1
0
Fork 0
flightgear/src/Instrumentation/agradar.cxx
Tim Moore 67c7d8642a fix warnings in Instrumentation
Mostly signed comparisons and order of initializers in constructors
2009-08-24 18:02:15 +02:00

330 lines
11 KiB
C++

// Air Ground Radar
//
// Written by Vivian MEAZZA, started Feb 2008.
//
//
// Copyright (C) 2008 Vivian Meazza
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//
//
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <Main/fg_props.hxx>
#include <Main/globals.hxx>
#include "agradar.hxx"
agRadar::agRadar(SGPropertyNode *node) : wxRadarBg(node)
{
_name = node->getStringValue("name", "air-ground-radar");
_num = node->getIntValue("number", 0);
}
agRadar::~agRadar ()
{
}
void
agRadar::init ()
{
_user_hdg_deg_node = fgGetNode("/orientation/heading-deg", true);
_user_pitch_deg_node = fgGetNode("/orientation/pitch-deg", true);
_user_roll_deg_node = fgGetNode("/orientation/roll-deg", true);
_terrain_warning_node = fgGetNode("/sim/alarms/terrain-warning", true);
_terrain_warning_node->setBoolValue(false);
wxRadarBg::init();
// those properties are used by a radar instrument of a MFD
// input switch = OFF | TST | STBY | ON
// input mode = WX | WXA | MAP | TW
// output status = STBY | TEST | WX | WXA | MAP | blank
// input lightning = true | false
// input TRK = +/- n degrees
// input TILT = +/- n degree
// input autotilt = true | false
// input range = n nm (20/40/80)
// input display-mode = arc | rose | map | plan
_Instrument->setFloatValue("trk", 0.0);
_Instrument->setFloatValue("tilt",-2.5);
_Instrument->setStringValue("status","");
_Instrument->setIntValue("mode-control", 5);
_Instrument->setBoolValue("stabilisation/roll", false);
_Instrument->setBoolValue("stabilisation/pitch", false);
_xOffsetMNode = getInstrumentNode("antenna/x-offset-m", 0.0);
_yOffsetMNode = getInstrumentNode("antenna/y-offset-m", 0.0);
_zOffsetMNode = getInstrumentNode("antenna/z-offset-m", 0.0);
_elevLimitDegNode = getInstrumentNode("terrain-warning/elev-limit-deg", 2.0);
_elevStepDegNode = getInstrumentNode("terrain-warning/elev-step-deg", 1.0);
_azLimitDegNode = getInstrumentNode("terrain-warning/az-limit-deg", 1.0);
_azStepDegNode = getInstrumentNode("terrain-warning/az-step-deg", 1.5);
_maxRangeMNode = getInstrumentNode("terrain-warning/max-range-m", 4000.0);
_minRangeMNode = getInstrumentNode("terrain-warning/min-range-m", 250.0);
_tiltNode = getInstrumentNode("terrain-warning/tilt", -2.0);
_brgDegNode = getInstrumentNode("terrain-warning/hit/brg-deg", 0.0);
_rangeMNode = getInstrumentNode("terrain-warning/hit/range-m", 0.0);
_elevationMNode = getInstrumentNode("terrain-warning/hit/elevation-m", 0.0);
_materialNode = getInstrumentNode("terrain-warning/hit/material", "");
_bumpinessNode = getInstrumentNode("terrain-warning/hit/bumpiness", 0.0);
_rollStabNode = getInstrumentNode("terrain-warning/stabilisation/roll",
true);
_pitchStabNode = getInstrumentNode("terrain-warning/stabilisation/pitch",
false);
// cout << "init done" << endl;
}
void
agRadar::update (double delta_time_sec)
{
if ( ! _sim_init_done ) {
if ( ! fgGetBool("sim/sceneryloaded", false) )
return;
_sim_init_done = true;
}
if ( !_odg || ! _serviceable_node->getBoolValue() ) {
_Instrument->setStringValue("status","");
return;
}
_time += delta_time_sec;
if (_time < _interval)
return;
_time = 0.0;
update_terrain();
// wxRadarBg::update(delta_time_sec);
}
void
agRadar::setUserPos()
{
userpos.setLatitudeDeg(_user_lat_node->getDoubleValue());
userpos.setLongitudeDeg(_user_lon_node->getDoubleValue());
userpos.setElevationM(_user_alt_node->getDoubleValue() * SG_FEET_TO_METER);
}
SGVec3d
agRadar::getCartUserPos() const {
SGVec3d cartUserPos = SGVec3d::fromGeod(userpos);
return cartUserPos;
}
SGVec3d
agRadar::getCartAntennaPos() const {
float yaw = _user_hdg_deg_node->getDoubleValue();
float pitch = _user_pitch_deg_node->getDoubleValue();
float roll = _user_roll_deg_node->getDoubleValue();
double x_offset_m =_xOffsetMNode->getDoubleValue();
double y_offset_m =_yOffsetMNode->getDoubleValue();
double z_offset_m =_zOffsetMNode->getDoubleValue();
// convert geodetic positions to geocentered
SGVec3d cartuserPos = getCartUserPos();
// Transform to the right coordinate frame, configuration is done in
// the x-forward, y-right, z-up coordinates (feet), computation
// in the simulation usual body x-forward, y-right, z-down coordinates
// (meters) )
SGVec3d _off(x_offset_m, y_offset_m, -z_offset_m);
// Transform the user position to the horizontal local coordinate system.
SGQuatd hlTrans = SGQuatd::fromLonLat(userpos);
// and postrotate the orientation of the user model wrt the horizontal
// local frame
hlTrans *= SGQuatd::fromYawPitchRollDeg(yaw,pitch,roll);
// The offset converted to the usual body fixed coordinate system
// rotated to the earth-fixed coordinates axis
SGVec3d off = hlTrans.backTransform(_off);
// Add the position offset of the user model to get the geocentered position
SGVec3d offsetPos = cartuserPos + off;
return offsetPos;
}
void
agRadar::setAntennaPos() {
SGGeodesy::SGCartToGeod(getCartAntennaPos(), antennapos);
}
void
agRadar::setUserVec(double az, double el)
{
float yaw = _user_hdg_deg_node->getDoubleValue();
float pitch = _user_pitch_deg_node->getDoubleValue();
float roll = _user_roll_deg_node->getDoubleValue();
double tilt = _Instrument->getDoubleValue("tilt");
double trk = _Instrument->getDoubleValue("trk");
bool roll_stab = _Instrument->getBoolValue("stabilisation/roll");
bool pitch_stab = _Instrument->getBoolValue("stabilisation/pitch");
SGQuatd offset = SGQuatd::fromYawPitchRollDeg(az + trk, el + tilt, 0);
// Transform the antenna position to the horizontal local coordinate system.
SGQuatd hlTrans = SGQuatd::fromLonLat(antennapos);
// and postrotate the orientation of the radar wrt the horizontal
// local frame
hlTrans *= SGQuatd::fromYawPitchRollDeg(yaw,
pitch_stab ? 0 :pitch,
roll_stab ? 0 : roll);
hlTrans *= offset;
// now rotate the rotation vector back into the
// earth centered frames coordinates
SGVec3d angleaxis(1,0,0);
uservec = hlTrans.backTransform(angleaxis);
}
bool
agRadar::getMaterial(){
if (globals->get_scenery()->get_elevation_m(hitpos, _elevation_m, &_material)){
//_ht_agl_ft = pos.getElevationFt() - _elevation_m * SG_METER_TO_FEET;
if (_material) {
const vector<string>& names = _material->get_names();
_solid = _material->get_solid();
_load_resistance = _material->get_load_resistance();
_frictionFactor =_material->get_friction_factor();
_bumpinessFactor = _material->get_bumpiness();
if (!names.empty())
_mat_name = names[0].c_str();
else
_mat_name = "";
}
/*cout << "material " << mat_name
<< " solid " << _solid
<< " load " << _load_resistance
<< " frictionFactor " << frictionFactor
<< " _bumpinessFactor " << _bumpinessFactor
<< endl;*/
return true;
} else {
return false;
}
}
void
agRadar::update_terrain()
{
int mode = _radar_mode_control_node->getIntValue();
double el_limit = 1;
double el_step = 1;
double az_limit = 50;
double az_step = 10;
double max_range = 40000;
double min_range = 250;
double tilt = -2.5;
bool roll_stab = _rollStabNode->getBoolValue();
bool pitch_stab = _pitchStabNode->getBoolValue();
//string status = "";
const char* status;
bool hdg_mkr = true;
if (mode == 5){
status = "TW";
hdg_mkr = false;
tilt = _tiltNode->getDoubleValue();
el_limit = _elevLimitDegNode->getDoubleValue();
el_step = _elevStepDegNode->getDoubleValue();
az_limit = _azLimitDegNode->getDoubleValue();
az_step = _azStepDegNode->getDoubleValue();
max_range = _maxRangeMNode->getDoubleValue();
min_range = _minRangeMNode->getDoubleValue();
}
_Instrument->setDoubleValue("tilt", tilt);
_Instrument->setBoolValue("stabilisation/roll", roll_stab);
_Instrument->setBoolValue("stabilisation/pitch", pitch_stab);
_Instrument->setStringValue("status", status);
_Instrument->setDoubleValue("limit-deg", az_limit);
_Instrument->setBoolValue("heading-marker", hdg_mkr);
setUserPos();
setAntennaPos();
SGVec3d cartantennapos = getCartAntennaPos();
for(double brg = -az_limit; brg <= az_limit; brg += az_step){
for(double elev = el_limit; elev >= - el_limit; elev -= el_step){
setUserVec(brg, elev);
SGVec3d nearestHit;
globals->get_scenery()->get_cart_ground_intersection(cartantennapos, uservec, nearestHit);
SGGeodesy::SGCartToGeod(nearestHit, hitpos);
double course1, course2, distance;
SGGeodesy::inverse(hitpos, antennapos, course1, course2, distance);
if (distance >= min_range && distance <= max_range) {
_terrain_warning_node->setBoolValue(true);
getMaterial();
_brgDegNode->setDoubleValue(course2);
_rangeMNode->setDoubleValue(distance);
_materialNode->setStringValue(_mat_name.c_str());
_bumpinessNode->setDoubleValue(_bumpinessFactor);
_elevationMNode->setDoubleValue(_elevation_m);
} else {
_terrain_warning_node->setBoolValue(false);
_brgDegNode->setDoubleValue(0);
_rangeMNode->setDoubleValue(0);
_materialNode->setStringValue("");
_bumpinessNode->setDoubleValue(0);
_elevationMNode->setDoubleValue(0);
}
//cout << "usr hdg " << _user_hdg_deg_node->getDoubleValue()
// << " ant brg " << course2
// << " elev " << _Instrument->getDoubleValue("tilt")
// << " gnd rng nm " << distance * SG_METER_TO_NM
// << " ht " << hitpos.getElevationFt()
// << " mat " << _mat_name
// << " solid " << _solid
// << " bumpiness " << _bumpinessFactor
// << endl;
}
}
}