1
0
Fork 0
flightgear/src/FDM/UFO.cxx
2003-05-09 20:40:59 +00:00

189 lines
5.4 KiB
C++

// UFO.cxx -- interface to the "UFO" flight model
//
// Written by Curtis Olson, started October 1999.
// Slightly modified from MagicCarpet.cxx by Jonathan Polley, April 2002
//
// Copyright (C) 1999-2002 Curtis L. Olson - curt@flightgear.org
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
#include <simgear/math/sg_geodesy.hxx>
#include <simgear/math/point3d.hxx>
#include <simgear/math/polar3d.hxx>
#include <Controls/controls.hxx>
#include <Main/globals.hxx>
#include <Main/fg_props.hxx>
#include "UFO.hxx"
const double throttle_damp = 0.2;
const double aileron_damp = 0.05;
const double elevator_damp = 0.05;
FGUFO::FGUFO( double dt )
: Throttle(0.0),
Aileron(0.0),
Elevator(0.0)
{
// set_delta_t( dt );
}
FGUFO::~FGUFO() {
}
// Initialize the UFO flight model, dt is the time increment
// for each subsequent iteration through the EOM
void FGUFO::init() {
common_init();
}
// Run an iteration of the EOM (equations of motion)
void FGUFO::update( double dt ) {
// cout << "FGLaRCsim::update()" << endl;
if (is_suspended())
return;
double time_step = dt;
// read the throttle
double th = globals->get_controls()->get_throttle( 0 );
if (globals->get_controls()->get_brake(0)) {
th = -th;
}
Throttle = th * throttle_damp + Throttle * (1 - throttle_damp);
// read the state of the control surfaces
Aileron = globals->get_controls()->get_aileron() * aileron_damp
+ Aileron * (1 - aileron_damp);
Elevator = globals->get_controls()->get_elevator() * elevator_damp
+ Elevator * (1 - elevator_damp);
// the velocity of the aircraft
double velocity = Throttle * 2000; // meters/sec
double old_pitch = get_Theta();
double pitch_rate = SGD_PI_4; // assume I will be pitching up
double target_pitch = -Elevator * SGD_PI_2;
// if I am pitching down
if (old_pitch > target_pitch)
// set the pitch rate to negative (down)
pitch_rate *= -1;
double pitch = old_pitch + (pitch_rate * time_step);
// if I am pitching up
if (pitch_rate > 0.0)
{
// clip the pitch at the limit
if ( pitch > target_pitch)
{
pitch = target_pitch;
}
}
// if I am pitching down
else if (pitch_rate < 0.0)
{
// clip the pitch at the limit
if ( pitch < target_pitch)
{
pitch = target_pitch;
}
}
double old_roll = get_Phi();
double roll_rate = SGD_PI_4;
double target_roll = Aileron * SGD_PI_2;
if (old_roll > target_roll)
roll_rate *= -1;
double roll = old_roll + (roll_rate * time_step);
// if I am rolling CW
if (roll_rate > 0.0)
{
// clip the roll at the limit
if ( roll > target_roll)
{
roll = target_roll;
}
}
// if I am rolling CCW
else if (roll_rate < 0.0)
{
// clip the roll at the limit
if ( roll < target_roll)
{
roll = target_roll;
}
}
// the vertical speed of the aircraft
double real_climb_rate = sin (pitch) * SG_METER_TO_FEET * velocity; // feet/sec
_set_Climb_Rate( -Elevator * 10.0 );
double climb = real_climb_rate * time_step;
// the lateral speed of the aircraft
double speed = cos (pitch) * velocity; // meters/sec
double dist = speed * time_step;
double kts = velocity * SG_METER_TO_NM * 3600.0;
_set_V_equiv_kts( kts );
_set_V_calibrated_kts( kts );
_set_V_ground_speed( kts );
// angle of turn
double turn_rate = sin(roll) * SGD_PI_4; // radians/sec
double turn = turn_rate * time_step;
// update (lon/lat) position
double lat2, lon2, az2;
if ( fabs(speed) > SG_EPSILON ) {
geo_direct_wgs_84 ( get_Altitude(),
get_Latitude() * SGD_RADIANS_TO_DEGREES,
get_Longitude() * SGD_RADIANS_TO_DEGREES,
get_Psi() * SGD_RADIANS_TO_DEGREES,
dist, &lat2, &lon2, &az2 );
_set_Longitude( lon2 * SGD_DEGREES_TO_RADIANS );
_set_Latitude( lat2 * SGD_DEGREES_TO_RADIANS );
}
// cout << "lon error = " << fabs(end.x()*SGD_RADIANS_TO_DEGREES - lon2)
// << " lat error = " << fabs(end.y()*SGD_RADIANS_TO_DEGREES - lat2)
// << endl;
double sl_radius, lat_geoc;
sgGeodToGeoc( get_Latitude(), get_Altitude(), &sl_radius, &lat_geoc );
// update euler angles
_set_Euler_Angles( roll, pitch,
fmod(get_Psi() + turn, SGD_2PI) );
_set_Euler_Rates(0,0,0);
_set_Geocentric_Position( lat_geoc, get_Longitude(),
sl_radius + get_Altitude() + climb );
// cout << "sea level radius (ft) = " << sl_radius << endl;
// cout << "(setto) sea level radius (ft) = " << get_Sea_level_radius() << endl;
_set_Sea_level_radius( sl_radius * SG_METER_TO_FEET);
_set_Altitude( get_Altitude() + climb );
}