1
0
Fork 0
flightgear/src/FDM/JSBSim/models/atmosphere/FGMars.cpp
2007-01-15 12:48:54 +00:00

331 lines
10 KiB
C++
Executable file

/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Module: FGMars.cpp
Author: Jon Berndt
Date started: 1/4/04
Purpose: Models the Martian atmosphere very simply
Called by: FGFDMExec
------------- Copyright (C) 2004 Jon S. Berndt (jsb@hal-pc.org) -------------
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.
You should have received a copy of the GNU Lesser General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place - Suite 330, Boston, MA 02111-1307, USA.
Further information about the GNU Lesser General Public License can also be found on
the world wide web at http://www.gnu.org.
FUNCTIONAL DESCRIPTION
--------------------------------------------------------------------------------
Models the Martian atmosphere.
HISTORY
--------------------------------------------------------------------------------
1/04/2004 JSB Created
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
COMMENTS, REFERENCES, and NOTES
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
INCLUDES
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
#include "FGMars.h"
#include "FGState.h"
namespace JSBSim {
static const char *IdSrc = "$Id$";
static const char *IdHdr = ID_MARS;
/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CLASS IMPLEMENTATION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
FGMars::FGMars(FGFDMExec* fdmex) : FGAtmosphere(fdmex)
{
Name = "FGMars";
Reng = 53.5 * 44.01;
/*
lastIndex = 0;
h = 0.0;
psiw = 0.0;
MagnitudedAccelDt = MagnitudeAccel = Magnitude = 0.0;
// turbType = ttNone;
turbType = ttStandard;
// turbType = ttBerndt;
TurbGain = 0.0;
TurbRate = 1.0;
*/
bind();
Debug(0);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
/*
FGMars::~FGMars()
{
unbind();
Debug(1);
}
*/
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bool FGMars::InitModel(void)
{
FGModel::InitModel();
Calculate(h);
SLtemperature = intTemperature;
SLpressure = intPressure;
SLdensity = intDensity;
SLsoundspeed = sqrt(SHRatio*Reng*intTemperature);
rSLtemperature = 1.0/intTemperature;
rSLpressure = 1.0/intPressure;
rSLdensity = 1.0/intDensity;
rSLsoundspeed = 1.0/SLsoundspeed;
temperature = &intTemperature;
pressure = &intPressure;
density = &intDensity;
useExternal=false;
return true;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bool FGMars::Run(void)
{
if (FGModel::Run()) return true;
if (FDMExec->Holding()) return false;
//do temp, pressure, and density first
if (!useExternal) {
h = Propagate->Geth();
Calculate(h);
}
if (turbType != ttNone) {
Turbulence();
vWindNED += vTurbulence;
}
if (vWindNED(1) != 0.0) psiw = atan2( vWindNED(2), vWindNED(1) );
if (psiw < 0) psiw += 2*M_PI;
soundspeed = sqrt(SHRatio*Reng*(*temperature));
Debug(2);
return false;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGMars::Calculate(double altitude)
{
//Calculate reftemp, refpress, and density
// LIMIT the temperatures so they do not descend below absolute zero.
if (altitude < 22960.0) {
intTemperature = -25.68 - 0.000548*altitude; // Deg Fahrenheit
} else {
intTemperature = -10.34 - 0.001217*altitude; // Deg Fahrenheit
}
intPressure = 14.62*exp(-0.00003*altitude); // psf - 14.62 psf =~ 7 millibars
intDensity = intPressure/(Reng*intTemperature); // slugs/ft^3 (needs deg R. as input
//cout << "Atmosphere: h=" << altitude << " rho= " << intDensity << endl;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// square a value, but preserve the original sign
static inline double
square_signed (double value)
{
if (value < 0)
return value * value * -1;
else
return value * value;
}
void FGMars::Turbulence(void)
{
switch (turbType) {
case ttStandard: {
vDirectiondAccelDt(eX) = 1 - 2.0*(double(rand())/double(RAND_MAX));
vDirectiondAccelDt(eY) = 1 - 2.0*(double(rand())/double(RAND_MAX));
vDirectiondAccelDt(eZ) = 1 - 2.0*(double(rand())/double(RAND_MAX));
MagnitudedAccelDt = 1 - 2.0*(double(rand())/double(RAND_MAX)) - Magnitude;
// Scale the magnitude so that it moves
// away from the peaks
MagnitudedAccelDt = ((MagnitudedAccelDt - Magnitude) /
(1 + fabs(Magnitude)));
MagnitudeAccel += MagnitudedAccelDt*rate*TurbRate*State->Getdt();
Magnitude += MagnitudeAccel*rate*State->Getdt();
vDirectiondAccelDt.Normalize();
// deemphasise non-vertical forces
vDirectiondAccelDt(eX) = square_signed(vDirectiondAccelDt(eX));
vDirectiondAccelDt(eY) = square_signed(vDirectiondAccelDt(eY));
vDirectionAccel += vDirectiondAccelDt*rate*TurbRate*State->Getdt();
vDirectionAccel.Normalize();
vDirection += vDirectionAccel*rate*State->Getdt();
vDirection.Normalize();
// Diminish turbulence within three wingspans
// of the ground
vTurbulence = TurbGain * Magnitude * vDirection;
double HOverBMAC = Auxiliary->GetHOverBMAC();
if (HOverBMAC < 3.0)
vTurbulence *= (HOverBMAC / 3.0) * (HOverBMAC / 3.0);
vTurbulenceGrad = TurbGain*MagnitudeAccel * vDirection;
vBodyTurbGrad = Propagate->GetTl2b()*vTurbulenceGrad;
vTurbPQR(eP) = vBodyTurbGrad(eY)/Aircraft->GetWingSpan();
// if (Aircraft->GetHTailArm() != 0.0)
// vTurbPQR(eQ) = vBodyTurbGrad(eZ)/Aircraft->GetHTailArm();
// else
// vTurbPQR(eQ) = vBodyTurbGrad(eZ)/10.0;
if (Aircraft->GetVTailArm())
vTurbPQR(eR) = vBodyTurbGrad(eX)/Aircraft->GetVTailArm();
else
vTurbPQR(eR) = vBodyTurbGrad(eX)/10.0;
// Clear the horizontal forces
// actually felt by the plane, now
// that we've used them to calculate
// moments.
vTurbulence(eX) = 0.0;
vTurbulence(eY) = 0.0;
break;
}
case ttBerndt: {
vDirectiondAccelDt(eX) = 1 - 2.0*(double(rand())/double(RAND_MAX));
vDirectiondAccelDt(eY) = 1 - 2.0*(double(rand())/double(RAND_MAX));
vDirectiondAccelDt(eZ) = 1 - 2.0*(double(rand())/double(RAND_MAX));
MagnitudedAccelDt = 1 - 2.0*(double(rand())/double(RAND_MAX)) - Magnitude;
MagnitudeAccel += MagnitudedAccelDt*rate*State->Getdt();
Magnitude += MagnitudeAccel*rate*State->Getdt();
vDirectiondAccelDt.Normalize();
vDirectionAccel += vDirectiondAccelDt*rate*State->Getdt();
vDirectionAccel.Normalize();
vDirection += vDirectionAccel*rate*State->Getdt();
// Diminish z-vector within two wingspans
// of the ground
double HOverBMAC = Auxiliary->GetHOverBMAC();
if (HOverBMAC < 2.0)
vDirection(eZ) *= HOverBMAC / 2.0;
vDirection.Normalize();
vTurbulence = TurbGain*Magnitude * vDirection;
vTurbulenceGrad = TurbGain*MagnitudeAccel * vDirection;
vBodyTurbGrad = Propagate->GetTl2b()*vTurbulenceGrad;
vTurbPQR(eP) = vBodyTurbGrad(eY)/Aircraft->GetWingSpan();
if (Aircraft->GetHTailArm() != 0.0)
vTurbPQR(eQ) = vBodyTurbGrad(eZ)/Aircraft->GetHTailArm();
else
vTurbPQR(eQ) = vBodyTurbGrad(eZ)/10.0;
if (Aircraft->GetVTailArm())
vTurbPQR(eR) = vBodyTurbGrad(eX)/Aircraft->GetVTailArm();
else
vTurbPQR(eR) = vBodyTurbGrad(eX)/10.0;
break;
}
default:
break;
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// The bitmasked value choices are as follows:
// unset: In this case (the default) JSBSim would only print
// out the normally expected messages, essentially echoing
// the config files as they are read. If the environment
// variable is not set, debug_lvl is set to 1 internally
// 0: This requests JSBSim not to output any messages
// whatsoever.
// 1: This value explicity requests the normal JSBSim
// startup messages
// 2: This value asks for a message to be printed out when
// a class is instantiated
// 4: When this value is set, a message is displayed when a
// FGModel object executes its Run() method
// 8: When this value is set, various runtime state variables
// are printed out periodically
// 16: When set various parameters are sanity checked and
// a message is printed out when they go out of bounds
void FGMars::Debug(int from)
{
if (debug_lvl <= 0) return;
if (debug_lvl & 1) { // Standard console startup message output
if (from == 0) { // Constructor
}
}
if (debug_lvl & 2 ) { // Instantiation/Destruction notification
if (from == 0) cout << "Instantiated: FGMars" << endl;
if (from == 1) cout << "Destroyed: FGMars" << endl;
}
if (debug_lvl & 4 ) { // Run() method entry print for FGModel-derived objects
}
if (debug_lvl & 8 ) { // Runtime state variables
}
if (debug_lvl & 16) { // Sanity checking
}
if (debug_lvl & 32) { // Turbulence
if (frame == 0 && from == 2) {
cout << "vTurbulence(X), vTurbulence(Y), vTurbulence(Z), "
<< "vTurbulenceGrad(X), vTurbulenceGrad(Y), vTurbulenceGrad(Z), "
<< "vDirection(X), vDirection(Y), vDirection(Z), "
<< "Magnitude, "
<< "vTurbPQR(P), vTurbPQR(Q), vTurbPQR(R), " << endl;
} else if (from == 2) {
cout << vTurbulence << ", " << vTurbulenceGrad << ", " << vDirection << ", " << Magnitude << ", " << vTurbPQR << endl;
}
}
if (debug_lvl & 64) {
if (from == 0) { // Constructor
cout << IdSrc << endl;
cout << IdHdr << endl;
}
}
}
} // namespace JSBSim