1
0
Fork 0
flightgear/src/Cockpit/panel.cxx

1158 lines
27 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// panel.cxx - default, 2D single-engine prop instrument panel
//
// Written by David Megginson, started January 2000.
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#ifdef HAVE_WINDOWS_H
# include <windows.h>
#endif
#include <stdio.h> // sprintf
#include <string.h>
#include <plib/ssg.h>
#include <plib/fnt.h>
#include <simgear/debug/logstream.hxx>
#include <simgear/misc/sg_path.hxx>
#include <Main/globals.hxx>
#include <Main/fg_props.hxx>
#include <Main/viewmgr.hxx>
#include <Objects/texload.h>
#include <Time/light.hxx>
#include "hud.hxx"
#include "panel.hxx"
#define WIN_X 0
#define WIN_Y 0
#define WIN_W 1024
#define WIN_H 768
#if defined( NONE ) && defined( _MSC_VER )
# pragma message( "A sloppy coder has defined NONE as a macro!!!" )
# undef NONE
#elif defined( NONE )
# pragma warn A sloppy coder has defined NONE as a macro!!!
# undef NONE
#endif
////////////////////////////////////////////////////////////////////////
// Local functions.
////////////////////////////////////////////////////////////////////////
/**
* Calculate the aspect adjustment for the panel.
*/
static float
get_aspect_adjust (int xsize, int ysize)
{
float ideal_aspect = float(WIN_W) / float(WIN_H);
float real_aspect = float(xsize) / float(ysize);
return (real_aspect / ideal_aspect);
}
////////////////////////////////////////////////////////////////////////
// Global functions.
////////////////////////////////////////////////////////////////////////
bool
fgPanelVisible ()
{
if(current_panel == 0)
return false;
if(current_panel->getVisibility() == 0)
return false;
if(globals->get_viewmgr()->get_current() != 0)
return false;
if(globals->get_current_view()->get_view_offset() != 0 &&
!fgGetBool("/sim/virtual-cockpit"))
return false;
return true;
}
////////////////////////////////////////////////////////////////////////
// Implementation of FGTextureManager.
////////////////////////////////////////////////////////////////////////
map<string,ssgTexture *> FGTextureManager::_textureMap;
ssgTexture *
FGTextureManager::createTexture (const string &relativePath)
{
ssgTexture * texture = _textureMap[relativePath];
if (texture == 0) {
SG_LOG( SG_COCKPIT, SG_DEBUG,
"Texture " << relativePath << " does not yet exist" );
SGPath tpath(globals->get_fg_root());
tpath.append(relativePath);
texture = new ssgTexture((char *)tpath.c_str(), false, false);
_textureMap[relativePath] = texture;
if (_textureMap[relativePath] == 0)
SG_LOG( SG_COCKPIT, SG_ALERT, "Texture *still* doesn't exist" );
SG_LOG( SG_COCKPIT, SG_DEBUG, "Created texture " << relativePath
<< " handle=" << texture->getHandle() );
}
return texture;
}
////////////////////////////////////////////////////////////////////////
// Implementation of FGCropped Texture.
////////////////////////////////////////////////////////////////////////
FGCroppedTexture::FGCroppedTexture ()
: _path(""), _texture(0),
_minX(0.0), _minY(0.0), _maxX(1.0), _maxY(1.0)
{
}
FGCroppedTexture::FGCroppedTexture (const string &path,
float minX, float minY,
float maxX, float maxY)
: _path(path), _texture(0),
_minX(minX), _minY(minY), _maxX(maxX), _maxY(maxY)
{
}
FGCroppedTexture::~FGCroppedTexture ()
{
}
ssgTexture *
FGCroppedTexture::getTexture ()
{
if (_texture == 0) {
_texture = FGTextureManager::createTexture(_path);
}
return _texture;
}
////////////////////////////////////////////////////////////////////////
// Implementation of FGPanel.
////////////////////////////////////////////////////////////////////////
FGPanel * current_panel = NULL;
static fntRenderer text_renderer;
static fntTexFont *default_font;
static fntTexFont *led_font;
/**
* Constructor.
*/
FGPanel::FGPanel ()
: _mouseDown(false),
_mouseInstrument(0),
_width(WIN_W), _height(int(WIN_H * 0.5768 + 1)),
_x_offset(0), _y_offset(0), _view_height(int(WIN_H * 0.4232)),
_bound(false),
_jitter(0.0),
_xsize_node(fgGetNode("/sim/startup/xsize", true)),
_ysize_node(fgGetNode("/sim/startup/ysize", true))
{
setVisibility(fgPanelVisible());
}
/**
* Destructor.
*/
FGPanel::~FGPanel ()
{
if (_bound)
unbind();
for (instrument_list_type::iterator it = _instruments.begin();
it != _instruments.end();
it++) {
delete *it;
*it = 0;
}
}
/**
* Add an instrument to the panel.
*/
void
FGPanel::addInstrument (FGPanelInstrument * instrument)
{
_instruments.push_back(instrument);
}
/**
* Initialize the panel.
*/
void
FGPanel::init ()
{
SGPath base_path;
char* envp = ::getenv( "FG_FONTS" );
if ( envp != NULL ) {
base_path.set( envp );
} else {
base_path.set( globals->get_fg_root() );
base_path.append( "Fonts" );
}
SGPath fntpath;
// Install the default font
fntpath = base_path;
fntpath.append( "typewriter.txf" );
default_font = new fntTexFont ;
default_font -> load ( (char *)fntpath.c_str() ) ;
// Install the LED font
fntpath = base_path;
fntpath.append( "led.txf" );
led_font = new fntTexFont ;
led_font -> load ( (char *)fntpath.c_str() ) ;
}
/**
* Bind panel properties.
*/
void
FGPanel::bind ()
{
fgTie("/sim/panel/visibility", &_visibility);
fgSetArchivable("/sim/panel/visibility");
fgTie("/sim/panel/x-offset", &_x_offset);
fgSetArchivable("/sim/panel/x-offset");
fgTie("/sim/panel/y-offset", &_y_offset);
fgSetArchivable("/sim/panel/y-offset");
fgTie("/sim/panel/jitter", &_jitter);
fgSetArchivable("/sim/panel/jitter");
_bound = true;
}
/**
* Unbind panel properties.
*/
void
FGPanel::unbind ()
{
fgUntie("/sim/panel/visibility");
fgUntie("/sim/panel/x-offset");
fgUntie("/sim/panel/y-offset");
_bound = false;
}
/**
* Update the panel.
*/
void
FGPanel::update (int dt)
{
// Do nothing if the panel isn't visible.
if ( !fgPanelVisible() ) {
return;
}
// If the mouse is down, do something
if (_mouseDown) {
_mouseDelay--;
if (_mouseDelay < 0) {
_mouseInstrument->doMouseAction(_mouseButton, _mouseX, _mouseY);
_mouseDelay = 2;
}
}
// Now, draw the panel
float aspect_adjust = get_aspect_adjust(_xsize_node->getIntValue(),
_ysize_node->getIntValue());
if (aspect_adjust <1.0)
update(WIN_X, int(WIN_W * aspect_adjust), WIN_Y, WIN_H);
else
update(WIN_X, WIN_W, WIN_Y, int(WIN_H / aspect_adjust));
}
void
FGPanel::update (GLfloat winx, GLfloat winw, GLfloat winy, GLfloat winh)
{
// Calculate accelerations
// and jiggle the panel accordingly
// The factors and bounds are just
// initial guesses; using sqrt smooths
// out the spikes.
double x_offset = _x_offset;
double y_offset = _y_offset;
if (_jitter != 0.0) {
double a_x_pilot = current_aircraft.fdm_state->get_A_X_pilot();
double a_y_pilot = current_aircraft.fdm_state->get_A_Y_pilot();
double a_z_pilot = current_aircraft.fdm_state->get_A_Z_pilot();
double a_zx_pilot = a_z_pilot - a_x_pilot;
int x_adjust = int(sqrt(fabs(a_y_pilot) * _jitter)) *
(a_y_pilot < 0 ? -1 : 1);
int y_adjust = int(sqrt(fabs(a_zx_pilot) * _jitter)) *
(a_zx_pilot < 0 ? -1 : 1);
// adjustments in screen coordinates
x_offset += x_adjust;
y_offset += y_adjust;
}
if(fgGetBool("/sim/virtual-cockpit")) {
setupVirtualCockpit();
} else {
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
gluOrtho2D(winx, winx + winw, winy, winy + winh); /* right side up */
// gluOrtho2D(winx + winw, winx, winy + winh, winy); /* up side down */
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
glTranslated(x_offset, y_offset, 0);
}
// Draw the background
glEnable(GL_TEXTURE_2D);
glDisable(GL_LIGHTING);
glEnable(GL_BLEND);
glEnable(GL_ALPHA_TEST);
glEnable(GL_COLOR_MATERIAL);
// glColor4f(1.0, 1.0, 1.0, 1.0);
if ( cur_light_params.sun_angle * SGD_RADIANS_TO_DEGREES < 95.0 ) {
glColor4fv( cur_light_params.scene_diffuse );
} else {
glColor4f(0.7, 0.2, 0.2, 1.0);
}
if (_bg != 0) {
glBindTexture(GL_TEXTURE_2D, _bg->getHandle());
// glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
// glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glBegin(GL_POLYGON);
glTexCoord2f(0.0, 0.0); glVertex3f(WIN_X, WIN_Y, 0);
glTexCoord2f(1.0, 0.0); glVertex3f(WIN_X + _width, WIN_Y, 0);
glTexCoord2f(1.0, 1.0); glVertex3f(WIN_X + _width, WIN_Y + _height, 0);
glTexCoord2f(0.0, 1.0); glVertex3f(WIN_X, WIN_Y + _height, 0);
glEnd();
} else {
for (int i = 0; i < 4; i ++) {
// top row of textures...(1,3,5,7)
glBindTexture(GL_TEXTURE_2D, _mbg[i*2]->getHandle());
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glBegin(GL_POLYGON);
glTexCoord2f(0.0, 0.0); glVertex3f(WIN_X + (_width/4) * i, WIN_Y + (_height/2), 0);
glTexCoord2f(1.0, 0.0); glVertex3f(WIN_X + (_width/4) * (i+1), WIN_Y + (_height/2), 0);
glTexCoord2f(1.0, 1.0); glVertex3f(WIN_X + (_width/4) * (i+1), WIN_Y + _height, 0);
glTexCoord2f(0.0, 1.0); glVertex3f(WIN_X + (_width/4) * i, WIN_Y + _height, 0);
glEnd();
// bottom row of textures...(2,4,6,8)
glBindTexture(GL_TEXTURE_2D, _mbg[(i*2)+1]->getHandle());
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glBegin(GL_POLYGON);
glTexCoord2f(0.0, 0.0); glVertex3f(WIN_X + (_width/4) * i, WIN_Y, 0);
glTexCoord2f(1.0, 0.0); glVertex3f(WIN_X + (_width/4) * (i+1), WIN_Y, 0);
glTexCoord2f(1.0, 1.0); glVertex3f(WIN_X + (_width/4) * (i+1), WIN_Y + (_height/2), 0);
glTexCoord2f(0.0, 1.0); glVertex3f(WIN_X + (_width/4) * i, WIN_Y + (_height/2), 0);
glEnd();
}
}
// Draw the instruments.
instrument_list_type::const_iterator current = _instruments.begin();
instrument_list_type::const_iterator end = _instruments.end();
for ( ; current != end; current++) {
FGPanelInstrument * instr = *current;
glPushMatrix();
glTranslated(instr->getXPos(), instr->getYPos(), 0);
instr->draw();
glPopMatrix();
}
if(fgGetBool("/sim/virtual-cockpit")) {
cleanupVirtualCockpit();
} else {
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
}
ssgForceBasicState();
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
}
void
FGPanel::setupVirtualCockpit()
{
int i;
FGViewer* view = globals->get_current_view();
// Generate corners for the panel quad. Put the top edge of the
// panel 1m in and 6 degrees down from the forward direction, and
// make the whole thing 60 degrees wide. In principle, these
// should be settable per-panel, so that you can have lots of
// panel objects plastered about the cockpit in realistic
// positions and orientations.
float a[3], b[3], c[3];
float pw = tan(30*SGD_DEGREES_TO_RADIANS);
float ph = 2 * pw * (float)_height/(float)_width;
float ptop = -tan(6*SGD_DEGREES_TO_RADIANS);
a[0] = -pw; a[1] = ptop-ph; a[2] = -1; // bottom left
b[0] = pw; b[1] = ptop-ph; b[2] = -1; // bottom right
c[0] = -pw; c[1] = ptop; c[2] = -1; // top left
// A standard projection, in meters, with especially close clip
// planes.
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
gluPerspective(view->get_v_fov(), 1/view->get_aspect_ratio(),
0.01, 100);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
// Generate a "look at" matrix using OpenGL (!) coordinate
// conventions.
float lookat[3];
float pitch = view->get_view_tilt();
float rot = view->get_view_offset();
lookat[0] = -sin(rot);
lookat[1] = sin(pitch) / cos(pitch);
lookat[2] = -cos(rot);
if(fabs(lookat[1]) > 9999) lookat[1] = 9999; // FPU sanity
gluLookAt(0, 0, 0, lookat[0], lookat[1], lookat[2], 0, 1, 0);
// Translate the origin to the location of the panel quad
glTranslatef(a[0], a[1], a[2]);
// Generate a matrix to translate unit square coordinates from the
// panel to real world coordinates. Use a transposed basis for
// the panel quad. Note: this matrix is relatively expensive to
// compute, and is invariant. Consider precomputing and storing
// it. Also, consider using the plib vector math routines, so the
// reuse junkies don't yell at me. (Fine, I hard-coded a cross
// product. Just shoot me and be done with it.)
float u[3], v[3], w[3], m[16];
for(i=0; i<3; i++) u[i] = b[i] - a[i]; // U = B - A
for(i=0; i<3; i++) v[i] = c[i] - a[i]; // V = C - A
w[0] = u[1]*v[2] - v[1]*u[2]; // W = U x V
w[1] = u[2]*v[0] - v[2]*u[0];
w[2] = u[0]*v[1] - v[0]*u[1];
m[0] = u[0]; m[4] = v[0]; m[8] = w[0]; m[12] = 0; // |Ux Vx Wx|
m[1] = u[1]; m[5] = v[1]; m[9] = w[1]; m[13] = 0; // m = |Uy Vy Wy|
m[2] = u[2]; m[6] = v[2]; m[10] = w[2]; m[14] = 0; // |Uz Vz Wz|
m[3] = 0; m[7] = 0; m[11] = 0; m[15] = 1;
glMultMatrixf(m);
// Finally, a scaling factor to map the panel's width and height
// to the unit square.
glScalef(1./_width, 1./_height, 1);
// Now, turn off the Z buffer. The panel code doesn't need
// it, and we're using different clip planes anyway (meaning we
// can't share it without glDepthRange() hackery or much
// framebuffer bandwidth wasteage)
glDisable(GL_DEPTH_TEST);
}
void
FGPanel::cleanupVirtualCockpit()
{
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
glEnable(GL_DEPTH_TEST);
}
/**
* Set the panel's visibility.
*/
void
FGPanel::setVisibility (bool visibility)
{
_visibility = visibility;
}
/**
* Return true if the panel is visible.
*/
bool
FGPanel::getVisibility () const
{
return _visibility;
}
/**
* Set the panel's background texture.
*/
void
FGPanel::setBackground (ssgTexture * texture)
{
_bg = texture;
}
/**
* Set the panel's multiple background textures.
*/
void
FGPanel::setMultiBackground (ssgTexture * texture, int idx)
{
_bg = 0;
_mbg[idx] = texture;
}
/**
* Set the panel's x-offset.
*/
void
FGPanel::setXOffset (int offset)
{
if (offset <= 0 && offset >= -_width + WIN_W)
_x_offset = offset;
}
/**
* Set the panel's y-offset.
*/
void
FGPanel::setYOffset (int offset)
{
if (offset <= 0 && offset >= -_height)
_y_offset = offset;
}
/**
* Perform a mouse action.
*/
bool
FGPanel::doMouseAction (int button, int updown, int x, int y)
{
// FIXME: this same code appears in update()
int xsize = _xsize_node->getIntValue();
int ysize = _ysize_node->getIntValue();
float aspect_adjust = get_aspect_adjust(xsize, ysize);
// Note a released button and return
// cerr << "Doing mouse action\n";
if (updown == 1) {
_mouseDown = false;
_mouseInstrument = 0;
return true;
}
// Scale for the real window size.
if (aspect_adjust < 1.0) {
x = int(((float)x / xsize) * WIN_W * aspect_adjust);
y = int(WIN_H - ((float(y) / ysize) * WIN_H));
} else {
x = int(((float)x / xsize) * WIN_W);
y = int((WIN_H - ((float(y) / ysize) * WIN_H)) / aspect_adjust);
}
// Adjust for offsets.
x -= _x_offset;
y -= _y_offset;
// Search for a matching instrument.
for (int i = 0; i < (int)_instruments.size(); i++) {
FGPanelInstrument *inst = _instruments[i];
int ix = inst->getXPos();
int iy = inst->getYPos();
int iw = inst->getWidth() / 2;
int ih = inst->getHeight() / 2;
if (x >= ix - iw && x < ix + iw && y >= iy - ih && y < iy + ih) {
_mouseDown = true;
_mouseDelay = 20;
_mouseInstrument = inst;
_mouseButton = button;
_mouseX = x - ix;
_mouseY = y - iy;
// Always do the action once.
_mouseInstrument->doMouseAction(_mouseButton, _mouseX, _mouseY);
return true;
}
}
return false;
}
////////////////////////////////////////////////////////////////////////.
// Implementation of FGPanelAction.
////////////////////////////////////////////////////////////////////////
FGPanelAction::FGPanelAction ()
{
}
FGPanelAction::FGPanelAction (int button, int x, int y, int w, int h)
: _button(button), _x(x), _y(y), _w(w), _h(h)
{
for (unsigned int i = 0; i < _bindings.size(); i++)
delete _bindings[i];
}
FGPanelAction::~FGPanelAction ()
{
}
void
FGPanelAction::addBinding (FGBinding * binding)
{
_bindings.push_back(binding);
}
void
FGPanelAction::doAction ()
{
if (test()) {
int nBindings = _bindings.size();
for (int i = 0; i < nBindings; i++) {
_bindings[i]->fire();
}
}
}
////////////////////////////////////////////////////////////////////////
// Implementation of FGPanelTransformation.
////////////////////////////////////////////////////////////////////////
FGPanelTransformation::FGPanelTransformation ()
: table(0)
{
}
FGPanelTransformation::~FGPanelTransformation ()
{
delete table;
}
////////////////////////////////////////////////////////////////////////
// Implementation of FGPanelInstrument.
////////////////////////////////////////////////////////////////////////
FGPanelInstrument::FGPanelInstrument ()
{
setPosition(0, 0);
setSize(0, 0);
}
FGPanelInstrument::FGPanelInstrument (int x, int y, int w, int h)
{
setPosition(x, y);
setSize(w, h);
}
FGPanelInstrument::~FGPanelInstrument ()
{
for (action_list_type::iterator it = _actions.begin();
it != _actions.end();
it++) {
delete *it;
*it = 0;
}
}
void
FGPanelInstrument::setPosition (int x, int y)
{
_x = x;
_y = y;
}
void
FGPanelInstrument::setSize (int w, int h)
{
_w = w;
_h = h;
}
int
FGPanelInstrument::getXPos () const
{
return _x;
}
int
FGPanelInstrument::getYPos () const
{
return _y;
}
int
FGPanelInstrument::getWidth () const
{
return _w;
}
int
FGPanelInstrument::getHeight () const
{
return _h;
}
void
FGPanelInstrument::addAction (FGPanelAction * action)
{
_actions.push_back(action);
}
// Coordinates relative to centre.
bool
FGPanelInstrument::doMouseAction (int button, int x, int y)
{
if (test()) {
action_list_type::iterator it = _actions.begin();
action_list_type::iterator last = _actions.end();
for ( ; it != last; it++) {
if ((*it)->inArea(button, x, y)) {
(*it)->doAction();
return true;
}
}
}
return false;
}
////////////////////////////////////////////////////////////////////////
// Implementation of FGLayeredInstrument.
////////////////////////////////////////////////////////////////////////
FGLayeredInstrument::FGLayeredInstrument (int x, int y, int w, int h)
: FGPanelInstrument(x, y, w, h)
{
}
FGLayeredInstrument::~FGLayeredInstrument ()
{
for (layer_list::iterator it = _layers.begin(); it != _layers.end(); it++) {
delete *it;
*it = 0;
}
}
void
FGLayeredInstrument::draw ()
{
if (test()) {
for (int i = 0; i < (int)_layers.size(); i++) {
glPushMatrix();
if(!fgGetBool("/sim/virtual-cockpit"))
glTranslatef(0.0, 0.0, (i / 100.0) + 0.1);
_layers[i]->draw();
glPopMatrix();
}
}
}
int
FGLayeredInstrument::addLayer (FGInstrumentLayer *layer)
{
int n = _layers.size();
if (layer->getWidth() == -1) {
layer->setWidth(getWidth());
}
if (layer->getHeight() == -1) {
layer->setHeight(getHeight());
}
_layers.push_back(layer);
return n;
}
int
FGLayeredInstrument::addLayer (FGCroppedTexture &texture,
int w, int h)
{
return addLayer(new FGTexturedLayer(texture, w, h));
}
void
FGLayeredInstrument::addTransformation (FGPanelTransformation * transformation)
{
int layer = _layers.size() - 1;
_layers[layer]->addTransformation(transformation);
}
////////////////////////////////////////////////////////////////////////
// Implementation of FGInstrumentLayer.
////////////////////////////////////////////////////////////////////////
FGInstrumentLayer::FGInstrumentLayer (int w, int h)
: _w(w),
_h(h)
{
}
FGInstrumentLayer::~FGInstrumentLayer ()
{
for (transformation_list::iterator it = _transformations.begin();
it != _transformations.end();
it++) {
delete *it;
*it = 0;
}
}
void
FGInstrumentLayer::transform () const
{
transformation_list::const_iterator it = _transformations.begin();
transformation_list::const_iterator last = _transformations.end();
while (it != last) {
FGPanelTransformation *t = *it;
if (t->test()) {
float val = (t->node == 0 ? 0.0 : t->node->getFloatValue());
if (val < t->min) {
val = t->min;
} else if (val > t->max) {
val = t->max;
}
if(t->table==0) {
val = val * t->factor + t->offset;
} else {
val = t->table->interpolate(val) * t->factor + t->offset;
}
switch (t->type) {
case FGPanelTransformation::XSHIFT:
glTranslatef(val, 0.0, 0.0);
break;
case FGPanelTransformation::YSHIFT:
glTranslatef(0.0, val, 0.0);
break;
case FGPanelTransformation::ROTATION:
glRotatef(-val, 0.0, 0.0, 1.0);
break;
}
}
it++;
}
}
void
FGInstrumentLayer::addTransformation (FGPanelTransformation * transformation)
{
_transformations.push_back(transformation);
}
////////////////////////////////////////////////////////////////////////
// Implementation of FGGroupLayer.
////////////////////////////////////////////////////////////////////////
FGGroupLayer::FGGroupLayer ()
{
}
FGGroupLayer::~FGGroupLayer ()
{
for (unsigned int i = 0; i < _layers.size(); i++)
delete _layers[i];
}
void
FGGroupLayer::draw ()
{
if (test()) {
int nLayers = _layers.size();
for (int i = 0; i < nLayers; i++)
_layers[i]->draw();
}
}
void
FGGroupLayer::addLayer (FGInstrumentLayer * layer)
{
_layers.push_back(layer);
}
////////////////////////////////////////////////////////////////////////
// Implementation of FGTexturedLayer.
////////////////////////////////////////////////////////////////////////
FGTexturedLayer::FGTexturedLayer (const FGCroppedTexture &texture, int w, int h)
: FGInstrumentLayer(w, h)
{
setTexture(texture);
}
FGTexturedLayer::~FGTexturedLayer ()
{
}
void
FGTexturedLayer::draw ()
{
if (test()) {
int w2 = _w / 2;
int h2 = _h / 2;
transform();
glBindTexture(GL_TEXTURE_2D, _texture.getTexture()->getHandle());
glBegin(GL_POLYGON);
// From Curt: turn on the panel
// lights after sundown.
if ( cur_light_params.sun_angle * SGD_RADIANS_TO_DEGREES < 95.0 ) {
glColor4fv( cur_light_params.scene_diffuse );
} else {
glColor4f(0.7, 0.2, 0.2, 1.0);
}
glTexCoord2f(_texture.getMinX(), _texture.getMinY()); glVertex2f(-w2, -h2);
glTexCoord2f(_texture.getMaxX(), _texture.getMinY()); glVertex2f(w2, -h2);
glTexCoord2f(_texture.getMaxX(), _texture.getMaxY()); glVertex2f(w2, h2);
glTexCoord2f(_texture.getMinX(), _texture.getMaxY()); glVertex2f(-w2, h2);
glEnd();
}
}
////////////////////////////////////////////////////////////////////////
// Implementation of FGTextLayer.
////////////////////////////////////////////////////////////////////////
FGTextLayer::FGTextLayer (int w, int h)
: FGInstrumentLayer(w, h), _pointSize(14.0), _font_name("default")
{
_then.stamp();
_color[0] = _color[1] = _color[2] = 0.0;
_color[3] = 1.0;
}
FGTextLayer::~FGTextLayer ()
{
chunk_list::iterator it = _chunks.begin();
chunk_list::iterator last = _chunks.end();
for ( ; it != last; it++) {
delete *it;
}
}
void
FGTextLayer::draw ()
{
if (test()) {
glPushMatrix();
glColor4fv(_color);
transform();
if ( _font_name == "led" ) {
text_renderer.setFont(led_font);
} else {
text_renderer.setFont(guiFntHandle);
}
text_renderer.setPointSize(_pointSize);
text_renderer.begin();
text_renderer.start3f(0, 0, 0);
_now.stamp();
if (_now - _then > 100000) {
recalc_value();
_then = _now;
}
text_renderer.puts((char *)(_value.c_str()));
text_renderer.end();
glColor4f(1.0, 1.0, 1.0, 1.0); // FIXME
glPopMatrix();
}
}
void
FGTextLayer::addChunk (FGTextLayer::Chunk * chunk)
{
_chunks.push_back(chunk);
}
void
FGTextLayer::setColor (float r, float g, float b)
{
_color[0] = r;
_color[1] = g;
_color[2] = b;
_color[3] = 1.0;
}
void
FGTextLayer::setPointSize (float size)
{
_pointSize = size;
}
void
FGTextLayer::setFontName(const string &name)
{
_font_name = name;
}
void
FGTextLayer::setFont(fntFont * font)
{
text_renderer.setFont(font);
}
void
FGTextLayer::recalc_value () const
{
_value = "";
chunk_list::const_iterator it = _chunks.begin();
chunk_list::const_iterator last = _chunks.end();
for ( ; it != last; it++) {
_value += (*it)->getValue();
}
}
////////////////////////////////////////////////////////////////////////
// Implementation of FGTextLayer::Chunk.
////////////////////////////////////////////////////////////////////////
FGTextLayer::Chunk::Chunk (const string &text, const string &fmt)
: _type(FGTextLayer::TEXT), _fmt(fmt)
{
_text = text;
if (_fmt == "")
_fmt = "%s";
}
FGTextLayer::Chunk::Chunk (ChunkType type, const SGPropertyNode * node,
const string &fmt, float mult)
: _type(type), _fmt(fmt), _mult(mult)
{
if (_fmt == "") {
if (type == TEXT_VALUE)
_fmt = "%s";
else
_fmt = "%.2f";
}
_node = node;
}
const char *
FGTextLayer::Chunk::getValue () const
{
if (test()) {
switch (_type) {
case TEXT:
sprintf(_buf, _fmt.c_str(), _text.c_str());
return _buf;
case TEXT_VALUE:
sprintf(_buf, _fmt.c_str(), _node->getStringValue().c_str());
break;
case DOUBLE_VALUE:
sprintf(_buf, _fmt.c_str(), _node->getFloatValue() * _mult);
break;
}
return _buf;
} else {
return "";
}
}
////////////////////////////////////////////////////////////////////////
// Implementation of FGSwitchLayer.
////////////////////////////////////////////////////////////////////////
FGSwitchLayer::FGSwitchLayer (int w, int h, const SGPropertyNode * node,
FGInstrumentLayer * layer1,
FGInstrumentLayer * layer2)
: FGInstrumentLayer(w, h), _node(node), _layer1(layer1), _layer2(layer2)
{
}
FGSwitchLayer::~FGSwitchLayer ()
{
delete _layer1;
delete _layer2;
}
void
FGSwitchLayer::draw ()
{
if (test()) {
transform();
if (_node->getBoolValue()) {
_layer1->draw();
} else {
_layer2->draw();
}
}
}
// end of panel.cxx