1
0
Fork 0
flightgear/Main/views.cxx

623 lines
20 KiB
C++

// views.cxx -- data structures and routines for managing and view
// parameters.
//
// Written by Curtis Olson, started August 1997.
//
// Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
// (Log is kept at end of this file)
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <Debug/fg_debug.h>
#include <Flight/flight.h>
#include <Include/fg_constants.h>
#include <Math/mat3.h>
#include <Math/polar3d.hxx>
#include <Math/vector.hxx>
#include <Scenery/scenery.hxx>
#include <Time/fg_time.hxx>
#include "options.hxx"
#include "views.hxx"
// This is a record containing current view parameters
fgVIEW current_view;
// Constructor
fgVIEW::fgVIEW( void ) {
}
// Initialize a view structure
void fgVIEW::Init( void ) {
fgPrintf( FG_VIEW, FG_INFO, "Initializing View parameters\n");
view_offset = 0.0;
goal_view_offset = 0.0;
winWidth = 640; // FG_DEFAULT_WIN_WIDTH
winHeight = 480; // FG_DEFAULT_WIN_HEIGHT
win_ratio = (double) winWidth / (double) winHeight;
update_fov = TRUE;
}
// Update the field of view parameters
void fgVIEW::UpdateFOV( fgOPTIONS *o ) {
double fov, theta_x, theta_y;
fov = o->get_fov();
// printf("win_ratio = %.2f\n", win_ratio);
// calculate sin() and cos() of fov / 2 in X direction;
theta_x = (fov * win_ratio * DEG_TO_RAD) / 2.0;
// printf("theta_x = %.2f\n", theta_x);
sin_fov_x = sin(theta_x);
cos_fov_x = cos(theta_x);
slope_x = - cos_fov_x / sin_fov_x;
// printf("slope_x = %.2f\n", slope_x);
// calculate sin() and cos() of fov / 2 in Y direction;
theta_y = (fov * DEG_TO_RAD) / 2.0;
// printf("theta_y = %.2f\n", theta_y);
sin_fov_y = sin(theta_y);
cos_fov_y = cos(theta_y);
slope_y = cos_fov_y / sin_fov_y;
// printf("slope_y = %.2f\n", slope_y);
}
// Update the view parameters
void fgVIEW::Update( fgFLIGHT *f ) {
fgPoint3d p;
MAT3vec vec, forward, v0, minus_z;
MAT3mat R, TMP, UP, LOCAL, VIEW;
double ntmp;
if(update_fov == TRUE) {
// printf("Updating fov\n");
UpdateFOV(&current_options);
update_fov = FALSE;
}
scenery.center.x = scenery.next_center.x;
scenery.center.y = scenery.next_center.y;
scenery.center.z = scenery.next_center.z;
// printf("scenery center = %.2f %.2f %.2f\n", scenery.center.x,
// scenery.center.y, scenery.center.z);
// calculate the cartesion coords of the current lat/lon/0 elev
p.lon = FG_Longitude;
p.lat = FG_Lat_geocentric;
p.radius = FG_Sea_level_radius * FEET_TO_METER;
cur_zero_elev = fgPolarToCart3d(p);
cur_zero_elev.x -= scenery.center.x;
cur_zero_elev.y -= scenery.center.y;
cur_zero_elev.z -= scenery.center.z;
// calculate view position in current FG view coordinate system
// p.lon & p.lat are already defined earlier, p.radius was set to
// the sea level radius, so now we add in our altitude.
if ( FG_Altitude * FEET_TO_METER >
(scenery.cur_elev + 0.5 * METER_TO_FEET) ) {
p.radius += FG_Altitude * FEET_TO_METER;
} else {
p.radius += scenery.cur_elev + 0.5 * METER_TO_FEET;
}
abs_view_pos = fgPolarToCart3d(p);
view_pos.x = abs_view_pos.x - scenery.center.x;
view_pos.y = abs_view_pos.y - scenery.center.y;
view_pos.z = abs_view_pos.z - scenery.center.z;
fgPrintf( FG_VIEW, FG_DEBUG, "Absolute view pos = %.4f, %.4f, %.4f\n",
abs_view_pos.x, abs_view_pos.y, abs_view_pos.z);
fgPrintf( FG_VIEW, FG_DEBUG, "Relative view pos = %.4f, %.4f, %.4f\n",
view_pos.x, view_pos.y, view_pos.z);
// Derive the LOCAL aircraft rotation matrix (roll, pitch, yaw)
// from FG_T_local_to_body[3][3]
// Question: Why is the LaRCsim matrix arranged so differently
// than the one we need???
LOCAL[0][0] = FG_T_local_to_body_33;
LOCAL[0][1] = -FG_T_local_to_body_32;
LOCAL[0][2] = -FG_T_local_to_body_31;
LOCAL[0][3] = 0.0;
LOCAL[1][0] = -FG_T_local_to_body_23;
LOCAL[1][1] = FG_T_local_to_body_22;
LOCAL[1][2] = FG_T_local_to_body_21;
LOCAL[1][3] = 0.0;
LOCAL[2][0] = -FG_T_local_to_body_13;
LOCAL[2][1] = FG_T_local_to_body_12;
LOCAL[2][2] = FG_T_local_to_body_11;
LOCAL[2][3] = 0.0;
LOCAL[3][0] = LOCAL[3][1] = LOCAL[3][2] = LOCAL[3][3] = 0.0;
LOCAL[3][3] = 1.0;
// printf("LaRCsim LOCAL matrix\n");
// MAT3print(LOCAL, stdout);
#ifdef OLD_LOCAL_TO_BODY_CODE
// old code to calculate LOCAL matrix calculated from Phi,
// Theta, and Psi (roll, pitch, yaw)
MAT3_SET_VEC(vec, 0.0, 0.0, 1.0);
MAT3rotate(R, vec, FG_Phi);
/* printf("Roll matrix\n"); */
/* MAT3print(R, stdout); */
MAT3_SET_VEC(vec, 0.0, 1.0, 0.0);
/* MAT3mult_vec(vec, vec, R); */
MAT3rotate(TMP, vec, FG_Theta);
/* printf("Pitch matrix\n"); */
/* MAT3print(TMP, stdout); */
MAT3mult(R, R, TMP);
MAT3_SET_VEC(vec, 1.0, 0.0, 0.0);
/* MAT3mult_vec(vec, vec, R); */
/* MAT3rotate(TMP, vec, FG_Psi - FG_PI_2); */
MAT3rotate(TMP, vec, -FG_Psi);
/* printf("Yaw matrix\n");
MAT3print(TMP, stdout); */
MAT3mult(LOCAL, R, TMP);
// printf("FG derived LOCAL matrix\n");
// MAT3print(LOCAL, stdout);
#endif // OLD_LOCAL_TO_BODY_CODE
// Derive the local UP transformation matrix based on *geodetic*
// coordinates
MAT3_SET_VEC(vec, 0.0, 0.0, 1.0);
MAT3rotate(R, vec, FG_Longitude); // R = rotate about Z axis
// printf("Longitude matrix\n");
// MAT3print(R, stdout);
MAT3_SET_VEC(vec, 0.0, 1.0, 0.0);
MAT3mult_vec(vec, vec, R);
MAT3rotate(TMP, vec, -FG_Latitude); // TMP = rotate about X axis
// printf("Latitude matrix\n");
// MAT3print(TMP, stdout);
MAT3mult(UP, R, TMP);
// printf("Local up matrix\n");
// MAT3print(UP, stdout);
MAT3_SET_VEC(local_up, 1.0, 0.0, 0.0);
MAT3mult_vec(local_up, local_up, UP);
// printf( "Local Up = (%.4f, %.4f, %.4f)\n",
// local_up[0], local_up[1], local_up[2]);
// Alternative method to Derive local up vector based on
// *geodetic* coordinates
// alt_up = fgPolarToCart(FG_Longitude, FG_Latitude, 1.0);
// printf( " Alt Up = (%.4f, %.4f, %.4f)\n",
// alt_up.x, alt_up.y, alt_up.z);
// Calculate the VIEW matrix
MAT3mult(VIEW, LOCAL, UP);
// printf("VIEW matrix\n");
// MAT3print(VIEW, stdout);
// generate the current up, forward, and fwrd-view vectors
MAT3_SET_VEC(vec, 1.0, 0.0, 0.0);
MAT3mult_vec(view_up, vec, VIEW);
MAT3_SET_VEC(vec, 0.0, 0.0, 1.0);
MAT3mult_vec(forward, vec, VIEW);
// printf( "Forward vector is (%.2f,%.2f,%.2f)\n", forward[0], forward[1],
// forward[2]);
MAT3rotate(TMP, view_up, view_offset);
MAT3mult_vec(view_forward, forward, TMP);
// make a vector to the current view position
MAT3_SET_VEC(v0, view_pos.x, view_pos.y, view_pos.z);
// Given a vector pointing straight down (-Z), map into onto the
// local plane representing "horizontal". This should give us the
// local direction for moving "south".
MAT3_SET_VEC(minus_z, 0.0, 0.0, -1.0);
map_vec_onto_cur_surface_plane(local_up, v0, minus_z, surface_south);
MAT3_NORMALIZE_VEC(surface_south, ntmp);
// printf( "Surface direction directly south %.2f %.2f %.2f\n",
// surface_south[0], surface_south[1], surface_south[2]);
// now calculate the surface east vector
MAT3rotate(TMP, view_up, FG_PI_2);
MAT3mult_vec(surface_east, surface_south, TMP);
// printf( "Surface direction directly east %.2f %.2f %.2f\n",
// surface_east[0], surface_east[1], surface_east[2]);
// printf( "Should be close to zero = %.2f\n",
// MAT3_DOT_PRODUCT(surface_south, surface_east));
}
// Update the "World to Eye" transformation matrix
// This is most useful for view frustum culling
void fgVIEW::UpdateWorldToEye( fgFLIGHT *f ) {
MAT3mat R_Phi, R_Theta, R_Psi, R_Lat, R_Lon, T_view;
MAT3mat TMP;
MAT3hvec vec;
// if we have a view offset use slow way for now
if(fabs(view_offset)>FG_EPSILON){
// Roll Matrix
MAT3_SET_HVEC(vec, 0.0, 0.0, -1.0, 1.0);
MAT3rotate(R_Phi, vec, FG_Phi);
// printf("Roll matrix (Phi)\n");
// MAT3print(R_Phi, stdout);
// Pitch Matrix
MAT3_SET_HVEC(vec, 1.0, 0.0, 0.0, 1.0);
MAT3rotate(R_Theta, vec, FG_Theta);
// printf("\nPitch matrix (Theta)\n");
// MAT3print(R_Theta, stdout);
// Yaw Matrix
MAT3_SET_HVEC(vec, 0.0, -1.0, 0.0, 1.0);
MAT3rotate(R_Psi, vec, FG_Psi + FG_PI - view_offset );
// printf("\nYaw matrix (Psi)\n");
// MAT3print(R_Psi, stdout);
// aircraft roll/pitch/yaw
MAT3mult(TMP, R_Phi, R_Theta);
MAT3mult(AIRCRAFT, TMP, R_Psi);
} else { // JUST USE LOCAL_TO_BODY NHV 5/25/98
// hey this is even different then LOCAL[][] above ??
AIRCRAFT[0][0] = -FG_T_local_to_body_22;
AIRCRAFT[0][1] = -FG_T_local_to_body_23;
AIRCRAFT[0][2] = FG_T_local_to_body_21;
AIRCRAFT[0][3] = 0.0;
AIRCRAFT[1][0] = FG_T_local_to_body_32;
AIRCRAFT[1][1] = FG_T_local_to_body_33;
AIRCRAFT[1][2] = -FG_T_local_to_body_31;
AIRCRAFT[1][3] = 0.0;
AIRCRAFT[2][0] = FG_T_local_to_body_12;
AIRCRAFT[2][1] = FG_T_local_to_body_13;
AIRCRAFT[2][2] = -FG_T_local_to_body_11;
AIRCRAFT[2][3] = 0.0;
AIRCRAFT[3][0] = AIRCRAFT[3][1] = AIRCRAFT[3][2] = AIRCRAFT[3][3] = 0.0;
AIRCRAFT[3][3] = 1.0;
// ??? SOMETHING LIKE THIS SHOULD WORK NHV
// Rotate about LOCAL_UP (AIRCRAFT[2][])
// MAT3_SET_HVEC(vec, AIRCRAFT[2][0], AIRCRAFT[2][1],
// AIRCRAFT[2][2], AIRCRAFT[2][3]);
// MAT3rotate(TMP, vec, FG_PI - view_offset );
// MAT3mult(AIRCRAFT, AIRCRAFT, TMP);
}
// printf("\naircraft roll pitch yaw\n");
// MAT3print(AIRCRAFT, stdout);
// View position in scenery centered coordinates
MAT3_SET_HVEC(vec, view_pos.x, view_pos.y, view_pos.z, 1.0);
MAT3translate(T_view, vec);
// printf("\nTranslation matrix\n");
// MAT3print(T_view, stdout);
// Latitude
MAT3_SET_HVEC(vec, 1.0, 0.0, 0.0, 1.0);
// R_Lat = rotate about X axis
MAT3rotate(R_Lat, vec, FG_Latitude);
// printf("\nLatitude matrix\n");
// MAT3print(R_Lat, stdout);
// Longitude
MAT3_SET_HVEC(vec, 0.0, 0.0, 1.0, 1.0);
// R_Lon = rotate about Z axis
MAT3rotate(R_Lon, vec, FG_Longitude - FG_PI_2 );
// printf("\nLongitude matrix\n");
// MAT3print(R_Lon, stdout);
#ifdef THIS_IS_OLD_CODE
// View position in scenery centered coordinates
MAT3_SET_HVEC(vec, view_pos.x, view_pos.y, view_pos.z, 1.0);
MAT3translate(T_view, vec);
// printf("\nTranslation matrix\n");
// MAT3print(T_view, stdout);
// aircraft roll/pitch/yaw
MAT3mult(TMP, R_Phi, R_Theta);
MAT3mult(AIRCRAFT, TMP, R_Psi);
// printf("\naircraft roll pitch yaw\n");
// MAT3print(AIRCRAFT, stdout);
#endif THIS_IS_OLD_CODE
// lon/lat
MAT3mult(WORLD, R_Lat, R_Lon);
// printf("\nworld\n");
// MAT3print(WORLD, stdout);
MAT3mult(EYE_TO_WORLD, AIRCRAFT, WORLD);
MAT3mult(EYE_TO_WORLD, EYE_TO_WORLD, T_view);
// printf("\nEye to world\n");
// MAT3print(EYE_TO_WORLD, stdout);
MAT3invert(WORLD_TO_EYE, EYE_TO_WORLD);
// printf("\nWorld to eye\n");
// MAT3print(WORLD_TO_EYE, stdout);
// printf( "\nview_pos = %.2f %.2f %.2f\n",
// view_pos.x, view_pos.y, view_pos.z );
// MAT3_SET_HVEC(eye, 0.0, 0.0, 0.0, 1.0);
// MAT3mult_vec(vec, eye, EYE_TO_WORLD);
// printf("\neye -> world = %.2f %.2f %.2f\n", vec[0], vec[1], vec[2]);
// MAT3_SET_HVEC(vec1, view_pos.x, view_pos.y, view_pos.z, 1.0);
// MAT3mult_vec(vec, vec1, WORLD_TO_EYE);
// printf( "\nabs_view_pos -> eye = %.2f %.2f %.2f\n",
// vec[0], vec[1], vec[2]);
}
// Destructor
fgVIEW::~fgVIEW( void ) {
}
// Basically, this is a modified version of the Mesa gluLookAt()
// function that's been modified slightly so we can capture the result
// before sending it off to OpenGL land.
void fg_gluLookAt( GLdouble eyex, GLdouble eyey, GLdouble eyez,
GLdouble centerx, GLdouble centery, GLdouble centerz,
GLdouble upx, GLdouble upy, GLdouble upz )
{
GLdouble *m;
GLdouble x[3], y[3], z[3];
GLdouble mag;
m = current_view.MODEL_VIEW;
/* Make rotation matrix */
/* Z vector */
z[0] = eyex - centerx;
z[1] = eyey - centery;
z[2] = eyez - centerz;
mag = sqrt( z[0]*z[0] + z[1]*z[1] + z[2]*z[2] );
if (mag) { /* mpichler, 19950515 */
z[0] /= mag;
z[1] /= mag;
z[2] /= mag;
}
/* Y vector */
y[0] = upx;
y[1] = upy;
y[2] = upz;
/* X vector = Y cross Z */
x[0] = y[1]*z[2] - y[2]*z[1];
x[1] = -y[0]*z[2] + y[2]*z[0];
x[2] = y[0]*z[1] - y[1]*z[0];
/* Recompute Y = Z cross X */
y[0] = z[1]*x[2] - z[2]*x[1];
y[1] = -z[0]*x[2] + z[2]*x[0];
y[2] = z[0]*x[1] - z[1]*x[0];
/* mpichler, 19950515 */
/* cross product gives area of parallelogram, which is < 1.0 for
* non-perpendicular unit-length vectors; so normalize x, y here
*/
mag = sqrt( x[0]*x[0] + x[1]*x[1] + x[2]*x[2] );
if (mag) {
x[0] /= mag;
x[1] /= mag;
x[2] /= mag;
}
mag = sqrt( y[0]*y[0] + y[1]*y[1] + y[2]*y[2] );
if (mag) {
y[0] /= mag;
y[1] /= mag;
y[2] /= mag;
}
#define M(row,col) m[col*4+row]
M(0,0) = x[0]; M(0,1) = x[1]; M(0,2) = x[2]; M(0,3) = 0.0;
M(1,0) = y[0]; M(1,1) = y[1]; M(1,2) = y[2]; M(1,3) = 0.0;
M(2,0) = z[0]; M(2,1) = z[1]; M(2,2) = z[2]; M(2,3) = 0.0;
// the following is part of the original gluLookAt(), but we are
// commenting it out because we know we are going to be doing a
// translation below which will set these values anyways
// M(3,0) = 0.0; M(3,1) = 0.0; M(3,2) = 0.0; M(3,3) = 1.0;
#undef M
// Translate Eye to Origin
// replaces: glTranslated( -eyex, -eyey, -eyez );
// this has been slightly modified from the original glTranslate()
// code because we know that coming into this m[12] = m[13] =
// m[14] = 0.0, and m[15] = 1.0;
m[12] = m[0] * -eyex + m[4] * -eyey + m[8] * -eyez /* + m[12] */;
m[13] = m[1] * -eyex + m[5] * -eyey + m[9] * -eyez /* + m[13] */;
m[14] = m[2] * -eyex + m[6] * -eyey + m[10] * -eyez /* + m[14] */;
m[15] = 1.0 /* m[3] * -eyex + m[7] * -eyey + m[11] * -eyez + m[15] */;
// xglMultMatrixd( m );
xglLoadMatrixd( m );
}
// $Log$
// Revision 1.18 1998/07/24 21:57:02 curt
// Set near clip plane to 0.5 meters when close to the ground. Also, let the view get a bit closer to the ground before hitting the hard limit.
//
// Revision 1.17 1998/07/24 21:39:12 curt
// Debugging output tweaks.
// Cast glGetString to (char *) to avoid compiler errors.
// Optimizations to fgGluLookAt() by Norman Vine.
//
// Revision 1.16 1998/07/13 21:01:41 curt
// Wrote access functions for current fgOPTIONS.
//
// Revision 1.15 1998/07/12 03:14:43 curt
// Added ground collision detection.
// Did some serious horsing around to be able to "hug" the ground properly
// and still be able to take off.
// Set the near clip plane to 1.0 meters when less than 10 meters above the
// ground.
// Did some serious horsing around getting the initial airplane position to be
// correct based on rendered terrain elevation.
// Added a little cheat/hack that will prevent the view position from ever
// dropping below the terrain, even when the flight model doesn't quite
// put you as high as you'd like.
//
// Revision 1.14 1998/07/08 14:45:08 curt
// polar3d.h renamed to polar3d.hxx
// vector.h renamed to vector.hxx
// updated audio support so it waits to create audio classes (and tie up
// /dev/dsp) until the mpg123 player is finished.
//
// Revision 1.13 1998/07/04 00:52:27 curt
// Add my own version of gluLookAt() (which is nearly identical to the
// Mesa/glu version.) But, by calculating the Model View matrix our selves
// we can save this matrix without having to read it back in from the video
// card. This hopefully allows us to save a few cpu cycles when rendering
// out the fragments because we can just use glLoadMatrixd() with the
// precalculated matrix for each tile rather than doing a push(), translate(),
// pop() for every fragment.
//
// Panel status defaults to off for now until it gets a bit more developed.
//
// Extract OpenGL driver info on initialization.
//
// Revision 1.12 1998/06/03 00:47:15 curt
// Updated to compile in audio support if OSS available.
// Updated for new version of Steve's audio library.
// STL includes don't use .h
// Small view optimizations.
//
// Revision 1.11 1998/05/27 02:24:05 curt
// View optimizations by Norman Vine.
//
// Revision 1.10 1998/05/17 16:59:03 curt
// First pass at view frustum culling now operational.
//
// Revision 1.9 1998/05/16 13:08:37 curt
// C++ - ified views.[ch]xx
// Shuffled some additional view parameters into the fgVIEW class.
// Changed tile-radius to tile-diameter because it is a much better
// name.
// Added a WORLD_TO_EYE transformation to views.cxx. This allows us
// to transform world space to eye space for view frustum culling.
//
// Revision 1.8 1998/05/02 01:51:01 curt
// Updated polartocart conversion routine.
//
// Revision 1.7 1998/04/30 12:34:20 curt
// Added command line rendering options:
// enable/disable fog/haze
// specify smooth/flat shading
// disable sky blending and just use a solid color
// enable wireframe drawing mode
//
// Revision 1.6 1998/04/28 01:20:23 curt
// Type-ified fgTIME and fgVIEW.
// Added a command line option to disable textures.
//
// Revision 1.5 1998/04/26 05:10:04 curt
// "struct fgLIGHT" -> "fgLIGHT" because fgLIGHT is typedef'd.
//
// Revision 1.4 1998/04/25 22:04:53 curt
// Use already calculated LaRCsim values to create the roll/pitch/yaw
// transformation matrix (we call it LOCAL)
//
// Revision 1.3 1998/04/25 20:24:02 curt
// Cleaned up initialization sequence to eliminate interdependencies
// between sun position, lighting, and view position. This creates a
// valid single pass initialization path.
//
// Revision 1.2 1998/04/24 00:49:22 curt
// Wrapped "#include <config.h>" in "#ifdef HAVE_CONFIG_H"
// Trying out some different option parsing code.
// Some code reorganization.
//
// Revision 1.1 1998/04/22 13:25:45 curt
// C++ - ifing the code.
// Starting a bit of reorganization of lighting code.
//
// Revision 1.16 1998/04/18 04:11:29 curt
// Moved fg_debug to it's own library, added zlib support.
//
// Revision 1.15 1998/02/20 00:16:24 curt
// Thursday's tweaks.
//
// Revision 1.14 1998/02/09 15:07:50 curt
// Minor tweaks.
//
// Revision 1.13 1998/02/07 15:29:45 curt
// Incorporated HUD changes and struct/typedef changes from Charlie Hotchkiss
// <chotchkiss@namg.us.anritsu.com>
//
// Revision 1.12 1998/01/29 00:50:28 curt
// Added a view record field for absolute x, y, z position.
//
// Revision 1.11 1998/01/27 00:47:58 curt
// Incorporated Paul Bleisch's <pbleisch@acm.org> new debug message
// system and commandline/config file processing code.
//
// Revision 1.10 1998/01/19 19:27:09 curt
// Merged in make system changes from Bob Kuehne <rpk@sgi.com>
// This should simplify things tremendously.
//
// Revision 1.9 1998/01/13 00:23:09 curt
// Initial changes to support loading and management of scenery tiles. Note,
// there's still a fair amount of work left to be done.
//
// Revision 1.8 1997/12/30 22:22:33 curt
// Further integration of event manager.
//
// Revision 1.7 1997/12/30 20:47:45 curt
// Integrated new event manager with subsystem initializations.
//
// Revision 1.6 1997/12/22 04:14:32 curt
// Aligned sky with sun so dusk/dawn effects can be correct relative to the sun.
//
// Revision 1.5 1997/12/18 04:07:02 curt
// Worked on properly translating and positioning the sky dome.
//
// Revision 1.4 1997/12/17 23:13:36 curt
// Began working on rendering a sky.
//
// Revision 1.3 1997/12/15 23:54:50 curt
// Add xgl wrappers for debugging.
// Generate terrain normals on the fly.
//
// Revision 1.2 1997/12/10 22:37:48 curt
// Prepended "fg" on the name of all global structures that didn't have it yet.
// i.e. "struct WEATHER {}" became "struct fgWEATHER {}"
//
// Revision 1.1 1997/08/27 21:31:17 curt
// Initial revision.
//