br->getKid(0); kid != NULL ; kid = br->getNextKid() )
found = mark_solid(kid, solid_objects, mark) || found;
if (found)
br->setTraversalMaskBits(SSGTRAV_HOT);
} else if (e->isAKindOf(ssgTypeLeaf())) {
list<string>::const_iterator it;
for (it = solid_objects.begin(); it != solid_objects.end(); ++it) {
if (mark || (e->getName() && (*it) == e->getName())) {
e->setTraversalMaskBits(SSGTRAV_HOT);
ssgBase* ud = e->getUserData();
if (ud) {
FGAICarrierHardware* ch = dynamic_cast<FGAICarrierHardware*>(ud);
if (ch) {
SG_LOG(SG_GENERAL, SG_WARN,
"AICarrier: Carrier hardware gets marked twice!\n"
" You have probably a whole branch marked solid"
" which also includes other carrier hardware.");
} else {
SG_LOG(SG_GENERAL, SG_ALERT,
"AICarrier: Found user data attached to a leaf node which "
"should be marked solid!\n ****Skipping!****");
}
} else {
e->setUserData( FGAICarrierHardware::newSolid( this ) );
found = true;
}
}
}
}
return found;
}
bool FGAICarrier::mark_cat(ssgEntity* e, const list<string>& cat_objects, bool mark) {
bool found = false;
if (e->isAKindOf(ssgTypeBranch())) {
ssgBranch* br = (ssgBranch*)e;
ssgEntity* kid;
list<string>::const_iterator it;
for (it = cat_objects.begin(); it != cat_objects.end(); ++it)
mark = mark || (e->getName() && (*it) == e->getName());
for ( kid = br->getKid(0); kid != NULL ; kid = br->getNextKid() )
found = mark_cat(kid, cat_objects, mark) || found;
if (found)
br->setTraversalMaskBits(SSGTRAV_HOT);
} else if (e->isAKindOf(ssgTypeLeaf())) {
list<string>::const_iterator it;
for (it = cat_objects.begin(); it != cat_objects.end(); ++it) {
if (mark || (e->getName() && (*it) == e->getName())) {
e->setTraversalMaskBits(SSGTRAV_HOT);
ssgBase* ud = e->getUserData();
if (ud) {
FGAICarrierHardware* ch = dynamic_cast<FGAICarrierHardware*>(ud);
if (ch) {
SG_LOG(SG_GENERAL, SG_WARN,
"AICarrier: Carrier hardware gets marked twice!\n"
"You have probably a whole branch marked as"
"a catapult which also includes other carrier hardware.");
} else {
SG_LOG(SG_GENERAL, SG_ALERT,
"AICarrier: Found user data attached to a leaf node which "
"should be marked as a catapult!\n ****Skipping!****");
}
} else {
e->setUserData( FGAICarrierHardware::newCatapult( this ) );
ssgLeaf *l = (ssgLeaf*)e;
if ( l->getNumLines() != 1 ) {
SG_LOG(SG_GENERAL, SG_ALERT,
"AICarrier: Found a cat not modeled with exactly "
"one line!");
} else {
// Now some special code to make sure the cat points in the right
// direction. The 0 index must be the backward end, the 1 index
// the forward end.
// Forward is positive x-direction in our 3D model, also the model
// as such is flattened when it is loaded, so we do not need to
// care for transforms ...
short v[2];
l->getLine(0, v, v+1 );
sgVec3 ends[2];
for (int k=0; k<2; ++k)
sgCopyVec3( ends[k], l->getVertex( v[k] ) );
// When the 1 end is behind the 0 end, swap the coordinates.
if (ends[0][0] < ends[1][0]) {
sgCopyVec3( l->getVertex( v[0] ), ends[1] );
sgCopyVec3( l->getVertex( v[1] ), ends[0] );
}
found = true;
}
}
}
}
}
return found;
}
// find relative wind
void FGAICarrier::UpdateWind( double dt) {
double recip;
//calculate the reciprocal hdg
if (hdg >= 180)
recip = hdg - 180;
else
recip = hdg + 180;
//cout <<" heading: " << hdg << "recip: " << recip << endl;
//get the surface wind speed and direction
wind_from_deg = _surface_wind_from_deg_node->getDoubleValue();
wind_speed_kts = _surface_wind_speed_node->getDoubleValue();
//calculate the surface wind speed north and east in kts
double wind_speed_from_north_kts = cos( wind_from_deg / SGD_RADIANS_TO_DEGREES )* wind_speed_kts ;
double wind_speed_from_east_kts = sin( wind_from_deg / SGD_RADIANS_TO_DEGREES )* wind_speed_kts ;
//calculate the carrier speed north and east in kts
double speed_north_kts = cos( hdg / SGD_RADIANS_TO_DEGREES )* speed ;
double speed_east_kts = sin( hdg / SGD_RADIANS_TO_DEGREES )* speed ;
//calculate the relative wind speed north and east in kts
double rel_wind_speed_from_east_kts = wind_speed_from_east_kts + speed_east_kts;
double rel_wind_speed_from_north_kts = wind_speed_from_north_kts + speed_north_kts;
//combine relative speeds north and east to get relative windspeed in kts
rel_wind_speed_kts = sqrt((rel_wind_speed_from_east_kts * rel_wind_speed_from_east_kts)
+ (rel_wind_speed_from_north_kts * rel_wind_speed_from_north_kts));
//calculate the relative wind direction
rel_wind_from_deg = atan(rel_wind_speed_from_east_kts/rel_wind_speed_from_north_kts)
* SG_RADIANS_TO_DEGREES;
// rationalise the output
if (rel_wind_speed_from_north_kts <= 0) {
rel_wind_from_deg = 180 + rel_wind_from_deg;
} else {
if(rel_wind_speed_from_east_kts <= 0)
rel_wind_from_deg = 360 + rel_wind_from_deg;
}
//calculate rel wind
rel_wind = rel_wind_from_deg - hdg;
if (rel_wind > 180)
rel_wind -= 360;
//switch the wave-off lights
if (InToWind())
wave_off_lights = false;
else
wave_off_lights = true;
// cout << "rel wind: " << rel_wind << endl;
}// end update wind
void FGAICarrier::TurnToLaunch(){
//calculate tgt speed
double tgt_speed = 25 - wind_speed_kts;
if (tgt_speed < 10)
tgt_speed = 10;
//turn the carrier
FGAIShip::TurnTo(wind_from_deg);
FGAIShip::AccelTo(tgt_speed);
}
void FGAICarrier::TurnToBase(){
//turn the carrier
FGAIShip::TurnTo(base_course);
FGAIShip::AccelTo(base_speed);
}
void FGAICarrier::ReturnToBox(){
double course, distance, az2;
//get the carrier position
carrierpos = pos;
//cout << "lat: " << carrierpos[1] << " lon: " << carrierpos[0] << endl;
//calculate the bearing and range of the initial position from the carrier
geo_inverse_wgs_84(carrierpos[2],
carrierpos[1],
carrierpos[0],
initialpos[1],
initialpos[0],
&course, &az2, &distance);
distance *= SG_METER_TO_NM;
//cout << "return course: " << course << " distance: " << distance << endl;
//turn the carrier
FGAIShip::TurnTo(course);
FGAIShip::AccelTo(base_speed);
if (distance >= 1)
returning = true;
else
returning = false;
} // end turn to base
bool FGAICarrier::OutsideBox() { //returns true if the carrier is outside operating box
if ( max_lat == 0 && min_lat == 0 && max_long == 0 && min_long == 0) {
SG_LOG(SG_GENERAL, SG_DEBUG, "AICarrier: No Operating Box defined" );
return false;
}
if (initialpos[1] >= 0) { //northern hemisphere
if (pos[1] >= initialpos[1] + max_lat)
return true;
if (pos[1] <= initialpos[1] - min_lat)
return true;
} else { //southern hemisphere
if (pos[1] <= initialpos[1] - max_lat)
return true;
if (pos[1] >= initialpos[1] + min_lat)
return true;
}
if (initialpos[0] >=0) { //eastern hemisphere
if (pos[0] >= initialpos[0] + max_long)
return true;
if (pos[0] <= initialpos[0] - min_long)
return true;
} else { //western hemisphere
if (pos[0] <= initialpos[0] - max_long)
return true;
if (pos[0] >= initialpos[0] + min_long)
return true;
}
SG_LOG(SG_GENERAL, SG_DEBUG, "AICarrier: Inside Operating Box" );
return false;
} // end OutsideBox
// return the distance to the horizon, given the altitude and the radius of the earth
float FGAICarrier::Horizon(float h) {
return RADIUS_M * acos(RADIUS_M / (RADIUS_M + h));
}
bool FGAICarrier::InToWind() {
if ( fabs(rel_wind) < 5 )
return true;
return false;
}
void FGAICarrier::UpdateElevator(double dt, double transition_time) {
if ((elevators && pos_norm >= 1 ) || (!elevators && pos_norm <= 0 ))
return;
// move the elevators
if ( elevators ) {
step += dt/transition_time;
if ( step > 1 )
step = 1;
} else {
step -= dt/transition_time;
if ( step < 0 )
step = 0;
}
// assume a linear relationship
raw_pos_norm = step;
if (raw_pos_norm >= 1) {
raw_pos_norm = 1;
} else if (raw_pos_norm <= 0) {
raw_pos_norm = 0;
}
//low pass filter
pos_norm = (raw_pos_norm * time_constant) + (pos_norm * (1 - time_constant));
return;
} // end UpdateElevator
int FGAICarrierHardware::unique_id = 1;