1
0
Fork 0
flightgear/src/FDM/LaRCsim/ls_step.c
2001-09-14 20:47:27 +00:00

546 lines
17 KiB
C

/***************************************************************************
TITLE: ls_step
----------------------------------------------------------------------------
FUNCTION: Integration routine for equations of motion
(vehicle states)
----------------------------------------------------------------------------
MODULE STATUS: developmental
----------------------------------------------------------------------------
GENEALOGY: Written 920802 by Bruce Jackson. Based upon equations
given in reference [1] and a Matrix-X/System Build block
diagram model of equations of motion coded by David Raney
at NASA-Langley in June of 1992.
----------------------------------------------------------------------------
DESIGNED BY: Bruce Jackson
CODED BY: Bruce Jackson
MAINTAINED BY:
----------------------------------------------------------------------------
MODIFICATION HISTORY:
DATE PURPOSE BY
921223 Modified calculation of Phi and Psi to use the "atan2" routine
rather than the "atan" to allow full circular angles.
"atan" limits to +/- pi/2. EBJ
940111 Changed from oldstyle include file ls_eom.h; also changed
from DATA to SCALAR type. EBJ
950207 Initialized Alpha_dot and Beta_dot to zero on first pass; calculated
thereafter. EBJ
950224 Added logic to avoid adding additional increment to V_east
in case V_east already accounts for rotating earth.
EBJ
CURRENT RCS HEADER:
$Header$
$Log$
Revision 1.5 2001/09/14 18:47:27 curt
More changes in support of UIUCModel.
Revision 1.4 2001/03/24 05:03:12 curt
SG-ified logstream.
Revision 1.3 2000/10/23 22:34:55 curt
I tested:
LaRCsim c172 on-ground and in-air starts, reset: all work
UIUC Cessna172 on-ground and in-air starts work as expected, reset
results in an aircraft that is upside down but does not crash FG. I
don't know what it was like before, so it may well be no change.
JSBSim c172 and X15 in-air starts work fine, resets now work (and are
trimmed), on-ground starts do not -- the c172 ends up on its back. I
suspect this is no worse than before.
I did not test:
Balloon (the weather code returns nan's for the atmosphere data --this
is in the weather module and apparently is a linux only bug)
ADA (don't know how)
MagicCarpet (needs work yet)
External (don't know how)
known to be broken:
LaRCsim c172 on-ground starts with a negative terrain altitude (this
happens at KPAO when the scenery is not present). The FDM inits to
about 50 feet AGL and the model falls to the ground. It does stay
upright, however, and seems to be fine once it settles out, FWIW.
To do:
--implement set_Model on the bus
--bring Christian's weather data into JSBSim
-- add default method to bus for updating things like the sin and cos of
latitude (for Balloon, MagicCarpet)
-- lots of cleanup
The files:
src/FDM/flight.cxx
src/FDM/flight.hxx
-- all data members now declared protected instead of private.
-- eliminated all but a small set of 'setters', no change to getters.
-- that small set is declared virtual, the default implementation
provided preserves the old behavior
-- all of the vector data members are now initialized.
-- added busdump() method -- SG_LOG's all the bus data when called,
useful for diagnostics.
src/FDM/ADA.cxx
-- bus data members now directly assigned to
src/FDM/Balloon.cxx
-- bus data members now directly assigned to
-- changed V_equiv_kts to V_calibrated_kts
src/FDM/JSBSim.cxx
src/FDM/JSBSim.hxx
-- bus data members now directly assigned to
-- implemented the FGInterface virtual setters with JSBSim specific
logic
-- changed the static FDMExec to a dynamic fdmex (needed so that the
JSBSim object can be deleted when a model change is called for)
-- implemented constructor and destructor, moved some of the logic
formerly in init() to constructor
-- added logic to bring up FGEngInterface objects and set the RPM and
throttle values.
src/FDM/LaRCsim.cxx
src/FDM/LaRCsim.hxx
-- bus data members now directly assigned to
-- implemented the FGInterface virtual setters with LaRCsim specific
logic, uses LaRCsimIC
-- implemented constructor and destructor, moved some of the logic
formerly in init() to constructor
-- moved default inertias to here from fg_init.cxx
-- eliminated the climb rate calculation. The equivalent, climb_rate =
-1*vdown, is now in copy_from_LaRCsim().
src/FDM/LaRCsimIC.cxx
src/FDM/LaRCsimIC.hxx
-- similar to FGInitialCondition, this class has all the logic needed to
turn data like Vc and Mach into the more fundamental quantities LaRCsim
needs to initialize.
-- put it in src/FDM since it is a class
src/FDM/MagicCarpet.cxx
-- bus data members now directly assigned to
src/FDM/Makefile.am
-- adds LaRCsimIC.hxx and cxx
src/FDM/JSBSim/FGAtmosphere.h
src/FDM/JSBSim/FGDefs.h
src/FDM/JSBSim/FGInitialCondition.cpp
src/FDM/JSBSim/FGInitialCondition.h
src/FDM/JSBSim/JSBSim.cpp
-- changes to accomodate the new bus
src/FDM/LaRCsim/atmos_62.h
src/FDM/LaRCsim/ls_geodesy.h
-- surrounded prototypes with #ifdef __cplusplus ... #endif , functions
here are needed in LaRCsimIC
src/FDM/LaRCsim/c172_main.c
src/FDM/LaRCsim/cherokee_aero.c
src/FDM/LaRCsim/ls_aux.c
src/FDM/LaRCsim/ls_constants.h
src/FDM/LaRCsim/ls_geodesy.c
src/FDM/LaRCsim/ls_geodesy.h
src/FDM/LaRCsim/ls_step.c
src/FDM/UIUCModel/uiuc_betaprobe.cpp
-- changed PI to LS_PI, eliminates preprocessor naming conflict with
weather module
src/FDM/LaRCsim/ls_interface.c
src/FDM/LaRCsim/ls_interface.h
-- added function ls_set_model_dt()
src/Main/bfi.cxx
-- eliminated calls that set the NED speeds to body components. They
are no longer needed and confuse the new bus.
src/Main/fg_init.cxx
-- eliminated calls that just brought the bus data up-to-date (e.g.
set_sin_cos_latitude). or set default values. The bus now handles the
defaults and updates itself when the setters are called (for LaRCsim and
JSBSim). A default method for doing this needs to be added to the bus.
-- added fgVelocityInit() to set the speed the user asked for. Both
JSBSim and LaRCsim can now be initialized using any of:
vc,mach, NED components, UVW components.
src/Main/main.cxx
--eliminated call to fgFDMSetGroundElevation, this data is now 'pulled'
onto the bus every update()
src/Main/options.cxx
src/Main/options.hxx
-- added enum to keep track of the speed requested by the user
-- eliminated calls to set NED velocity properties to body speeds, they
are no longer needed.
-- added options for the NED components.
src/Network/garmin.cxx
src/Network/nmea.cxx
--eliminated calls that just brought the bus data up-to-date (e.g.
set_sin_cos_latitude). The bus now updates itself when the setters are
called (for LaRCsim and JSBSim). A default method for doing this needs
to be added to the bus.
-- changed set_V_equiv_kts to set_V_calibrated_kts. set_V_equiv_kts no
longer exists ( get_V_equiv_kts still does, though)
src/WeatherCM/FGLocalWeatherDatabase.cpp
-- commented out the code to put the weather data on the bus, a
different scheme for this is needed.
Revision 1.2 1999/10/29 16:08:33 curt
Added flaps support to c172 model.
Revision 1.1.1.1 1999/06/17 18:07:33 curt
Start of 0.7.x branch
Revision 1.1.1.1 1999/04/05 21:32:45 curt
Start of 0.6.x branch.
Revision 1.4 1998/08/24 20:09:27 curt
Code optimization tweaks from Norman Vine.
Revision 1.3 1998/07/12 03:11:04 curt
Removed some printf()'s.
Fixed the autopilot integration so it should be able to update it's control
positions every time the internal flight model loop is run, and not just
once per rendered frame.
Added a routine to do the necessary stuff to force an arbitrary altitude
change.
Gave the Navion engine just a tad more power.
Revision 1.2 1998/01/19 18:40:28 curt
Tons of little changes to clean up the code and to remove fatal errors
when building with the c++ compiler.
Revision 1.1 1997/05/29 00:09:59 curt
Initial Flight Gear revision.
* Revision 1.5 1995/03/02 20:24:13 bjax
* Added logic to avoid adding additional increment to V_east
* in case V_east already accounts for rotating earth. EBJ
*
* Revision 1.4 1995/02/07 20:52:21 bjax
* Added initialization of Alpha_dot and Beta_dot to zero on first
* pass; they get calculated by ls_aux on next pass... EBJ
*
* Revision 1.3 1994/01/11 19:01:12 bjax
* Changed from DATA to SCALAR type; also fixed header files (was ls_eom.h)
*
* Revision 1.2 1993/06/02 15:03:09 bjax
* Moved initialization of geocentric position to subroutine ls_geod_to_geoc.
*
* Revision 1.1 92/12/30 13:16:11 bjax
* Initial revision
*
----------------------------------------------------------------------------
REFERENCES:
[ 1] McFarland, Richard E.: "A Standard Kinematic Model
for Flight Simulation at NASA-Ames", NASA CR-2497,
January 1975
[ 2] ANSI/AIAA R-004-1992 "Recommended Practice: Atmos-
pheric and Space Flight Vehicle Coordinate Systems",
February 1992
----------------------------------------------------------------------------
CALLED BY:
----------------------------------------------------------------------------
CALLS TO: None.
----------------------------------------------------------------------------
INPUTS: State derivatives
----------------------------------------------------------------------------
OUTPUTS: States
--------------------------------------------------------------------------*/
#include <FDM/UIUCModel/uiuc_wrapper.h>
#include "ls_types.h"
#include "ls_constants.h"
#include "ls_generic.h"
#include "ls_accel.h"
#include "ls_aux.h"
#include "ls_model.h"
#include "ls_step.h"
#include "ls_geodesy.h"
#include "ls_gravity.h"
/* #include "ls_sim_control.h" */
#include <math.h>
Model current_model;
extern SCALAR Simtime; /* defined in ls_main.c */
void uiuc_init_vars() {
static int init = 0;
if (init==0) {
init=-1;
uiuc_init_aeromodel();
}
uiuc_initial_init();
}
void ls_step( SCALAR dt, int Initialize ) {
static int inited = 0;
SCALAR dth;
static SCALAR v_dot_north_past, v_dot_east_past, v_dot_down_past;
static SCALAR latitude_dot_past, longitude_dot_past, radius_dot_past;
static SCALAR p_dot_body_past, q_dot_body_past, r_dot_body_past;
SCALAR p_local_in_body, q_local_in_body, r_local_in_body;
SCALAR epsilon, inv_eps, local_gnd_veast;
SCALAR e_dot_0, e_dot_1, e_dot_2, e_dot_3;
static SCALAR e_0, e_1, e_2, e_3;
static SCALAR e_dot_0_past, e_dot_1_past, e_dot_2_past, e_dot_3_past;
SCALAR cos_Lat_geocentric, inv_Radius_to_vehicle;
/* I N I T I A L I Z A T I O N */
if ( (inited == 0) || (Initialize != 0) )
{
/* Set past values to zero */
v_dot_north_past = v_dot_east_past = v_dot_down_past = 0;
latitude_dot_past = longitude_dot_past = radius_dot_past = 0;
p_dot_body_past = q_dot_body_past = r_dot_body_past = 0;
e_dot_0_past = e_dot_1_past = e_dot_2_past = e_dot_3_past = 0;
/* Initialize geocentric position from geodetic latitude and altitude */
ls_geod_to_geoc( Latitude, Altitude, &Sea_level_radius, &Lat_geocentric);
Earth_position_angle = 0;
Lon_geocentric = Longitude;
Radius_to_vehicle = Altitude + Sea_level_radius;
/* Correct eastward velocity to account for earths' rotation, if necessary */
local_gnd_veast = OMEGA_EARTH*Sea_level_radius*cos(Lat_geocentric);
if( fabs(V_east - V_east_rel_ground) < 0.8*local_gnd_veast )
V_east = V_east + local_gnd_veast;
/* Initialize quaternions and transformation matrix from Euler angles */
if (current_model == UIUC && Simtime == 0) {
uiuc_init_vars();
}
e_0 = cos(Psi*0.5)*cos(Theta*0.5)*cos(Phi*0.5)
+ sin(Psi*0.5)*sin(Theta*0.5)*sin(Phi*0.5);
e_1 = cos(Psi*0.5)*cos(Theta*0.5)*sin(Phi*0.5)
- sin(Psi*0.5)*sin(Theta*0.5)*cos(Phi*0.5);
e_2 = cos(Psi*0.5)*sin(Theta*0.5)*cos(Phi*0.5)
+ sin(Psi*0.5)*cos(Theta*0.5)*sin(Phi*0.5);
e_3 =-cos(Psi*0.5)*sin(Theta*0.5)*sin(Phi*0.5)
+ sin(Psi*0.5)*cos(Theta*0.5)*cos(Phi*0.5);
T_local_to_body_11 = e_0*e_0 + e_1*e_1 - e_2*e_2 - e_3*e_3;
T_local_to_body_12 = 2*(e_1*e_2 + e_0*e_3);
T_local_to_body_13 = 2*(e_1*e_3 - e_0*e_2);
T_local_to_body_21 = 2*(e_1*e_2 - e_0*e_3);
T_local_to_body_22 = e_0*e_0 - e_1*e_1 + e_2*e_2 - e_3*e_3;
T_local_to_body_23 = 2*(e_2*e_3 + e_0*e_1);
T_local_to_body_31 = 2*(e_1*e_3 + e_0*e_2);
T_local_to_body_32 = 2*(e_2*e_3 - e_0*e_1);
T_local_to_body_33 = e_0*e_0 - e_1*e_1 - e_2*e_2 + e_3*e_3;
if (current_model == UIUC && Simtime == 0) {
uiuc_vel_init();
}
/* Calculate local gravitation acceleration */
ls_gravity( Radius_to_vehicle, Lat_geocentric, &Gravity );
/* Initialize vehicle model */
ls_aux();
ls_model(0.0, 0);
/* Calculate initial accelerations */
ls_accel();
/* Initialize auxiliary variables */
ls_aux();
Alpha_dot = 0.;
Beta_dot = 0.;
/* set flag; disable integrators */
inited = -1;
dt = 0.0;
}
/* Update time */
dth = 0.5*dt;
Simtime = Simtime + dt;
/* L I N E A R V E L O C I T I E S */
/* Integrate linear accelerations to get velocities */
/* Using predictive Adams-Bashford algorithm */
V_north = V_north + dth*(3*V_dot_north - v_dot_north_past);
V_east = V_east + dth*(3*V_dot_east - v_dot_east_past );
V_down = V_down + dth*(3*V_dot_down - v_dot_down_past );
/* record past states */
v_dot_north_past = V_dot_north;
v_dot_east_past = V_dot_east;
v_dot_down_past = V_dot_down;
/* Calculate trajectory rate (geocentric coordinates) */
inv_Radius_to_vehicle = 1.0/Radius_to_vehicle;
cos_Lat_geocentric = cos(Lat_geocentric);
if ( cos_Lat_geocentric != 0) {
Longitude_dot = V_east/(Radius_to_vehicle*cos_Lat_geocentric);
}
Latitude_dot = V_north*inv_Radius_to_vehicle;
Radius_dot = -V_down;
/* A N G U L A R V E L O C I T I E S A N D P O S I T I O N S */
/* Integrate rotational accelerations to get velocities */
P_body = P_body + dth*(3*P_dot_body - p_dot_body_past);
Q_body = Q_body + dth*(3*Q_dot_body - q_dot_body_past);
R_body = R_body + dth*(3*R_dot_body - r_dot_body_past);
/* Save past states */
p_dot_body_past = P_dot_body;
q_dot_body_past = Q_dot_body;
r_dot_body_past = R_dot_body;
/* Calculate local axis frame rates due to travel over curved earth */
P_local = V_east*inv_Radius_to_vehicle;
Q_local = -V_north*inv_Radius_to_vehicle;
R_local = -V_east*tan(Lat_geocentric)*inv_Radius_to_vehicle;
/* Transform local axis frame rates to body axis rates */
p_local_in_body = T_local_to_body_11*P_local + T_local_to_body_12*Q_local + T_local_to_body_13*R_local;
q_local_in_body = T_local_to_body_21*P_local + T_local_to_body_22*Q_local + T_local_to_body_23*R_local;
r_local_in_body = T_local_to_body_31*P_local + T_local_to_body_32*Q_local + T_local_to_body_33*R_local;
/* Calculate total angular rates in body axis */
P_total = P_body - p_local_in_body;
Q_total = Q_body - q_local_in_body;
R_total = R_body - r_local_in_body;
/* Transform to quaternion rates (see Appendix E in [2]) */
e_dot_0 = 0.5*( -P_total*e_1 - Q_total*e_2 - R_total*e_3 );
e_dot_1 = 0.5*( P_total*e_0 - Q_total*e_3 + R_total*e_2 );
e_dot_2 = 0.5*( P_total*e_3 + Q_total*e_0 - R_total*e_1 );
e_dot_3 = 0.5*( -P_total*e_2 + Q_total*e_1 + R_total*e_0 );
/* Integrate using trapezoidal as before */
e_0 = e_0 + dth*(e_dot_0 + e_dot_0_past);
e_1 = e_1 + dth*(e_dot_1 + e_dot_1_past);
e_2 = e_2 + dth*(e_dot_2 + e_dot_2_past);
e_3 = e_3 + dth*(e_dot_3 + e_dot_3_past);
/* calculate orthagonality correction - scale quaternion to unity length */
epsilon = sqrt(e_0*e_0 + e_1*e_1 + e_2*e_2 + e_3*e_3);
inv_eps = 1/epsilon;
e_0 = inv_eps*e_0;
e_1 = inv_eps*e_1;
e_2 = inv_eps*e_2;
e_3 = inv_eps*e_3;
/* Save past values */
e_dot_0_past = e_dot_0;
e_dot_1_past = e_dot_1;
e_dot_2_past = e_dot_2;
e_dot_3_past = e_dot_3;
/* Update local to body transformation matrix */
T_local_to_body_11 = e_0*e_0 + e_1*e_1 - e_2*e_2 - e_3*e_3;
T_local_to_body_12 = 2*(e_1*e_2 + e_0*e_3);
T_local_to_body_13 = 2*(e_1*e_3 - e_0*e_2);
T_local_to_body_21 = 2*(e_1*e_2 - e_0*e_3);
T_local_to_body_22 = e_0*e_0 - e_1*e_1 + e_2*e_2 - e_3*e_3;
T_local_to_body_23 = 2*(e_2*e_3 + e_0*e_1);
T_local_to_body_31 = 2*(e_1*e_3 + e_0*e_2);
T_local_to_body_32 = 2*(e_2*e_3 - e_0*e_1);
T_local_to_body_33 = e_0*e_0 - e_1*e_1 - e_2*e_2 + e_3*e_3;
/* Calculate Euler angles */
Theta = asin( -T_local_to_body_13 );
if( T_local_to_body_11 == 0 )
Psi = 0;
else
Psi = atan2( T_local_to_body_12, T_local_to_body_11 );
if( T_local_to_body_33 == 0 )
Phi = 0;
else
Phi = atan2( T_local_to_body_23, T_local_to_body_33 );
/* Resolve Psi to 0 - 359.9999 */
if (Psi < 0 ) Psi = Psi + 2*LS_PI;
/* L I N E A R P O S I T I O N S */
/* Trapezoidal acceleration for position */
Lat_geocentric = Lat_geocentric + dth*(Latitude_dot + latitude_dot_past );
Lon_geocentric = Lon_geocentric + dth*(Longitude_dot + longitude_dot_past);
Radius_to_vehicle = Radius_to_vehicle + dth*(Radius_dot + radius_dot_past );
Earth_position_angle = Earth_position_angle + dt*OMEGA_EARTH;
/* Save past values */
latitude_dot_past = Latitude_dot;
longitude_dot_past = Longitude_dot;
radius_dot_past = Radius_dot;
/* end of ls_step */
}
/*************************************************************************/