1
0
Fork 0
flightgear/src/FDM/groundcache.cxx
mfranz 435d874e35 Mathias FROEHLICH:
remove a hack and do it properly: if the requested elevation is for some
reason below the surface and the intersection test fails (as it appears
to be the case in EGLL), try again from 10000m ASL

mf: typos
2005-12-04 10:43:49 +00:00

800 lines
25 KiB
C++

// groundcache.cxx -- carries a small subset of the scenegraph near the vehicle
//
// Written by Mathias Froehlich, started Nov 2004.
//
// Copyright (C) 2004 Mathias Froehlich - Mathias.Froehlich@web.de
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
#include <float.h>
#include <plib/sg.h>
#include <simgear/sg_inlines.h>
#include <simgear/constants.h>
#include <simgear/debug/logstream.hxx>
#include <simgear/math/sg_geodesy.hxx>
#include <Main/globals.hxx>
#include <Scenery/scenery.hxx>
#include <Scenery/tilemgr.hxx>
#include <AIModel/AICarrier.hxx>
#include "flight.hxx"
#include "groundcache.hxx"
// Specialized version of sgMultMat4 needed because of mixed matrix
// types
static inline void fgMultMat4(sgdMat4 dst, sgdMat4 m1, sgMat4 m2) {
for ( int j = 0 ; j < 4 ; j++ ) {
dst[0][j] = m2[0][0] * m1[0][j] +
m2[0][1] * m1[1][j] +
m2[0][2] * m1[2][j] +
m2[0][3] * m1[3][j] ;
dst[1][j] = m2[1][0] * m1[0][j] +
m2[1][1] * m1[1][j] +
m2[1][2] * m1[2][j] +
m2[1][3] * m1[3][j] ;
dst[2][j] = m2[2][0] * m1[0][j] +
m2[2][1] * m1[1][j] +
m2[2][2] * m1[2][j] +
m2[2][3] * m1[3][j] ;
dst[3][j] = m2[3][0] * m1[0][j] +
m2[3][1] * m1[1][j] +
m2[3][2] * m1[2][j] +
m2[3][3] * m1[3][j] ;
}
}
static inline bool fgdPointInTriangle( sgdVec3 point, sgdVec3 tri[3] )
{
sgdVec3 dif;
// Some tolerance in meters we accept a point to be outside of the triangle
// and still return that it is inside.
SGDfloat eps = 1e-2;
SGDfloat min, max;
// punt if outside bouding cube
SG_MIN_MAX3 ( min, max, tri[0][0], tri[1][0], tri[2][0] );
if( (point[0] < min - eps) || (point[0] > max + eps) )
return false;
dif[0] = max - min;
SG_MIN_MAX3 ( min, max, tri[0][1], tri[1][1], tri[2][1] );
if( (point[1] < min - eps) || (point[1] > max + eps) )
return false;
dif[1] = max - min;
SG_MIN_MAX3 ( min, max, tri[0][2], tri[1][2], tri[2][2] );
if( (point[2] < min - eps) || (point[2] > max + eps) )
return false;
dif[2] = max - min;
// drop the smallest dimension so we only have to work in 2d.
SGDfloat min_dim = SG_MIN3 (dif[0], dif[1], dif[2]);
SGDfloat x1, y1, x2, y2, x3, y3, rx, ry;
if ( fabs(min_dim-dif[0]) <= DBL_EPSILON ) {
// x is the smallest dimension
x1 = point[1];
y1 = point[2];
x2 = tri[0][1];
y2 = tri[0][2];
x3 = tri[1][1];
y3 = tri[1][2];
rx = tri[2][1];
ry = tri[2][2];
} else if ( fabs(min_dim-dif[1]) <= DBL_EPSILON ) {
// y is the smallest dimension
x1 = point[0];
y1 = point[2];
x2 = tri[0][0];
y2 = tri[0][2];
x3 = tri[1][0];
y3 = tri[1][2];
rx = tri[2][0];
ry = tri[2][2];
} else if ( fabs(min_dim-dif[2]) <= DBL_EPSILON ) {
// z is the smallest dimension
x1 = point[0];
y1 = point[1];
x2 = tri[0][0];
y2 = tri[0][1];
x3 = tri[1][0];
y3 = tri[1][1];
rx = tri[2][0];
ry = tri[2][1];
} else {
// all dimensions are really small so lets call it close
// enough and return a successful match
return true;
}
// check if intersection point is on the same side of p1 <-> p2 as p3
SGDfloat tmp = (y2 - y3);
SGDfloat tmpn = (x2 - x3);
int side1 = SG_SIGN (tmp * (rx - x3) + (y3 - ry) * tmpn);
int side2 = SG_SIGN (tmp * (x1 - x3) + (y3 - y1) * tmpn
+ side1 * eps * fabs(tmpn));
if ( side1 != side2 ) {
// printf("failed side 1 check\n");
return false;
}
// check if intersection point is on correct side of p2 <-> p3 as p1
tmp = (y3 - ry);
tmpn = (x3 - rx);
side1 = SG_SIGN (tmp * (x2 - rx) + (ry - y2) * tmpn);
side2 = SG_SIGN (tmp * (x1 - rx) + (ry - y1) * tmpn
+ side1 * eps * fabs(tmpn));
if ( side1 != side2 ) {
// printf("failed side 2 check\n");
return false;
}
// check if intersection point is on correct side of p1 <-> p3 as p2
tmp = (y2 - ry);
tmpn = (x2 - rx);
side1 = SG_SIGN (tmp * (x3 - rx) + (ry - y3) * tmpn);
side2 = SG_SIGN (tmp * (x1 - rx) + (ry - y1) * tmpn
+ side1 * eps * fabs(tmpn));
if ( side1 != side2 ) {
// printf("failed side 3 check\n");
return false;
}
return true;
}
// Test if the line given by the point on the line pt_on_line and the
// line direction dir intersects the sphere sp.
// Adapted from plib.
static inline bool
fgdIsectSphereInfLine(const sgdSphere& sp,
const sgdVec3 pt_on_line, const sgdVec3 dir)
{
sgdVec3 r;
sgdSubVec3( r, sp.getCenter(), pt_on_line ) ;
SGDfloat projectedDistance = sgdScalarProductVec3(r, dir);
SGDfloat dist = sgdScalarProductVec3 ( r, r ) -
projectedDistance * projectedDistance;
SGDfloat radius = sp.getRadius();
return dist < radius*radius;
}
FGGroundCache::FGGroundCache()
{
sgdSetVec3(cache_center, 0.0, 0.0, 0.0);
ground_radius = 0.0;
cache_ref_time = 0.0;
wire_id = 0;
sgdSetVec3(reference_wgs84_point, 0.0, 0.0, 0.0);
reference_vehicle_radius = 0.0;
found_ground = false;
}
FGGroundCache::~FGGroundCache()
{
}
FGGroundCache::GroundProperty
FGGroundCache::extractGroundProperty( ssgLeaf* l )
{
// FIXME: Do more ...
// Idea: have a get_globals() function which knows about that stuff.
// Or most probably read that from a configuration file,
// from property tree or whatever ...
// Get ground dependent data.
GroundProperty gp;
gp.wire_id = -1;
FGAICarrierHardware *ud =
dynamic_cast<FGAICarrierHardware*>(l->getUserData());
if (ud) {
switch (ud->type) {
case FGAICarrierHardware::Wire:
gp.type = FGInterface::Wire;
gp.wire_id = ud->id;
break;
case FGAICarrierHardware::Catapult:
gp.type = FGInterface::Catapult;
break;
default:
gp.type = FGInterface::Solid;
break;
}
// Copy the velocity from the carrier class.
ud->carrier->getVelocityWrtEarth( gp.vel, gp.rot, gp.pivot );
}
else {
// Initialize velocity field.
sgdSetVec3( gp.vel, 0.0, 0.0, 0.0 );
sgdSetVec3( gp.rot, 0.0, 0.0, 0.0 );
sgdSetVec3( gp.pivot, 0.0, 0.0, 0.0 );
}
// Get the texture name and decide what ground type we have.
ssgState *st = l->getState();
if (st != NULL && st->isAKindOf(ssgTypeSimpleState())) {
ssgSimpleState *ss = (ssgSimpleState*)st;
SGPath fullPath( ss->getTextureFilename() ? ss->getTextureFilename(): "" );
string file = fullPath.file();
SGPath dirPath(fullPath.dir());
string category = dirPath.file();
if (category == "Runway")
gp.type = FGInterface::Solid;
else {
if (file == "asphault.rgb" || file == "airport.rgb")
gp.type = FGInterface::Solid;
else if (file == "water.rgb" || file == "water-lake.rgb")
gp.type = FGInterface::Water;
else if (file == "forest.rgb" || file == "cropwood.rgb")
gp.type = FGInterface::Forest;
}
}
return gp;
}
void
FGGroundCache::putLineLeafIntoCache(const sgdSphere *wsp, const sgdMat4 xform,
ssgLeaf *l)
{
GroundProperty gp = extractGroundProperty(l);
// Lines must have special meanings.
// Wires and catapults are done with lines.
int nl = l->getNumLines();
for (int i = 0; i < nl; ++i) {
sgdSphere sphere;
sphere.empty();
sgdVec3 ends[2];
short v[2];
l->getLine(i, v, v+1 );
for (int k=0; k<2; ++k) {
sgdSetVec3(ends[k], l->getVertex(v[k]));
sgdXformPnt3(ends[k], xform);
sphere.extend(ends[k]);
}
if (wsp->intersects( &sphere )) {
if (gp.type == FGInterface::Wire) {
Wire wire;
sgdCopyVec3(wire.ends[0], ends[0]);
sgdCopyVec3(wire.ends[1], ends[1]);
sgdCopyVec3(wire.velocity, gp.vel);
sgdCopyVec3(wire.rotation, gp.rot);
sgdSubVec3(wire.rotation_pivot, gp.pivot, cache_center);
wire.wire_id = gp.wire_id;
wires.push_back(wire);
}
if (gp.type == FGInterface::Catapult) {
Catapult cat;
sgdCopyVec3(cat.start, ends[0]);
sgdCopyVec3(cat.end, ends[1]);
sgdCopyVec3(cat.velocity, gp.vel);
sgdCopyVec3(cat.rotation, gp.rot);
sgdSubVec3(cat.rotation_pivot, gp.pivot, cache_center);
catapults.push_back(cat);
}
}
}
}
void
FGGroundCache::putSurfaceLeafIntoCache(const sgdSphere *sp,
const sgdMat4 xform, bool sphIsec,
sgdVec3 down, ssgLeaf *l)
{
GroundProperty gp = extractGroundProperty(l);
int nt = l->getNumTriangles();
for (int i = 0; i < nt; ++i) {
Triangle t;
t.sphere.empty();
short v[3];
l->getTriangle(i, &v[0], &v[1], &v[2]);
for (int k = 0; k < 3; ++k) {
sgdSetVec3(t.vertices[k], l->getVertex(v[k]));
sgdXformPnt3(t.vertices[k], xform);
t.sphere.extend(t.vertices[k]);
}
sgdMakePlane(t.plane, t.vertices[0], t.vertices[1], t.vertices[2]);
SGDfloat dot = sgdScalarProductVec3(down, t.plane);
if (dot > 0) {
if (!l->getCullFace()) {
// Surface points downwards, ignore for altitude computations.
continue;
} else
sgdScaleVec4( t.plane, -1 );
}
// Check if the sphere around the vehicle intersects the sphere
// around that triangle. If so, put that triangle into the cache.
if (sphIsec && sp->intersects(&t.sphere)) {
sgdCopyVec3(t.velocity, gp.vel);
sgdCopyVec3(t.rotation, gp.rot);
sgdSubVec3(t.rotation_pivot, gp.pivot, cache_center);
t.type = gp.type;
triangles.push_back(t);
}
// In case the cache is empty, we still provide agl computations.
// But then we use the old way of having a fixed elevation value for
// the whole lifetime of this cache.
if ( fgdIsectSphereInfLine(t.sphere, sp->getCenter(), down) ) {
sgdVec3 tmp;
sgdSetVec3(tmp, sp->center[0], sp->center[1], sp->center[2]);
sgdVec3 isectpoint;
if ( sgdIsectInfLinePlane( isectpoint, tmp, down, t.plane ) &&
fgdPointInTriangle( isectpoint, t.vertices ) ) {
// Compute the offset to the ground cache midpoint
sgdVec3 off;
sgdSubVec3(off, isectpoint, tmp);
// Only accept the altitude if the intersection point is below the
// ground cache midpoint
if (0 < sgdScalarProductVec3( off, down )) {
found_ground = true;
sgdAddVec3(isectpoint, cache_center);
double this_radius = sgdLengthVec3(isectpoint);
if (ground_radius < this_radius)
ground_radius = this_radius;
}
}
}
}
}
inline void
FGGroundCache::velocityTransformTriangle(double dt,
FGGroundCache::Triangle& dst,
const FGGroundCache::Triangle& src)
{
sgdCopyVec3(dst.vertices[0], src.vertices[0]);
sgdCopyVec3(dst.vertices[1], src.vertices[1]);
sgdCopyVec3(dst.vertices[2], src.vertices[2]);
sgdCopyVec4(dst.plane, src.plane);
sgdCopyVec3(dst.sphere.center, src.sphere.center);
dst.sphere.radius = src.sphere.radius;
sgdCopyVec3(dst.velocity, src.velocity);
sgdCopyVec3(dst.rotation, src.rotation);
sgdCopyVec3(dst.rotation_pivot, src.rotation_pivot);
dst.type = src.type;
if (dt*sgdLengthSquaredVec3(src.velocity) != 0) {
sgdVec3 pivotoff, vel;
for (int i = 0; i < 3; ++i) {
sgdSubVec3(pivotoff, src.vertices[i], src.rotation_pivot);
sgdVectorProductVec3(vel, src.rotation, pivotoff);
sgdAddVec3(vel, src.velocity);
sgdAddScaledVec3(dst.vertices[i], vel, dt);
}
// Transform the plane equation
sgdSubVec3(pivotoff, dst.plane, src.rotation_pivot);
sgdVectorProductVec3(vel, src.rotation, pivotoff);
sgdAddVec3(vel, src.velocity);
dst.plane[3] += dt*sgdScalarProductVec3(dst.plane, vel);
sgdAddScaledVec3(dst.sphere.center, src.velocity, dt);
}
}
void
FGGroundCache::cache_fill(ssgBranch *branch, sgdMat4 xform,
sgdSphere* sp, sgdVec3 down, sgdSphere* wsp)
{
// Travel through all kids.
ssgEntity *e;
for ( e = branch->getKid(0); e != NULL ; e = branch->getNextKid() ) {
if ( !(e->getTraversalMask() & SSGTRAV_HOT) )
continue;
if ( e->getBSphere()->isEmpty() )
continue;
// We need to check further if either the sphere around the branch
// intersects the sphere around the aircraft or the line downwards from
// the aircraft intersects the branchs sphere.
sgdSphere esphere;
sgdSetVec3(esphere.center, e->getBSphere()->center);
esphere.radius = e->getBSphere()->radius;
esphere.orthoXform(xform);
bool wspIsec = wsp->intersects(&esphere);
bool downIsec = fgdIsectSphereInfLine(esphere, sp->getCenter(), down);
if (!wspIsec && !downIsec)
continue;
// For branches collect up the transforms to reach that branch and
// call cache_fill recursively.
if ( e->isAKindOf( ssgTypeBranch() ) ) {
ssgBranch *b = (ssgBranch *)e;
if ( b->isAKindOf( ssgTypeTransform() ) ) {
// Collect up the transforms required to reach that part of
// the branch.
sgMat4 xform2;
sgMakeIdentMat4( xform2 );
ssgTransform *t = (ssgTransform*)b;
t->getTransform( xform2 );
sgdMat4 xform3;
fgMultMat4(xform3, xform, xform2);
cache_fill( b, xform3, sp, down, wsp );
} else
cache_fill( b, xform, sp, down, wsp );
}
// For leafs, check each triangle for intersection.
// This will minimize the number of vertices/triangles in the cache.
else if (e->isAKindOf(ssgTypeLeaf())) {
// Since we reach that leaf if we have an intersection with the
// most probably bigger wire/catapult cache sphere, we need to check
// that here, if the smaller cache for the surface has a chance for hits.
// Also, if the spheres do not intersect compute a coarse agl value
// by following the line downwards originating at the aircraft.
bool spIsec = sp->intersects(&esphere);
putSurfaceLeafIntoCache(sp, xform, spIsec, down, (ssgLeaf *)e);
// If we are here, we need to put all special hardware here into
// the cache.
if (wspIsec)
putLineLeafIntoCache(wsp, xform, (ssgLeaf *)e);
}
}
}
bool
FGGroundCache::prepare_ground_cache(double ref_time, const double pt[3],
double rad)
{
// Empty cache.
ground_radius = 0.0;
found_ground = false;
triangles.resize(0);
catapults.resize(0);
wires.resize(0);
// Store the parameters we used to build up that cache.
sgdCopyVec3(reference_wgs84_point, pt);
reference_vehicle_radius = rad;
// Store the time reference used to compute movements of moving triangles.
cache_ref_time = ref_time;
// Decide where we put the scenery center.
Point3D old_cntr = globals->get_scenery()->get_center();
Point3D cntr(pt[0], pt[1], pt[2]);
// Only move the cache center if it is unacceptable far away.
if (40*40 < old_cntr.distance3Dsquared(cntr))
globals->get_scenery()->set_center(cntr);
else
cntr = old_cntr;
// The center of the cache.
sgdSetVec3(cache_center, cntr[0], cntr[1], cntr[2]);
sgdVec3 ptoff;
sgdSubVec3(ptoff, pt, cache_center);
// Prepare sphere around the aircraft.
sgdSphere acSphere;
acSphere.setRadius(rad);
acSphere.setCenter(ptoff);
// Prepare bigger sphere around the aircraft.
// This one is required for reliably finding wires we have caught but
// have already left the hopefully smaller sphere for the ground reactions.
const double max_wire_dist = 300.0;
sgdSphere wireSphere;
wireSphere.setRadius(max_wire_dist < rad ? rad : max_wire_dist);
wireSphere.setCenter(ptoff);
// Down vector. Is used for croase agl computations when we are far enough
// from ground that we have an empty cache.
sgdVec3 down;
sgdSetVec3(down, -pt[0], -pt[1], -pt[2]);
sgdNormalizeVec3(down);
// We collapse all transforms we need to reach a particular leaf.
// The leafs itself will be then transformed later.
// So our cache is just flat.
// For leafs which are moving (carriers surface, etc ...)
// we will later store a speed in the GroundType class. We can then apply
// some translations to that nodes according to the time which has passed
// compared to that snapshot.
sgdMat4 xform;
sgdMakeIdentMat4( xform );
// Walk the scene graph and extract solid ground triangles and carrier data.
ssgBranch *terrain = globals->get_scenery()->get_scene_graph();
cache_fill(terrain, xform, &acSphere, down, &wireSphere);
// some stats
SG_LOG(SG_FLIGHT,SG_DEBUG, "prepare_ground_cache(): ac radius = " << rad
<< ", # triangles = " << triangles.size()
<< ", # wires = " << wires.size()
<< ", # catapults = " << catapults.size()
<< ", ground_radius = " << ground_radius );
// If the ground radius is still below 5e6 meters, then we do not yet have
// any scenery.
found_ground = found_ground && 5e6 < ground_radius;
if (!found_ground)
SG_LOG(SG_FLIGHT, SG_WARN, "prepare_ground_cache(): trying to build cache "
"without any scenery below the aircraft" );
if (cntr != old_cntr)
globals->get_scenery()->set_center(old_cntr);
return found_ground;
}
bool
FGGroundCache::is_valid(double *ref_time, double pt[3], double *rad)
{
sgdCopyVec3(pt, reference_wgs84_point);
*rad = reference_vehicle_radius;
*ref_time = cache_ref_time;
return found_ground;
}
double
FGGroundCache::get_cat(double t, const double dpt[3],
double end[2][3], double vel[2][3])
{
// start with a distance of 1e10 meters...
double dist = 1e10;
// Time difference to the reference time.
t -= cache_ref_time;
size_t sz = catapults.size();
for (size_t i = 0; i < sz; ++i) {
sgdVec3 pivotoff, rvel[2];
sgdLineSegment3 ls;
sgdCopyVec3(ls.a, catapults[i].start);
sgdCopyVec3(ls.b, catapults[i].end);
sgdSubVec3(pivotoff, ls.a, catapults[i].rotation_pivot);
sgdVectorProductVec3(rvel[0], catapults[i].rotation, pivotoff);
sgdAddVec3(rvel[0], catapults[i].velocity);
sgdSubVec3(pivotoff, ls.b, catapults[i].rotation_pivot);
sgdVectorProductVec3(rvel[1], catapults[i].rotation, pivotoff);
sgdAddVec3(rvel[1], catapults[i].velocity);
sgdAddVec3(ls.a, cache_center);
sgdAddVec3(ls.b, cache_center);
sgdAddScaledVec3(ls.a, rvel[0], t);
sgdAddScaledVec3(ls.b, rvel[1], t);
double this_dist = sgdDistSquaredToLineSegmentVec3( ls, dpt );
if (this_dist < dist) {
SG_LOG(SG_FLIGHT,SG_INFO, "Found catapult "
<< this_dist << " meters away");
dist = this_dist;
// The carrier code takes care of that ordering.
sgdCopyVec3( end[0], ls.a );
sgdCopyVec3( end[1], ls.b );
sgdCopyVec3( vel[0], rvel[0] );
sgdCopyVec3( vel[1], rvel[1] );
}
}
// At the end take the root, we only computed squared distances ...
return sqrt(dist);
}
bool
FGGroundCache::get_agl(double t, const double dpt[3], double max_altoff,
double contact[3], double normal[3], double vel[3],
int *type, double *loadCapacity,
double *frictionFactor, double *agl)
{
bool ret = false;
*type = FGInterface::Unknown;
// *agl = 0.0;
*loadCapacity = DBL_MAX;
*frictionFactor = 1.0;
sgdSetVec3( vel, 0.0, 0.0, 0.0 );
sgdSetVec3( contact, 0.0, 0.0, 0.0 );
sgdSetVec3( normal, 0.0, 0.0, 0.0 );
// Time difference to th reference time.
t -= cache_ref_time;
// The double valued point we start to search for intersection.
sgdVec3 pt;
sgdSubVec3( pt, dpt, cache_center );
// The search direction
sgdVec3 dir;
sgdSetVec3( dir, -dpt[0], -dpt[1], -dpt[2] );
sgdNormaliseVec3( dir );
// Initialize to something sensible
double current_radius = 0.0;
size_t sz = triangles.size();
for (size_t i = 0; i < sz; ++i) {
Triangle triangle;
velocityTransformTriangle(t, triangle, triangles[i]);
if (!fgdIsectSphereInfLine(triangle.sphere, pt, dir))
continue;
// Check for intersection.
sgdVec3 isecpoint;
if ( sgdIsectInfLinePlane( isecpoint, pt, dir, triangle.plane ) &&
sgdPointInTriangle( isecpoint, triangle.vertices ) ) {
// Compute the vector from pt to the intersection point ...
sgdVec3 off;
sgdSubVec3(off, isecpoint, pt);
// ... and check if it is too high or not
if (-max_altoff < sgdScalarProductVec3( off, dir )) {
// Transform to the wgs system
sgdAddVec3( isecpoint, cache_center );
// compute the radius, good enough approximation to take the geocentric radius
SGDfloat radius = sgdLengthSquaredVec3(isecpoint);
if (current_radius < radius) {
current_radius = radius;
ret = true;
// Save the new potential intersection point.
sgdCopyVec3( contact, isecpoint );
// The first three values in the vector are the plane normal.
sgdCopyVec3( normal, triangle.plane );
// The velocity wrt earth.
sgdVec3 pivotoff;
sgdSubVec3(pivotoff, pt, triangle.rotation_pivot);
sgdVectorProductVec3(vel, triangle.rotation, pivotoff);
sgdAddVec3(vel, triangle.velocity);
// Save the ground type.
*type = triangle.type;
// FIXME: figure out how to get that sign ...
// *agl = sqrt(sqdist);
*agl = sgdLengthVec3( dpt ) - sgdLengthVec3( contact );
// *loadCapacity = DBL_MAX;
// *frictionFactor = 1.0;
}
}
}
}
if (ret)
return true;
// Whenever we did not have a ground triangle for the requested point,
// take the ground level we found during the current cache build.
// This is as good as what we had before for agl.
double r = sgdLengthVec3( dpt );
sgdCopyVec3( contact, dpt );
sgdScaleVec3( contact, ground_radius/r );
sgdCopyVec3( normal, dpt );
sgdNormaliseVec3( normal );
sgdSetVec3( vel, 0.0, 0.0, 0.0 );
// The altitude is the distance of the requested point from the
// contact point.
*agl = sgdLengthVec3( dpt ) - sgdLengthVec3( contact );
*type = FGInterface::Unknown;
*loadCapacity = DBL_MAX;
*frictionFactor = 1.0;
return ret;
}
bool FGGroundCache::caught_wire(double t, const double pt[4][3])
{
size_t sz = wires.size();
if (sz == 0)
return false;
// Time difference to the reference time.
t -= cache_ref_time;
// Build the two triangles spanning the area where the hook has moved
// during the past step.
sgdVec4 plane[2];
sgdVec3 tri[2][3];
sgdMakePlane( plane[0], pt[0], pt[1], pt[2] );
sgdCopyVec3( tri[0][0], pt[0] );
sgdCopyVec3( tri[0][1], pt[1] );
sgdCopyVec3( tri[0][2], pt[2] );
sgdMakePlane( plane[1], pt[0], pt[2], pt[3] );
sgdCopyVec3( tri[1][0], pt[0] );
sgdCopyVec3( tri[1][1], pt[2] );
sgdCopyVec3( tri[1][2], pt[3] );
// Intersect the wire lines with each of these triangles.
// You have caught a wire if they intersect.
for (size_t i = 0; i < sz; ++i) {
sgdVec3 le[2];
for (int k = 0; k < 2; ++k) {
sgdVec3 pivotoff, vel;
sgdCopyVec3(le[k], wires[i].ends[k]);
sgdSubVec3(pivotoff, le[k], wires[i].rotation_pivot);
sgdVectorProductVec3(vel, wires[i].rotation, pivotoff);
sgdAddVec3(vel, wires[i].velocity);
sgdAddScaledVec3(le[k], vel, t);
sgdAddVec3(le[k], cache_center);
}
for (int k=0; k<2; ++k) {
sgdVec3 isecpoint;
double isecval = sgdIsectLinesegPlane(isecpoint, le[0], le[1], plane[k]);
if ( 0.0 <= isecval && isecval <= 1.0 &&
sgdPointInTriangle( isecpoint, tri[k] ) ) {
SG_LOG(SG_FLIGHT,SG_INFO, "Caught wire");
// Store the wire id.
wire_id = wires[i].wire_id;
return true;
}
}
}
return false;
}
bool FGGroundCache::get_wire_ends(double t, double end[2][3], double vel[2][3])
{
// Fast return if we do not have an active wire.
if (wire_id < 0)
return false;
// Time difference to the reference time.
t -= cache_ref_time;
// Search for the wire with the matching wire id.
size_t sz = wires.size();
for (size_t i = 0; i < sz; ++i) {
if (wires[i].wire_id == wire_id) {
for (size_t k = 0; k < 2; ++k) {
sgdVec3 pivotoff;
sgdCopyVec3(end[k], wires[i].ends[k]);
sgdSubVec3(pivotoff, end[k], wires[i].rotation_pivot);
sgdVectorProductVec3(vel[k], wires[i].rotation, pivotoff);
sgdAddVec3(vel[k], wires[i].velocity);
sgdAddScaledVec3(end[k], vel[k], t);
sgdAddVec3(end[k], cache_center);
}
return true;
}
}
return false;
}
void FGGroundCache::release_wire(void)
{
wire_id = -1;
}