5d1c390194
groundcache.cxx: Cheaper ray triangle intersection
925 lines
29 KiB
C++
925 lines
29 KiB
C++
// groundcache.cxx -- carries a small subset of the scenegraph near the vehicle
|
|
//
|
|
// Written by Mathias Froehlich, started Nov 2004.
|
|
//
|
|
// Copyright (C) 2004 Mathias Froehlich - Mathias.Froehlich@web.de
|
|
//
|
|
// This program is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of the
|
|
// License, or (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful, but
|
|
// WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
//
|
|
// $Id$
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
# include "config.h"
|
|
#endif
|
|
|
|
#include <float.h>
|
|
|
|
#include <plib/sg.h>
|
|
#include <osg/CullFace>
|
|
#include <osg/Drawable>
|
|
#include <osg/Geode>
|
|
#include <osg/Geometry>
|
|
#include <osg/TriangleFunctor>
|
|
|
|
#include <simgear/sg_inlines.h>
|
|
#include <simgear/constants.h>
|
|
#include <simgear/debug/logstream.hxx>
|
|
#include <simgear/math/sg_geodesy.hxx>
|
|
#include <simgear/scene/material/mat.hxx>
|
|
#include <simgear/scene/material/matlib.hxx>
|
|
#include <simgear/scene/util/SGNodeMasks.hxx>
|
|
|
|
#include <Main/globals.hxx>
|
|
#include <Scenery/scenery.hxx>
|
|
#include <Scenery/tilemgr.hxx>
|
|
#include <AIModel/AICarrier.hxx>
|
|
|
|
#include "flight.hxx"
|
|
#include "groundcache.hxx"
|
|
|
|
static inline bool
|
|
fgdRayTriangle(SGVec3d& x, const SGVec3d& point, const SGVec3d& dir,
|
|
const SGVec3d v[3])
|
|
{
|
|
double eps = 1e-4;
|
|
// Method based on the observation that we are looking for a
|
|
// point x that can be expressed in terms of the triangle points
|
|
// x = p_0 + \mu_1*(p_1 - p_0) + \mu_2*(p_2 - p_0)
|
|
// with 0 <= \mu_1, \mu_2 and \mu_1 + \mu_2 <= 1.
|
|
// OTOH it could be expressed in terms of the ray
|
|
// x = point + \lambda*dir
|
|
// Now we can compute \mu_i and \lambda.
|
|
// define
|
|
SGVec3d d1 = v[1] - v[0];
|
|
SGVec3d d2 = v[2] - v[0];
|
|
SGVec3d b = point - v[0];
|
|
|
|
// the vector in normal direction, but not normalized
|
|
SGVec3d d1crossd2 = cross(d1, d2);
|
|
|
|
double denom = -dot(dir, d1crossd2);
|
|
double signDenom = copysign(1, denom);
|
|
// return if paralell ??? FIXME what if paralell and in plane?
|
|
// may be we are ok below than anyway??
|
|
// if (SGMiscd::abs(denom) <= SGLimitsd::min())
|
|
// return false;
|
|
|
|
// Now \lambda would read
|
|
// lambda = 1/denom*dot(b, d1crossd2);
|
|
// To avoid an expensive division we multiply by |denom|
|
|
double lambdaDenom = signDenom*dot(b, d1crossd2);
|
|
if (lambdaDenom < 0)
|
|
return false;
|
|
// For line segment we would test against
|
|
// if (1 < lambda)
|
|
// return false;
|
|
// with the original lambda. The multiplied test would read
|
|
// if (absDenom < lambdaDenom)
|
|
// return false;
|
|
|
|
double absDenom = fabs(denom);
|
|
double absDenomEps = absDenom*eps;
|
|
|
|
SGVec3d bcrossr = cross(b, dir);
|
|
// double mu1 = 1/denom*dot(d2, bcrossr);
|
|
double mu1 = signDenom*dot(d2, bcrossr);
|
|
if (mu1 < -absDenomEps)
|
|
return false;
|
|
// double mu2 = -1/denom*dot(d1, bcrossr);
|
|
// if (mu2 < -eps)
|
|
// return false;
|
|
double mmu2 = signDenom*dot(d1, bcrossr);
|
|
if (mmu2 > absDenomEps)
|
|
return false;
|
|
|
|
if (mu1 - mmu2 > absDenom + absDenomEps)
|
|
return false;
|
|
|
|
x = point;
|
|
// if we have survived here it could only happen with denom == 0
|
|
// that the point is already in plane. Then return the origin ...
|
|
if (SGLimitsd::min() < absDenom)
|
|
x += (lambdaDenom/absDenom)*dir;
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline bool
|
|
fgdPointInTriangle( const SGVec3d& point, const SGVec3d tri[3] )
|
|
{
|
|
SGVec3d dif;
|
|
|
|
// Some tolerance in meters we accept a point to be outside of the triangle
|
|
// and still return that it is inside.
|
|
SGDfloat min, max;
|
|
// punt if outside bouding cube
|
|
SG_MIN_MAX3 ( min, max, tri[0][0], tri[1][0], tri[2][0] );
|
|
if( (point[0] < min) || (point[0] > max) )
|
|
return false;
|
|
dif[0] = max - min;
|
|
|
|
SG_MIN_MAX3 ( min, max, tri[0][1], tri[1][1], tri[2][1] );
|
|
if( (point[1] < min) || (point[1] > max) )
|
|
return false;
|
|
dif[1] = max - min;
|
|
|
|
SG_MIN_MAX3 ( min, max, tri[0][2], tri[1][2], tri[2][2] );
|
|
if( (point[2] < min) || (point[2] > max) )
|
|
return false;
|
|
dif[2] = max - min;
|
|
|
|
// drop the smallest dimension so we only have to work in 2d.
|
|
SGDfloat min_dim = SG_MIN3 (dif[0], dif[1], dif[2]);
|
|
SGDfloat x1, y1, x2, y2, x3, y3, rx, ry;
|
|
if ( fabs(min_dim-dif[0]) <= DBL_EPSILON ) {
|
|
// x is the smallest dimension
|
|
x1 = point[1];
|
|
y1 = point[2];
|
|
x2 = tri[0][1];
|
|
y2 = tri[0][2];
|
|
x3 = tri[1][1];
|
|
y3 = tri[1][2];
|
|
rx = tri[2][1];
|
|
ry = tri[2][2];
|
|
} else if ( fabs(min_dim-dif[1]) <= DBL_EPSILON ) {
|
|
// y is the smallest dimension
|
|
x1 = point[0];
|
|
y1 = point[2];
|
|
x2 = tri[0][0];
|
|
y2 = tri[0][2];
|
|
x3 = tri[1][0];
|
|
y3 = tri[1][2];
|
|
rx = tri[2][0];
|
|
ry = tri[2][2];
|
|
} else if ( fabs(min_dim-dif[2]) <= DBL_EPSILON ) {
|
|
// z is the smallest dimension
|
|
x1 = point[0];
|
|
y1 = point[1];
|
|
x2 = tri[0][0];
|
|
y2 = tri[0][1];
|
|
x3 = tri[1][0];
|
|
y3 = tri[1][1];
|
|
rx = tri[2][0];
|
|
ry = tri[2][1];
|
|
} else {
|
|
// all dimensions are really small so lets call it close
|
|
// enough and return a successful match
|
|
return true;
|
|
}
|
|
|
|
// check if intersection point is on the same side of p1 <-> p2 as p3
|
|
SGDfloat tmp = (y2 - y3);
|
|
SGDfloat tmpn = (x2 - x3);
|
|
int side1 = SG_SIGN (tmp * (rx - x3) + (y3 - ry) * tmpn);
|
|
int side2 = SG_SIGN (tmp * (x1 - x3) + (y3 - y1) * tmpn);
|
|
if ( side1 != side2 ) {
|
|
// printf("failed side 1 check\n");
|
|
return false;
|
|
}
|
|
|
|
// check if intersection point is on correct side of p2 <-> p3 as p1
|
|
tmp = (y3 - ry);
|
|
tmpn = (x3 - rx);
|
|
side1 = SG_SIGN (tmp * (x2 - rx) + (ry - y2) * tmpn);
|
|
side2 = SG_SIGN (tmp * (x1 - rx) + (ry - y1) * tmpn);
|
|
if ( side1 != side2 ) {
|
|
// printf("failed side 2 check\n");
|
|
return false;
|
|
}
|
|
|
|
// check if intersection point is on correct side of p1 <-> p3 as p2
|
|
tmp = (y2 - ry);
|
|
tmpn = (x2 - rx);
|
|
side1 = SG_SIGN (tmp * (x3 - rx) + (ry - y3) * tmpn);
|
|
side2 = SG_SIGN (tmp * (x1 - rx) + (ry - y1) * tmpn);
|
|
if ( side1 != side2 ) {
|
|
// printf("failed side 3 check\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Test if the line given by the point on the line pt_on_line and the
|
|
// line direction dir intersects the sphere sp.
|
|
// Adapted from plib.
|
|
static inline bool
|
|
fgdIsectSphereInfLine(const SGVec3d& sphereCenter, double radius,
|
|
const SGVec3d& pt_on_line, const SGVec3d& dir)
|
|
{
|
|
SGVec3d r = sphereCenter - pt_on_line;
|
|
double projectedDistance = dot(r, dir);
|
|
double dist = dot(r, r) - projectedDistance * projectedDistance;
|
|
return dist < radius*radius;
|
|
}
|
|
|
|
template<typename T>
|
|
class SGExtendedTriangleFunctor : public osg::TriangleFunctor<T> {
|
|
public:
|
|
// Ok, to be complete we should also implement the indexed variants
|
|
// For now this one appears to be enough ...
|
|
void drawArrays(GLenum mode, GLint first, GLsizei count)
|
|
{
|
|
if (_vertexArrayPtr==0 || count==0) return;
|
|
|
|
const osg::Vec3* vlast;
|
|
const osg::Vec3* vptr;
|
|
switch(mode) {
|
|
case(GL_LINES):
|
|
vlast = &_vertexArrayPtr[first+count];
|
|
for(vptr=&_vertexArrayPtr[first];vptr<vlast;vptr+=2)
|
|
this->operator()(*(vptr),*(vptr+1),_treatVertexDataAsTemporary);
|
|
break;
|
|
case(GL_LINE_STRIP):
|
|
vlast = &_vertexArrayPtr[first+count-1];
|
|
for(vptr=&_vertexArrayPtr[first];vptr<vlast;++vptr)
|
|
this->operator()(*(vptr),*(vptr+1),_treatVertexDataAsTemporary);
|
|
break;
|
|
case(GL_LINE_LOOP):
|
|
vlast = &_vertexArrayPtr[first+count-1];
|
|
for(vptr=&_vertexArrayPtr[first];vptr<vlast;++vptr)
|
|
this->operator()(*(vptr),*(vptr+1),_treatVertexDataAsTemporary);
|
|
this->operator()(_vertexArrayPtr[first+count-1],
|
|
_vertexArrayPtr[first],_treatVertexDataAsTemporary);
|
|
break;
|
|
default:
|
|
osg::TriangleFunctor<T>::drawArrays(mode, first, count);
|
|
break;
|
|
}
|
|
}
|
|
protected:
|
|
using osg::TriangleFunctor<T>::_vertexArrayPtr;
|
|
using osg::TriangleFunctor<T>::_treatVertexDataAsTemporary;
|
|
};
|
|
|
|
class GroundCacheFillVisitor : public osg::NodeVisitor {
|
|
public:
|
|
|
|
/// class to just redirect triangles to the GroundCacheFillVisitor
|
|
class GroundCacheFill {
|
|
public:
|
|
void setGroundCacheFillVisitor(GroundCacheFillVisitor* gcfv)
|
|
{ mGroundCacheFillVisitor = gcfv; }
|
|
|
|
void operator () (const osg::Vec3& v1, const osg::Vec3& v2,
|
|
const osg::Vec3& v3, bool)
|
|
{ mGroundCacheFillVisitor->addTriangle(v1, v2, v3); }
|
|
|
|
void operator () (const osg::Vec3& v1, const osg::Vec3& v2, bool)
|
|
{ mGroundCacheFillVisitor->addLine(v1, v2); }
|
|
|
|
private:
|
|
GroundCacheFillVisitor* mGroundCacheFillVisitor;
|
|
};
|
|
|
|
|
|
GroundCacheFillVisitor(FGGroundCache* groundCache,
|
|
const SGVec3d& down,
|
|
const SGVec3d& cacheReference,
|
|
double cacheRadius,
|
|
double wireCacheRadius) :
|
|
osg::NodeVisitor(osg::NodeVisitor::TRAVERSE_ACTIVE_CHILDREN),
|
|
mGroundCache(groundCache)
|
|
{
|
|
setTraversalMask(SG_NODEMASK_TERRAIN_BIT);
|
|
mDown = down;
|
|
mLocalDown = down;
|
|
sphIsec = true;
|
|
mBackfaceCulling = false;
|
|
mCacheReference = cacheReference;
|
|
mLocalCacheReference = cacheReference;
|
|
mCacheRadius = cacheRadius;
|
|
mWireCacheRadius = wireCacheRadius;
|
|
|
|
mTriangleFunctor.setGroundCacheFillVisitor(this);
|
|
|
|
mGroundProperty.wire_id = -1;
|
|
mGroundProperty.vel = SGVec3d(0, 0, 0);
|
|
mGroundProperty.rot = SGVec3d(0, 0, 0);
|
|
mGroundProperty.pivot = SGVec3d(0, 0, 0);
|
|
}
|
|
|
|
void updateCullMode(osg::StateSet* stateSet)
|
|
{
|
|
if (!stateSet)
|
|
return;
|
|
|
|
osg::StateAttribute* stateAttribute;
|
|
stateAttribute = stateSet->getAttribute(osg::StateAttribute::CULLFACE);
|
|
if (!stateAttribute)
|
|
return;
|
|
osg::CullFace* cullFace = static_cast<osg::CullFace*>(stateAttribute);
|
|
mBackfaceCulling = cullFace->getMode() == osg::CullFace::BACK;
|
|
}
|
|
|
|
bool enterBoundingSphere(const osg::BoundingSphere& bs)
|
|
{
|
|
if (!bs.valid())
|
|
return false;
|
|
|
|
SGVec3d cntr(osg::Vec3d(bs.center())*mLocalToGlobal);
|
|
double rc = bs.radius() + mCacheRadius;
|
|
// Ok, this node might intersect the cache. Visit it in depth.
|
|
double centerDist2 = distSqr(mCacheReference, cntr);
|
|
if (centerDist2 < rc*rc) {
|
|
sphIsec = true;
|
|
} else {
|
|
// Check if the down direction touches the bounding sphere of the node
|
|
// if so, do at least croase agl computations.
|
|
// Ther other thing is that we must check if we are in range of
|
|
// cats or wires
|
|
double rw = bs.radius() + mWireCacheRadius;
|
|
if (rw*rw < centerDist2 &&
|
|
!fgdIsectSphereInfLine(cntr, bs.radius(), mCacheReference, mDown))
|
|
return false;
|
|
sphIsec = false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool enterNode(osg::Node& node)
|
|
{
|
|
if (!enterBoundingSphere(node.getBound()))
|
|
return false;
|
|
|
|
updateCullMode(node.getStateSet());
|
|
|
|
FGGroundCache::GroundProperty& gp = mGroundProperty;
|
|
// get some material information for use in the gear model
|
|
gp.material = globals->get_matlib()->findMaterial(&node);
|
|
if (gp.material) {
|
|
gp.type = gp.material->get_solid() ? FGInterface::Solid : FGInterface::Water;
|
|
return true;
|
|
}
|
|
osg::Referenced* base = node.getUserData();
|
|
if (!base)
|
|
return true;
|
|
FGAICarrierHardware *ud =
|
|
dynamic_cast<FGAICarrierHardware*>(base);
|
|
if (!ud)
|
|
return true;
|
|
|
|
switch (ud->type) {
|
|
case FGAICarrierHardware::Wire:
|
|
gp.type = FGInterface::Wire;
|
|
gp.wire_id = ud->id;
|
|
break;
|
|
case FGAICarrierHardware::Catapult:
|
|
gp.type = FGInterface::Catapult;
|
|
break;
|
|
default:
|
|
gp.type = FGInterface::Solid;
|
|
break;
|
|
}
|
|
// Copy the velocity from the carrier class.
|
|
ud->carrier->getVelocityWrtEarth(gp.vel, gp.rot, gp.pivot);
|
|
|
|
return true;
|
|
}
|
|
|
|
void fillWith(osg::Drawable* drawable)
|
|
{
|
|
bool oldSphIsec = sphIsec;
|
|
if (!enterBoundingSphere(drawable->getBound()))
|
|
return;
|
|
|
|
bool oldBackfaceCulling = mBackfaceCulling;
|
|
updateCullMode(drawable->getStateSet());
|
|
|
|
drawable->accept(mTriangleFunctor);
|
|
|
|
mBackfaceCulling = oldBackfaceCulling;
|
|
sphIsec = oldSphIsec;
|
|
}
|
|
|
|
virtual void apply(osg::Geode& geode)
|
|
{
|
|
bool oldBackfaceCulling = mBackfaceCulling;
|
|
bool oldSphIsec = sphIsec;
|
|
FGGroundCache::GroundProperty oldGp = mGroundProperty;
|
|
if (!enterNode(geode))
|
|
return;
|
|
|
|
for(unsigned i = 0; i < geode.getNumDrawables(); ++i)
|
|
fillWith(geode.getDrawable(i));
|
|
sphIsec = oldSphIsec;
|
|
mGroundProperty = oldGp;
|
|
mBackfaceCulling = oldBackfaceCulling;
|
|
}
|
|
|
|
virtual void apply(osg::Group& group)
|
|
{
|
|
bool oldBackfaceCulling = mBackfaceCulling;
|
|
bool oldSphIsec = sphIsec;
|
|
FGGroundCache::GroundProperty oldGp = mGroundProperty;
|
|
if (!enterNode(group))
|
|
return;
|
|
traverse(group);
|
|
sphIsec = oldSphIsec;
|
|
mBackfaceCulling = oldBackfaceCulling;
|
|
mGroundProperty = oldGp;
|
|
}
|
|
|
|
virtual void apply(osg::Transform& transform)
|
|
{
|
|
if (!enterNode(transform))
|
|
return;
|
|
bool oldBackfaceCulling = mBackfaceCulling;
|
|
bool oldSphIsec = sphIsec;
|
|
FGGroundCache::GroundProperty oldGp = mGroundProperty;
|
|
/// transform the caches center to local coords
|
|
osg::Matrix oldLocalToGlobal = mLocalToGlobal;
|
|
osg::Matrix oldGlobalToLocal = mGlobalToLocal;
|
|
transform.computeLocalToWorldMatrix(mLocalToGlobal, this);
|
|
transform.computeWorldToLocalMatrix(mGlobalToLocal, this);
|
|
|
|
SGVec3d oldLocalCacheReference = mLocalCacheReference;
|
|
mLocalCacheReference.osg() = mCacheReference.osg()*mGlobalToLocal;
|
|
SGVec3d oldLocalDown = mLocalDown;
|
|
mLocalDown.osg() = osg::Matrixd::transform3x3(mDown.osg(), mGlobalToLocal);
|
|
|
|
// walk the children
|
|
traverse(transform);
|
|
|
|
// Restore that one
|
|
mLocalDown = oldLocalDown;
|
|
mLocalCacheReference = oldLocalCacheReference;
|
|
mLocalToGlobal = oldLocalToGlobal;
|
|
mGlobalToLocal = oldGlobalToLocal;
|
|
sphIsec = oldSphIsec;
|
|
mBackfaceCulling = oldBackfaceCulling;
|
|
mGroundProperty = oldGp;
|
|
}
|
|
|
|
void addTriangle(const osg::Vec3& v1, const osg::Vec3& v2,
|
|
const osg::Vec3& v3)
|
|
{
|
|
SGVec3d v[3] = {
|
|
SGVec3d(v1),
|
|
SGVec3d(v2),
|
|
SGVec3d(v3)
|
|
};
|
|
|
|
// a bounding sphere in the node local system
|
|
SGVec3d boundCenter = (1.0/3)*(v[0] + v[1] + v[2]);
|
|
#if 0
|
|
double boundRadius = std::max(norm1(v[0] - boundCenter),
|
|
norm1(v[1] - boundCenter));
|
|
boundRadius = std::max(boundRadius, norm1(v[2] - boundCenter));
|
|
// Ok, we take the 1-norm instead of the expensive 2 norm.
|
|
// Therefore we need that scaling factor - roughly sqrt(3)
|
|
boundRadius = 1.733*boundRadius;
|
|
#else
|
|
double boundRadius = std::max(distSqr(v[0], boundCenter),
|
|
distSqr(v[1], boundCenter));
|
|
boundRadius = std::max(boundRadius, distSqr(v[2], boundCenter));
|
|
boundRadius = sqrt(boundRadius);
|
|
#endif
|
|
|
|
// if we are not in the downward cylinder bail out
|
|
if (!fgdIsectSphereInfLine(boundCenter, boundRadius + mCacheRadius,
|
|
mLocalCacheReference, mLocalDown))
|
|
return;
|
|
|
|
|
|
// The normal and plane in the node local coordinate system
|
|
SGVec3d n = normalize(cross(v[1] - v[0], v[2] - v[0]));
|
|
if (0 < dot(mLocalDown, n)) {
|
|
if (mBackfaceCulling) {
|
|
// Surface points downwards, ignore for altitude computations.
|
|
return;
|
|
} else {
|
|
n = -n;
|
|
std::swap(v[1], v[2]);
|
|
}
|
|
}
|
|
|
|
// Only check if the triangle is in the cache sphere if the plane
|
|
// containing the triangle is near enough
|
|
if (sphIsec && fabs(dot(n, v[0] - mLocalCacheReference)) < mCacheRadius) {
|
|
// Check if the sphere around the vehicle intersects the sphere
|
|
// around that triangle. If so, put that triangle into the cache.
|
|
double r2 = boundRadius + mCacheRadius;
|
|
if (distSqr(boundCenter, mLocalCacheReference) < r2*r2) {
|
|
FGGroundCache::Triangle t;
|
|
for (unsigned i = 0; i < 3; ++i)
|
|
t.vertices[i].osg() = v[i].osg()*mLocalToGlobal;
|
|
t.boundCenter.osg() = boundCenter.osg()*mLocalToGlobal;
|
|
t.boundRadius = boundRadius;
|
|
|
|
SGVec3d tmp;
|
|
tmp.osg() = osg::Matrixd::transform3x3(n.osg(), mLocalToGlobal);
|
|
t.plane = SGVec4d(tmp[0], tmp[1], tmp[2], -dot(tmp, t.vertices[0]));
|
|
t.velocity = mGroundProperty.vel;
|
|
t.rotation = mGroundProperty.rot;
|
|
t.rotation_pivot = mGroundProperty.pivot - mGroundCache->cache_center;
|
|
t.type = mGroundProperty.type;
|
|
mGroundCache->triangles.push_back(t);
|
|
}
|
|
}
|
|
|
|
// In case the cache is empty, we still provide agl computations.
|
|
// But then we use the old way of having a fixed elevation value for
|
|
// the whole lifetime of this cache.
|
|
SGVec4d plane = SGVec4d(n[0], n[1], n[2], -dot(n, v[0]));
|
|
SGVec3d isectpoint;
|
|
|
|
if (fgdRayTriangle(isectpoint, mLocalCacheReference, mLocalDown, v)) {
|
|
mGroundCache->found_ground = true;
|
|
isectpoint.osg() = isectpoint.osg()*mLocalToGlobal;
|
|
isectpoint += mGroundCache->cache_center;
|
|
double this_radius = length(isectpoint);
|
|
if (mGroundCache->ground_radius < this_radius)
|
|
mGroundCache->ground_radius = this_radius;
|
|
}
|
|
}
|
|
|
|
void addLine(const osg::Vec3& v1, const osg::Vec3& v2)
|
|
{
|
|
SGVec3d gv1(osg::Vec3d(v1)*mLocalToGlobal);
|
|
SGVec3d gv2(osg::Vec3d(v2)*mLocalToGlobal);
|
|
|
|
SGVec3d boundCenter = 0.5*(gv1 + gv2);
|
|
double boundRadius = length(gv1 - boundCenter);
|
|
|
|
if (distSqr(boundCenter, mCacheReference)
|
|
< (boundRadius + mWireCacheRadius)*(boundRadius + mWireCacheRadius) ) {
|
|
if (mGroundProperty.type == FGInterface::Wire) {
|
|
FGGroundCache::Wire wire;
|
|
wire.ends[0] = gv1;
|
|
wire.ends[1] = gv2;
|
|
wire.velocity = mGroundProperty.vel;
|
|
wire.rotation = mGroundProperty.rot;
|
|
wire.rotation_pivot = mGroundProperty.pivot - mGroundCache->cache_center;
|
|
wire.wire_id = mGroundProperty.wire_id;
|
|
|
|
mGroundCache->wires.push_back(wire);
|
|
}
|
|
if (mGroundProperty.type == FGInterface::Catapult) {
|
|
FGGroundCache::Catapult cat;
|
|
// Trick to get the ends in the right order.
|
|
// Use the x axis in the original coordinate system. Choose the
|
|
// most negative x-axis as the one pointing forward
|
|
if (v1[0] < v2[0]) {
|
|
cat.start = gv1;
|
|
cat.end = gv2;
|
|
} else {
|
|
cat.start = gv2;
|
|
cat.end = gv1;
|
|
}
|
|
cat.velocity = mGroundProperty.vel;
|
|
cat.rotation = mGroundProperty.rot;
|
|
cat.rotation_pivot = mGroundProperty.pivot - mGroundCache->cache_center;
|
|
|
|
mGroundCache->catapults.push_back(cat);
|
|
}
|
|
}
|
|
}
|
|
|
|
SGExtendedTriangleFunctor<GroundCacheFill> mTriangleFunctor;
|
|
FGGroundCache* mGroundCache;
|
|
SGVec3d mCacheReference;
|
|
double mCacheRadius;
|
|
double mWireCacheRadius;
|
|
osg::Matrix mLocalToGlobal;
|
|
osg::Matrix mGlobalToLocal;
|
|
SGVec3d mDown;
|
|
SGVec3d mLocalDown;
|
|
SGVec3d mLocalCacheReference;
|
|
bool sphIsec;
|
|
bool mBackfaceCulling;
|
|
FGGroundCache::GroundProperty mGroundProperty;
|
|
};
|
|
|
|
FGGroundCache::FGGroundCache()
|
|
{
|
|
cache_center = SGVec3d(0, 0, 0);
|
|
ground_radius = 0.0;
|
|
cache_ref_time = 0.0;
|
|
wire_id = 0;
|
|
reference_wgs84_point = SGVec3d(0, 0, 0);
|
|
reference_vehicle_radius = 0.0;
|
|
found_ground = false;
|
|
}
|
|
|
|
FGGroundCache::~FGGroundCache()
|
|
{
|
|
}
|
|
|
|
inline void
|
|
FGGroundCache::velocityTransformTriangle(double dt,
|
|
FGGroundCache::Triangle& dst,
|
|
const FGGroundCache::Triangle& src)
|
|
{
|
|
dst = src;
|
|
|
|
if (fabs(dt*dot(src.velocity, src.velocity)) < SGLimitsd::epsilon())
|
|
return;
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
SGVec3d pivotoff = src.vertices[i] - src.rotation_pivot;
|
|
dst.vertices[i] += dt*(src.velocity + cross(src.rotation, pivotoff));
|
|
}
|
|
|
|
// Transform the plane equation
|
|
SGVec3d pivotoff, vel;
|
|
sgdSubVec3(pivotoff.sg(), dst.plane.sg(), src.rotation_pivot.sg());
|
|
vel = src.velocity + cross(src.rotation, pivotoff);
|
|
dst.plane[3] += dt*sgdScalarProductVec3(dst.plane.sg(), vel.sg());
|
|
|
|
dst.boundCenter += dt*src.velocity;
|
|
}
|
|
|
|
bool
|
|
FGGroundCache::prepare_ground_cache(double ref_time, const SGVec3d& pt,
|
|
double rad)
|
|
{
|
|
// Empty cache.
|
|
ground_radius = 0.0;
|
|
found_ground = false;
|
|
triangles.resize(0);
|
|
catapults.resize(0);
|
|
wires.resize(0);
|
|
|
|
// Store the parameters we used to build up that cache.
|
|
reference_wgs84_point = pt;
|
|
reference_vehicle_radius = rad;
|
|
// Store the time reference used to compute movements of moving triangles.
|
|
cache_ref_time = ref_time;
|
|
|
|
// Get a normalized down vector valid for the whole cache
|
|
SGQuatd hlToEc = SGQuatd::fromLonLat(SGGeod::fromCart(pt));
|
|
down = hlToEc.rotate(SGVec3d(0, 0, 1));
|
|
|
|
// Decide where we put the scenery center.
|
|
SGVec3d old_cntr = globals->get_scenery()->get_center();
|
|
SGVec3d cntr(pt);
|
|
// Only move the cache center if it is unacceptable far away.
|
|
if (40*40 < distSqr(old_cntr, cntr))
|
|
globals->get_scenery()->set_center(cntr);
|
|
else
|
|
cntr = old_cntr;
|
|
|
|
// The center of the cache.
|
|
cache_center = cntr;
|
|
|
|
// Prepare sphere around the aircraft.
|
|
SGVec3d ptoff = pt - cache_center;
|
|
double cacheRadius = rad;
|
|
|
|
// Prepare bigger sphere around the aircraft.
|
|
// This one is required for reliably finding wires we have caught but
|
|
// have already left the hopefully smaller sphere for the ground reactions.
|
|
const double max_wire_dist = 300.0;
|
|
double wireCacheRadius = max_wire_dist < rad ? rad : max_wire_dist;
|
|
|
|
// Walk the scene graph and extract solid ground triangles and carrier data.
|
|
GroundCacheFillVisitor gcfv(this, down, ptoff, cacheRadius, wireCacheRadius);
|
|
globals->get_scenery()->get_scene_graph()->accept(gcfv);
|
|
|
|
// some stats
|
|
SG_LOG(SG_FLIGHT,SG_DEBUG, "prepare_ground_cache(): ac radius = " << rad
|
|
<< ", # triangles = " << triangles.size()
|
|
<< ", # wires = " << wires.size()
|
|
<< ", # catapults = " << catapults.size()
|
|
<< ", ground_radius = " << ground_radius );
|
|
|
|
// If the ground radius is still below 5e6 meters, then we do not yet have
|
|
// any scenery.
|
|
found_ground = found_ground && 5e6 < ground_radius;
|
|
if (!found_ground)
|
|
SG_LOG(SG_FLIGHT, SG_WARN, "prepare_ground_cache(): trying to build cache "
|
|
"without any scenery below the aircraft" );
|
|
|
|
if (cntr != old_cntr)
|
|
globals->get_scenery()->set_center(old_cntr);
|
|
|
|
return found_ground;
|
|
}
|
|
|
|
bool
|
|
FGGroundCache::is_valid(double& ref_time, SGVec3d& pt, double& rad)
|
|
{
|
|
pt = reference_wgs84_point;
|
|
rad = reference_vehicle_radius;
|
|
ref_time = cache_ref_time;
|
|
return found_ground;
|
|
}
|
|
|
|
double
|
|
FGGroundCache::get_cat(double t, const SGVec3d& dpt,
|
|
SGVec3d end[2], SGVec3d vel[2])
|
|
{
|
|
// start with a distance of 1e10 meters...
|
|
double dist = 1e10;
|
|
|
|
// Time difference to the reference time.
|
|
t -= cache_ref_time;
|
|
|
|
size_t sz = catapults.size();
|
|
for (size_t i = 0; i < sz; ++i) {
|
|
SGVec3d pivotoff, rvel[2];
|
|
pivotoff = catapults[i].start - catapults[i].rotation_pivot;
|
|
rvel[0] = catapults[i].velocity + cross(catapults[i].rotation, pivotoff);
|
|
pivotoff = catapults[i].end - catapults[i].rotation_pivot;
|
|
rvel[1] = catapults[i].velocity + cross(catapults[i].rotation, pivotoff);
|
|
|
|
SGVec3d thisEnd[2];
|
|
thisEnd[0] = cache_center + catapults[i].start + t*rvel[0];
|
|
thisEnd[1] = cache_center + catapults[i].end + t*rvel[1];
|
|
|
|
sgdLineSegment3 ls;
|
|
sgdCopyVec3(ls.a, thisEnd[0].sg());
|
|
sgdCopyVec3(ls.b, thisEnd[1].sg());
|
|
double this_dist = sgdDistSquaredToLineSegmentVec3( ls, dpt.sg() );
|
|
|
|
if (this_dist < dist) {
|
|
SG_LOG(SG_FLIGHT,SG_INFO, "Found catapult "
|
|
<< this_dist << " meters away");
|
|
dist = this_dist;
|
|
|
|
end[0] = thisEnd[0];
|
|
end[1] = thisEnd[1];
|
|
vel[0] = rvel[0];
|
|
vel[1] = rvel[1];
|
|
}
|
|
}
|
|
|
|
// At the end take the root, we only computed squared distances ...
|
|
return sqrt(dist);
|
|
}
|
|
|
|
bool
|
|
FGGroundCache::get_agl(double t, const SGVec3d& dpt, double max_altoff,
|
|
SGVec3d& contact, SGVec3d& normal, SGVec3d& vel,
|
|
int *type, const SGMaterial** material, double *agl)
|
|
{
|
|
bool ret = false;
|
|
|
|
*type = FGInterface::Unknown;
|
|
// *agl = 0.0;
|
|
if (material)
|
|
*material = 0;
|
|
vel = SGVec3d(0, 0, 0);
|
|
contact = SGVec3d(0, 0, 0);
|
|
normal = SGVec3d(0, 0, 0);
|
|
|
|
// Time difference to th reference time.
|
|
t -= cache_ref_time;
|
|
|
|
// The double valued point we start to search for intersection.
|
|
SGVec3d pt = dpt - cache_center;
|
|
// shift the start of our ray by maxaltoff upwards
|
|
SGVec3d raystart = pt - max_altoff*down;
|
|
|
|
// Initialize to something sensible
|
|
double current_radius = 0.0;
|
|
|
|
size_t sz = triangles.size();
|
|
for (size_t i = 0; i < sz; ++i) {
|
|
Triangle triangle;
|
|
velocityTransformTriangle(t, triangle, triangles[i]);
|
|
if (!fgdIsectSphereInfLine(triangle.boundCenter, triangle.boundRadius, pt, down))
|
|
continue;
|
|
|
|
// Check for intersection.
|
|
SGVec3d isecpoint;
|
|
if (fgdRayTriangle(isecpoint, raystart, down, triangle.vertices)) {
|
|
// Compute the vector from pt to the intersection point ...
|
|
SGVec3d off = isecpoint - pt;
|
|
// ... and check if it is too high or not
|
|
// Transform to the wgs system
|
|
isecpoint += cache_center;
|
|
// compute the radius, good enough approximation to take the geocentric radius
|
|
double radius = dot(isecpoint, isecpoint);
|
|
if (current_radius < radius) {
|
|
current_radius = radius;
|
|
ret = true;
|
|
// Save the new potential intersection point.
|
|
contact = isecpoint;
|
|
// The first three values in the vector are the plane normal.
|
|
sgdCopyVec3( normal.sg(), triangle.plane.sg() );
|
|
// The velocity wrt earth.
|
|
SGVec3d pivotoff = pt - triangle.rotation_pivot;
|
|
vel = triangle.velocity + cross(triangle.rotation, pivotoff);
|
|
// Save the ground type.
|
|
*type = triangle.type;
|
|
*agl = dot(down, contact - dpt);
|
|
if (material)
|
|
*material = triangle.material;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ret)
|
|
return true;
|
|
|
|
// Whenever we did not have a ground triangle for the requested point,
|
|
// take the ground level we found during the current cache build.
|
|
// This is as good as what we had before for agl.
|
|
double r = length(dpt);
|
|
contact = dpt;
|
|
contact *= ground_radius/r;
|
|
normal = -down;
|
|
vel = SGVec3d(0, 0, 0);
|
|
|
|
// The altitude is the distance of the requested point from the
|
|
// contact point.
|
|
*agl = dot(down, contact - dpt);
|
|
*type = FGInterface::Unknown;
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool FGGroundCache::caught_wire(double t, const SGVec3d pt[4])
|
|
{
|
|
size_t sz = wires.size();
|
|
if (sz == 0)
|
|
return false;
|
|
|
|
// Time difference to the reference time.
|
|
t -= cache_ref_time;
|
|
|
|
// Build the two triangles spanning the area where the hook has moved
|
|
// during the past step.
|
|
SGVec4d plane[2];
|
|
SGVec3d tri[2][3];
|
|
sgdMakePlane( plane[0].sg(), pt[0].sg(), pt[1].sg(), pt[2].sg() );
|
|
tri[0][0] = pt[0];
|
|
tri[0][1] = pt[1];
|
|
tri[0][2] = pt[2];
|
|
sgdMakePlane( plane[1].sg(), pt[0].sg(), pt[2].sg(), pt[3].sg() );
|
|
tri[1][0] = pt[0];
|
|
tri[1][1] = pt[2];
|
|
tri[1][2] = pt[3];
|
|
|
|
// Intersect the wire lines with each of these triangles.
|
|
// You have caught a wire if they intersect.
|
|
for (size_t i = 0; i < sz; ++i) {
|
|
SGVec3d le[2];
|
|
for (int k = 0; k < 2; ++k) {
|
|
le[k] = wires[i].ends[k];
|
|
SGVec3d pivotoff = le[k] - wires[i].rotation_pivot;
|
|
SGVec3d vel = wires[i].velocity + cross(wires[i].rotation, pivotoff);
|
|
le[k] += t*vel + cache_center;
|
|
}
|
|
|
|
for (int k=0; k<2; ++k) {
|
|
SGVec3d isecpoint;
|
|
double isecval = sgdIsectLinesegPlane(isecpoint.sg(), le[0].sg(),
|
|
le[1].sg(), plane[k].sg());
|
|
if ( 0.0 <= isecval && isecval <= 1.0 &&
|
|
fgdPointInTriangle( isecpoint, tri[k] ) ) {
|
|
SG_LOG(SG_FLIGHT,SG_INFO, "Caught wire");
|
|
// Store the wire id.
|
|
wire_id = wires[i].wire_id;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool FGGroundCache::get_wire_ends(double t, SGVec3d end[2], SGVec3d vel[2])
|
|
{
|
|
// Fast return if we do not have an active wire.
|
|
if (wire_id < 0)
|
|
return false;
|
|
|
|
// Time difference to the reference time.
|
|
t -= cache_ref_time;
|
|
|
|
// Search for the wire with the matching wire id.
|
|
size_t sz = wires.size();
|
|
for (size_t i = 0; i < sz; ++i) {
|
|
if (wires[i].wire_id == wire_id) {
|
|
for (size_t k = 0; k < 2; ++k) {
|
|
SGVec3d pivotoff = end[k] - wires[i].rotation_pivot;
|
|
vel[k] = wires[i].velocity + cross(wires[i].rotation, pivotoff);
|
|
end[k] = cache_center + wires[i].ends[k] + t*vel[k];
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void FGGroundCache::release_wire(void)
|
|
{
|
|
wire_id = -1;
|
|
}
|