1
0
Fork 0
flightgear/src/AIModel/AIAircraft.cxx
ehofman 6a08c79fcc David Culp:
I added some things to the AI stuff to improve the AIThermal processing.
Before, all the thermals were processed in order, and the last one overwrote
the prior one.  Now, only the data from the nearest thermal is kept.  This
way a tile can be populated with many thermals, and (as long as they have the
same diameter) the one nearest the airplane correctly takes effect.  This
will make us ready for the next step, "auto-thermaling", where FlightGear's
tile manager can cover a tile with thermals, and set the thermal strength
based on land-use type.

I moved the enumerated object_type to the base class.  When an AI object is
created it now sets the _otype variable in the base class.  This lets the AI
manager find out what kind of AI object it is dealing with, using the base
pointer.  I also added a function isa() to the base class, so the manager can
process objects differently based on their type.

The AI manager now sends AIThermal processing to a different function, where
only the data from the nearest thermal is kept.  After the manager processes
all the AI objects, then the results from the nearest thermal are applied to
wind-from-down.
2004-03-07 12:08:46 +00:00

317 lines
8.8 KiB
C++

// FGAIAircraft - FGAIBase-derived class creates an AI airplane
//
// Written by David Culp, started October 2003.
//
// Copyright (C) 2003 David P. Culp - davidculp2@comcast.net
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <simgear/math/point3d.hxx>
#include <Main/fg_props.hxx>
#include <Main/globals.hxx>
#include <Scenery/scenery.hxx>
#include <string>
#include <math.h>
SG_USING_STD(string);
#include "AIAircraft.hxx"
//
// accel, decel, climb_rate, descent_rate, takeoff_speed, climb_speed,
// cruise_speed, descent_speed, land_speed
//
const FGAIAircraft::PERF_STRUCT FGAIAircraft::settings[] = {
// light aircraft
{2.0, 2.0, 450.0, 1000.0, 70.0, 80.0, 100.0, 80.0, 60.0},
// ww2_fighter
{4.0, 2.0, 3000.0, 1500.0, 110.0, 180.0, 250.0, 200.0, 100.0},
// jet_transport
{5.0, 2.0, 3000.0, 1500.0, 140.0, 300.0, 430.0, 300.0, 130.0},
// jet_fighter
{7.0, 3.0, 4000.0, 2000.0, 150.0, 350.0, 500.0, 350.0, 150.0}
};
FGAIAircraft *FGAIAircraft::_self = NULL;
FGAIAircraft::FGAIAircraft(FGAIManager* mgr) {
manager = mgr;
_self = this;
_type_str = "aircraft";
_otype = otAircraft;
// set heading and altitude locks
hdg_lock = false;
alt_lock = false;
}
FGAIAircraft::~FGAIAircraft() {
_self = NULL;
}
bool FGAIAircraft::init() {
return FGAIBase::init();
}
void FGAIAircraft::bind() {
FGAIBase::bind();
props->tie("controls/gear/gear-down",
SGRawValueFunctions<bool>(FGAIAircraft::_getGearDown));
/*
props->getNode("controls/lighting/landing-lights", true)
->alias("controls/gear/gear-down");
*/
}
void FGAIAircraft::unbind() {
FGAIBase::unbind();
props->untie("controls/gear/gear-down");
// props->getNode("controls/lighting/landing-lights")->unalias();
}
void FGAIAircraft::update(double dt) {
Run(dt);
Transform();
FGAIBase::update(dt);
}
void FGAIAircraft::SetPerformance(const PERF_STRUCT *ps) {
performance = ps;
}
void FGAIAircraft::Run(double dt) {
FGAIAircraft::dt = dt;
double turn_radius_ft;
double turn_circum_ft;
double speed_north_deg_sec;
double speed_east_deg_sec;
double ft_per_deg_lon;
double ft_per_deg_lat;
double dist_covered_ft;
double alpha;
// get size of a degree at this latitude
ft_per_deg_lat = 366468.96 - 3717.12 * cos(pos.lat()/SG_RADIANS_TO_DEGREES);
ft_per_deg_lon = 365228.16 * cos(pos.lat() / SG_RADIANS_TO_DEGREES);
// adjust speed
double speed_diff = tgt_speed - speed;
if (fabs(speed_diff) > 0.2) {
if (speed_diff > 0.0) speed += performance->accel * dt;
if (speed_diff < 0.0) speed -= performance->decel * dt;
}
// convert speed to degrees per second
speed_north_deg_sec = cos( hdg / SG_RADIANS_TO_DEGREES )
* speed * 1.686 / ft_per_deg_lat;
speed_east_deg_sec = sin( hdg / SG_RADIANS_TO_DEGREES )
* speed * 1.686 / ft_per_deg_lon;
// set new position
pos.setlat( pos.lat() + speed_north_deg_sec * dt);
pos.setlon( pos.lon() + speed_east_deg_sec * dt);
// adjust heading based on current bank angle
if (roll != 0.0) {
turn_radius_ft = 0.088362 * speed * speed
/ tan( fabs(roll) / SG_RADIANS_TO_DEGREES );
turn_circum_ft = SGD_2PI * turn_radius_ft;
dist_covered_ft = speed * 1.686 * dt;
alpha = dist_covered_ft / turn_circum_ft * 360.0;
hdg += alpha * sign( roll );
if ( hdg > 360.0 ) hdg -= 360.0;
if ( hdg < 0.0) hdg += 360.0;
}
// adjust target bank angle if heading lock engaged
if (hdg_lock) {
double bank_sense = 0.0;
double diff = fabs(hdg - tgt_heading);
if (diff > 180) diff = fabs(diff - 360);
double sum = hdg + diff;
if (sum > 360.0) sum -= 360.0;
if (fabs(sum - tgt_heading) < 1.0) {
bank_sense = 1.0;
} else {
bank_sense = -1.0;
}
if (diff < 30) tgt_roll = diff * bank_sense;
}
// adjust bank angle
double bank_diff = tgt_roll - roll;
if (fabs(bank_diff) > 0.2) {
if (bank_diff > 0.0) roll += 5.0 * dt;
if (bank_diff < 0.0) roll -= 5.0 * dt;
}
// adjust altitude (meters) based on current vertical speed (fpm)
altitude += vs * 0.0166667 * dt * SG_FEET_TO_METER;
double altitude_ft = altitude * SG_METER_TO_FEET;
// find target vertical speed if altitude lock engaged
if (alt_lock) {
if (altitude_ft < tgt_altitude) {
tgt_vs = tgt_altitude - altitude_ft;
if (tgt_vs > performance->climb_rate)
tgt_vs = performance->climb_rate;
} else {
tgt_vs = tgt_altitude - altitude_ft;
if (tgt_vs < (-performance->descent_rate))
tgt_vs = -performance->descent_rate;
}
}
// adjust vertical speed
double vs_diff = tgt_vs - vs;
if (fabs(vs_diff) > 1.0) {
if (vs_diff > 0.0) {
vs += 400.0 * dt;
if (vs > tgt_vs) vs = tgt_vs;
} else {
vs -= 300.0 * dt;
if (vs < tgt_vs) vs = tgt_vs;
}
}
// match pitch angle to vertical speed
pitch = vs * 0.005;
//###########################//
// do calculations for radar //
//###########################//
// copy values from the AIManager
double user_latitude = manager->get_user_latitude();
double user_longitude = manager->get_user_longitude();
double user_altitude = manager->get_user_altitude();
double user_heading = manager->get_user_heading();
double user_pitch = manager->get_user_pitch();
double user_yaw = manager->get_user_yaw();
double user_speed = manager->get_user_speed();
// calculate range to target in feet and nautical miles
double lat_range = fabs(pos.lat() - user_latitude) * ft_per_deg_lat;
double lon_range = fabs(pos.lon() - user_longitude) * ft_per_deg_lon;
double range_ft = sqrt( lat_range*lat_range + lon_range*lon_range );
range = range_ft / 6076.11549;
// calculate bearing to target
if (pos.lat() >= user_latitude) {
bearing = atan2(lat_range, lon_range) * SG_RADIANS_TO_DEGREES;
if (pos.lon() >= user_longitude) {
bearing = 90.0 - bearing;
} else {
bearing = 270.0 + bearing;
}
} else {
bearing = atan2(lon_range, lat_range) * SG_RADIANS_TO_DEGREES;
if (pos.lon() >= user_longitude) {
bearing = 180.0 - bearing;
} else {
bearing = 180.0 + bearing;
}
}
// calculate look left/right to target, without yaw correction
horiz_offset = bearing - user_heading;
if (horiz_offset > 180.0) horiz_offset -= 360.0;
if (horiz_offset < -180.0) horiz_offset += 360.0;
// calculate elevation to target
elevation = atan2( altitude_ft - user_altitude, range_ft )
* SG_RADIANS_TO_DEGREES;
// calculate look up/down to target
vert_offset = elevation + user_pitch;
/* this calculation needs to be fixed
// calculate range rate
double recip_bearing = bearing + 180.0;
if (recip_bearing > 360.0) recip_bearing -= 360.0;
double my_horiz_offset = recip_bearing - hdg;
if (my_horiz_offset > 180.0) my_horiz_offset -= 360.0;
if (my_horiz_offset < -180.0) my_horiz_offset += 360.0;
rdot = (-user_speed * cos( horiz_offset * SG_DEGREES_TO_RADIANS ))
+ (-speed * 1.686 * cos( my_horiz_offset * SG_DEGREES_TO_RADIANS ));
*/
// now correct look left/right for yaw
horiz_offset += user_yaw;
// calculate values for radar display
y_shift = range * cos( horiz_offset * SG_DEGREES_TO_RADIANS);
x_shift = range * sin( horiz_offset * SG_DEGREES_TO_RADIANS);
rotation = hdg - user_heading;
if (rotation < 0.0) rotation += 360.0;
}
void FGAIAircraft::AccelTo(double speed) {
tgt_speed = speed;
}
void FGAIAircraft::PitchTo(double angle) {
tgt_pitch = angle;
alt_lock = false;
}
void FGAIAircraft::RollTo(double angle) {
tgt_roll = angle;
hdg_lock = false;
}
void FGAIAircraft::YawTo(double angle) {
tgt_yaw = angle;
}
void FGAIAircraft::ClimbTo(double altitude) {
tgt_altitude = altitude;
alt_lock = true;
}
void FGAIAircraft::TurnTo(double heading) {
tgt_heading = heading;
hdg_lock = true;
}
double FGAIAircraft::sign(double x) {
if ( x < 0.0 ) { return -1.0; }
else { return 1.0; }
}