1
0
Fork 0
flightgear/Main/views.c

204 lines
7.3 KiB
C

/**************************************************************************
* views.c -- data structures and routines for managing and view parameters.
*
* Written by Curtis Olson, started August 1997.
*
* Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* $Id$
* (Log is kept at end of this file)
**************************************************************************/
#include "views.h"
#include "../Include/constants.h"
#include "../Flight/flight.h"
#include "../Math/mat3.h"
#include "../Math/polar.h"
#include "../Math/vector.h"
#include "../Scenery/scenery.h"
#include "../Time/fg_time.h"
/* This is a record containing current view parameters */
struct fgVIEW current_view;
/* Initialize a view structure */
void fgViewInit(struct fgVIEW *v) {
v->view_offset = 0.0;
v->goal_view_offset = 0.0;
}
/* Update the view parameters */
void fgViewUpdate(struct fgFLIGHT *f, struct fgVIEW *v, struct fgLIGHT *l) {
MAT3vec vec, forward, v0, minus_z;
MAT3mat R, TMP, UP, LOCAL, VIEW;
double ntmp;
/* calculate the cartesion coords of the current lat/lon/0 elev */
v->cur_zero_elev = fgPolarToCart(FG_Longitude, FG_Lat_geocentric,
FG_Sea_level_radius * FEET_TO_METER);
v->cur_zero_elev.x -= scenery.center.x;
v->cur_zero_elev.y -= scenery.center.y;
v->cur_zero_elev.z -= scenery.center.z;
/* calculate view position in current FG view coordinate system */
v->view_pos = fgPolarToCart(FG_Longitude, FG_Lat_geocentric,
FG_Radius_to_vehicle * FEET_TO_METER + 1.0);
v->view_pos.x -= scenery.center.x;
v->view_pos.y -= scenery.center.y;
v->view_pos.z -= scenery.center.z;
printf("View pos = %.4f, %.4f, %.4f\n",
v->view_pos.x, v->view_pos.y, v->view_pos.z);
/* make a vector to the current view position */
MAT3_SET_VEC(v0, v->view_pos.x, v->view_pos.y, v->view_pos.z);
/* calculate vector to sun's position on the earth's surface */
v->to_sun[0] = l->fg_sunpos.x - (v->view_pos.x + scenery.center.x);
v->to_sun[1] = l->fg_sunpos.y - (v->view_pos.y + scenery.center.y);
v->to_sun[2] = l->fg_sunpos.z - (v->view_pos.z + scenery.center.z);
printf("Vector to sun = %.2f %.2f %.2f\n",
v->to_sun[0], v->to_sun[1], v->to_sun[2]);
/* Derive the LOCAL aircraft rotation matrix (roll, pitch, yaw) */
MAT3_SET_VEC(vec, 0.0, 0.0, 1.0);
MAT3rotate(R, vec, FG_Phi);
/* printf("Roll matrix\n"); */
/* MAT3print(R, stdout); */
MAT3_SET_VEC(vec, 0.0, 1.0, 0.0);
/* MAT3mult_vec(vec, vec, R); */
MAT3rotate(TMP, vec, FG_Theta);
/* printf("Pitch matrix\n"); */
/* MAT3print(TMP, stdout); */
MAT3mult(R, R, TMP);
MAT3_SET_VEC(vec, 1.0, 0.0, 0.0);
/* MAT3mult_vec(vec, vec, R); */
/* MAT3rotate(TMP, vec, FG_Psi - FG_PI_2); */
MAT3rotate(TMP, vec, -FG_Psi);
/* printf("Yaw matrix\n");
MAT3print(TMP, stdout); */
MAT3mult(LOCAL, R, TMP);
/* printf("LOCAL matrix\n"); */
/* MAT3print(LOCAL, stdout); */
/* Derive the local UP transformation matrix based on *geodetic*
* coordinates */
MAT3_SET_VEC(vec, 0.0, 0.0, 1.0);
MAT3rotate(R, vec, FG_Longitude); /* R = rotate about Z axis */
/* printf("Longitude matrix\n"); */
/* MAT3print(R, stdout); */
MAT3_SET_VEC(vec, 0.0, 1.0, 0.0);
MAT3mult_vec(vec, vec, R);
MAT3rotate(TMP, vec, -FG_Latitude); /* TMP = rotate about X axis */
/* printf("Latitude matrix\n"); */
/* MAT3print(TMP, stdout); */
MAT3mult(UP, R, TMP);
/* printf("Local up matrix\n"); */
/* MAT3print(UP, stdout); */
MAT3_SET_VEC(v->local_up, 1.0, 0.0, 0.0);
MAT3mult_vec(v->local_up, v->local_up, UP);
printf(" Local Up = (%.4f, %.4f, %.4f)\n",
v->local_up[0], v->local_up[1], v->local_up[2]);
/* Alternative method to Derive local up vector based on
* *geodetic* coordinates */
/* alt_up = fgPolarToCart(FG_Longitude, FG_Latitude, 1.0); */
/* printf(" Alt Up = (%.4f, %.4f, %.4f)\n",
alt_up.x, alt_up.y, alt_up.z); */
/* Derive the VIEW matrix */
MAT3mult(VIEW, LOCAL, UP);
/* printf("VIEW matrix\n"); */
/* MAT3print(VIEW, stdout); */
/* generate the current up, forward, and fwrd-view vectors */
MAT3_SET_VEC(vec, 1.0, 0.0, 0.0);
MAT3mult_vec(v->view_up, vec, VIEW);
MAT3_SET_VEC(vec, 0.0, 0.0, 1.0);
MAT3mult_vec(forward, vec, VIEW);
printf("Forward vector is (%.2f,%.2f,%.2f)\n", forward[0], forward[1],
forward[2]);
MAT3rotate(TMP, v->view_up, v->view_offset);
MAT3mult_vec(v->view_forward, forward, TMP);
/* Given a vector from the view position to the point on the
* earth's surface the sun is directly over, map into onto the
* local plane representing "horizontal". */
map_vec_onto_cur_surface_plane(v->local_up, v0, v->to_sun,
v->surface_to_sun);
MAT3_NORMALIZE_VEC(v->surface_to_sun, ntmp);
printf("Surface direction to sun is %.2f %.2f %.2f\n",
v->surface_to_sun[0], v->surface_to_sun[1], v->surface_to_sun[2]);
/* printf("Should be close to zero = %.2f\n",
MAT3_DOT_PRODUCT(v->local_up, v->surface_to_sun)); */
/* Given a vector pointing straight down (-Z), map into onto the
* local plane representing "horizontal". This should give us the
* local direction for moving "south". */
MAT3_SET_VEC(minus_z, 0.0, 0.0, -1.0);
map_vec_onto_cur_surface_plane(v->local_up, v0, minus_z, v->surface_south);
MAT3_NORMALIZE_VEC(v->surface_south, ntmp);
/* printf("Surface direction directly south %.2f %.2f %.2f\n",
v->surface_south[0], v->surface_south[1], v->surface_south[2]); */
/* now calculate the surface east vector */
MAT3rotate(TMP, v->view_up, FG_PI_2);
MAT3mult_vec(v->surface_east, v->surface_south, TMP);
/* printf("Surface direction directly east %.2f %.2f %.2f\n",
v->surface_east[0], v->surface_east[1], v->surface_east[2]); */
/* printf("Should be close to zero = %.2f\n",
MAT3_DOT_PRODUCT(v->surface_south, v->surface_east)); */
}
/* $Log$
/* Revision 1.6 1997/12/22 04:14:32 curt
/* Aligned sky with sun so dusk/dawn effects can be correct relative to the sun.
/*
* Revision 1.5 1997/12/18 04:07:02 curt
* Worked on properly translating and positioning the sky dome.
*
* Revision 1.4 1997/12/17 23:13:36 curt
* Began working on rendering a sky.
*
* Revision 1.3 1997/12/15 23:54:50 curt
* Add xgl wrappers for debugging.
* Generate terrain normals on the fly.
*
* Revision 1.2 1997/12/10 22:37:48 curt
* Prepended "fg" on the name of all global structures that didn't have it yet.
* i.e. "struct WEATHER {}" became "struct fgWEATHER {}"
*
* Revision 1.1 1997/08/27 21:31:17 curt
* Initial revision.
*
*/