1
0
Fork 0
flightgear/src/Network/atc610x.cxx
2002-02-11 15:25:19 +00:00

1020 lines
29 KiB
C++

// atc610x.cxx -- FGFS interface to ATC 610x hardware
//
// Written by Curtis Olson, started January 2002
//
// Copyright (C) 2002 Curtis L. Olson - curt@flightgear.org
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <simgear/compiler.h>
#include <stdlib.h> // atoi() atof() abs()
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h> //snprintf
#if defined( _MSC_VER )
# include <io.h> //lseek, read, write
#endif
#include STL_STRING
#include <plib/ul.h>
#include <simgear/debug/logstream.hxx>
#include <simgear/io/iochannel.hxx>
#include <simgear/math/sg_types.hxx>
#include <simgear/misc/props.hxx>
#include <Main/fg_props.hxx>
#include <Main/globals.hxx>
#include "atc610x.hxx"
SG_USING_STD(string);
#if defined( _MSC_VER )
# define snprintf _snprintf
#endif
// Lock the ATC 610 hardware
static int ATC610xLock( int fd ) {
// rewind
lseek( fd, 0, SEEK_SET );
char tmp[2];
int result = read( fd, tmp, 1 );
if ( result != 1 ) {
SG_LOG( SG_IO, SG_DEBUG, "Lock failed" );
}
return result;
}
// Write a radios command
static int ATC610xRelease( int fd ) {
// rewind
lseek( fd, 0, SEEK_SET );
char tmp[2];
tmp[0] = tmp[1] = 0;
int result = write( fd, tmp, 1 );
if ( result != 1 ) {
SG_LOG( SG_IO, SG_DEBUG, "Release failed" );
}
return result;
}
// Read analog inputs
static void ATC610xReadAnalogInputs( int fd, unsigned char *analog_in_bytes ) {
// rewind
lseek( fd, 0, SEEK_SET );
int result = read( fd, analog_in_bytes, ATC_ANAL_IN_BYTES );
if ( result != ATC_ANAL_IN_BYTES ) {
SG_LOG( SG_IO, SG_ALERT, "Read failed" );
exit( -1 );
}
}
// Write a radios command
static int ATC610xSetRadios( int fd,
unsigned char data[ATC_RADIO_DISPLAY_BYTES] )
{
// rewind
lseek( fd, 0, SEEK_SET );
int result = write( fd, data, ATC_RADIO_DISPLAY_BYTES );
if ( result != ATC_RADIO_DISPLAY_BYTES ) {
SG_LOG( SG_IO, SG_DEBUG, "Write failed" );
}
return result;
}
// Read status of last radios written to
static void ATC610xReadRadios( int fd, unsigned char *switch_data ) {
// rewind
lseek( fd, 0, SEEK_SET );
int result = read( fd, switch_data, ATC_RADIO_SWITCH_BYTES );
if ( result != ATC_RADIO_SWITCH_BYTES ) {
SG_LOG( SG_IO, SG_ALERT, "Read failed" );
exit( -1 );
}
}
// Write a stepper command
static int ATC610xSetStepper( int fd, unsigned char channel,
unsigned char value )
{
// rewind
lseek( fd, 0, SEEK_SET );
// Write the value
unsigned char buf[3];
buf[0] = channel;
buf[1] = value;
buf[2] = 0;
int result = write( fd, buf, 2 );
if ( result != 2 ) {
SG_LOG( SG_IO, SG_INFO, "Write failed" );
}
SG_LOG( SG_IO, SG_DEBUG,
"Sent cmd = " << (int)channel << " value = " << (int)value );
return result;
}
// Read status of last stepper written to
static unsigned char ATC610xReadStepper( int fd ) {
int result;
// rewind
lseek( fd, 0, SEEK_SET );
// Write the value
unsigned char buf[2];
result = read( fd, buf, 1 );
if ( result != 1 ) {
SG_LOG( SG_IO, SG_ALERT, "Read failed" );
exit( -1 );
}
SG_LOG( SG_IO, SG_DEBUG, "Read result = " << (int)buf[0] );
return buf[0];
}
// Read switch inputs
static void ATC610xReadSwitches( int fd, unsigned char *switch_bytes ) {
// rewind
lseek( fd, 0, SEEK_SET );
int result = read( fd, switch_bytes, ATC_SWITCH_BYTES );
if ( result != ATC_SWITCH_BYTES ) {
SG_LOG( SG_IO, SG_ALERT, "Read failed" );
exit( -1 );
}
}
// Open and initialize ATC 610x hardware
bool FGATC610x::open() {
if ( is_enabled() ) {
SG_LOG( SG_IO, SG_ALERT, "This shouldn't happen, but the channel "
<< "is already in use, ignoring" );
return false;
}
SG_LOG( SG_IO, SG_ALERT,
"Initializing ATC 610x hardware, please wait ..." );
set_hz( 30 ); // default to processing requests @ 30Hz
set_enabled( true );
board = 0; // 610x uses a single board number = 0
snprintf( lock_file, 256, "/proc/atc610x/board%d/lock", board );
snprintf( analog_in_file, 256, "/proc/atc610x/board%d/analog_in", board );
snprintf( radios_file, 256, "/proc/atc610x/board%d/radios", board );
snprintf( stepper_file, 256, "/proc/atc610x/board%d/steppers", board );
snprintf( switches_file, 256, "/proc/atc610x/board%d/switches", board );
/////////////////////////////////////////////////////////////////////
// Open the /proc files
/////////////////////////////////////////////////////////////////////
lock_fd = ::open( lock_file, O_RDWR );
if ( lock_fd == -1 ) {
SG_LOG( SG_IO, SG_ALERT, "errno = " << errno );
char msg[256];
snprintf( msg, 256, "Error opening %s", lock_file );
perror( msg );
exit( -1 );
}
analog_in_fd = ::open( analog_in_file, O_RDONLY );
if ( analog_in_fd == -1 ) {
SG_LOG( SG_IO, SG_ALERT, "errno = " << errno );
char msg[256];
snprintf( msg, 256, "Error opening %s", analog_in_file );
perror( msg );
exit( -1 );
}
radios_fd = ::open( radios_file, O_RDWR );
if ( radios_fd == -1 ) {
SG_LOG( SG_IO, SG_ALERT, "errno = " << errno );
char msg[256];
snprintf( msg, 256, "Error opening %s", radios_file );
perror( msg );
exit( -1 );
}
stepper_fd = ::open( stepper_file, O_RDWR );
if ( stepper_fd == -1 ) {
SG_LOG( SG_IO, SG_ALERT, "errno = " << errno );
char msg[256];
snprintf( msg, 256, "Error opening %s", stepper_file );
perror( msg );
exit( -1 );
}
switches_fd = ::open( switches_file, O_RDONLY );
if ( switches_fd == -1 ) {
SG_LOG( SG_IO, SG_ALERT, "errno = " << errno );
char msg[256];
snprintf( msg, 256, "Error opening %s", switches_file );
perror( msg );
exit( -1 );
}
/////////////////////////////////////////////////////////////////////
// Home the compass stepper motor
/////////////////////////////////////////////////////////////////////
SG_LOG( SG_IO, SG_ALERT,
" - Homing the compass stepper motor" );
// Lock the hardware, keep trying until we succeed
while ( ATC610xLock( lock_fd ) <= 0 );
// Send the stepper home command
ATC610xSetStepper( stepper_fd, ATC_COMPASS_CH, ATC_STEPPER_HOME );
// Release the hardware
ATC610xRelease( lock_fd );
bool home = false;
while ( ! home ) {
SG_LOG( SG_IO, SG_DEBUG, "Checking if compass home ..." );
while ( ATC610xLock( lock_fd ) <= 0 );
unsigned char result = ATC610xReadStepper( stepper_fd );
if ( result == 0 ) {
home = true;
}
ATC610xRelease( lock_fd );
#if defined( _MSC_VER )
ulMilliSecondSleep(33);
#elif defined (WIN32) && !defined(__CYGWIN__)
Sleep (33);
#else
usleep(33);
#endif
}
compass_position = 0.0;
/////////////////////////////////////////////////////////////////////
// Blank the radio display
/////////////////////////////////////////////////////////////////////
SG_LOG( SG_IO, SG_ALERT,
" - Clearing the radios displays." );
// Prepair the data
unsigned char value = 0xff;
for ( int channel = 0; channel < ATC_RADIO_DISPLAY_BYTES; ++channel ) {
radio_display_data[channel] = value;
}
// Lock the hardware, keep trying until we succeed
while ( ATC610xLock( lock_fd ) <= 0 );
// Set radio display
ATC610xSetRadios( radios_fd, radio_display_data );
ATC610xRelease( lock_fd );
/////////////////////////////////////////////////////////////////////
// Finished initing hardware
/////////////////////////////////////////////////////////////////////
SG_LOG( SG_IO, SG_ALERT,
"Done initializing ATC 610x hardware." );
/////////////////////////////////////////////////////////////////////
// Connect up to property values
/////////////////////////////////////////////////////////////////////
mag_compass = fgGetNode( "/steam/mag-compass-deg", true );
dme_min = fgGetNode( "/radios/dme/ete-min", true );
dme_kt = fgGetNode( "/radios/dme/speed-kt", true );
dme_nm = fgGetNode( "/radios/dme/distance-nm", true );
com1_freq = fgGetNode( "/radios/comm[0]/frequencies/selected-mhz", true );
com1_stby_freq
= fgGetNode( "/radios/comm[0]/frequencies/standby-mhz", true );
com2_freq = fgGetNode( "/radios/comm[1]/frequencies/selected-mhz", true );
com2_stby_freq
= fgGetNode( "/radios/comm[1]/frequencies/standby-mhz", true );
nav1_freq = fgGetNode( "/radios/nav[0]/frequencies/selected-mhz", true );
nav1_stby_freq
= fgGetNode( "/radios/nav[0]/frequencies/standby-mhz", true );
nav2_freq = fgGetNode( "/radios/nav[1]/frequencies/selected-mhz", true );
nav2_stby_freq
= fgGetNode( "/radios/nav[1]/frequencies/standby-mhz", true );
adf_freq = fgGetNode( "/radios/adf/frequencies/selected-khz", true );
adf_stby_freq = fgGetNode( "/radios/adf/frequencies/standby-khz", true );
return true;
}
/////////////////////////////////////////////////////////////////////
// Read analog inputs
/////////////////////////////////////////////////////////////////////
#define ATC_AILERON_CENTER 535
#define ATC_ELEVATOR_TRIM_CENTER 512
#define ATC_ELEVATOR_CENTER 543
bool FGATC610x::do_analog_in() {
// Read raw data in byte form
ATC610xReadAnalogInputs( analog_in_fd, analog_in_bytes );
// Convert to integer values
for ( int channel = 0; channel < ATC_ANAL_IN_VALUES; ++channel ) {
unsigned char hi = analog_in_bytes[2 * channel] & 0x03;
unsigned char lo = analog_in_bytes[2 * channel + 1];
analog_in_data[channel] = hi * 256 + lo;
// printf("%02x %02x ", hi, lo );
// printf("%04d ", value );
}
float tmp, tmp1, tmp2;
// aileron
tmp = (float)(analog_in_data[0] - ATC_AILERON_CENTER) / 256.0f;
fgSetFloat( "/controls/aileron", tmp );
// cout << "aileron = " << analog_in_data[0] << " = " << tmp;
// elevator
tmp = (float)(analog_in_data[4] - ATC_ELEVATOR_TRIM_CENTER) / 512.0f;
fgSetFloat( "/controls/elevator-trim", tmp );
// cout << "trim = " << analog_in_data[4] << " = " << tmp;
// trim
tmp = (float)(ATC_ELEVATOR_CENTER - analog_in_data[5]) / 100.0f;
fgSetFloat( "/controls/elevator", tmp );
// cout << " elev = " << analog_in_data[5] << " = " << tmp << endl;
// mixture
tmp = (float)analog_in_data[7] / 680.0f;
fgSetFloat( "/controls/mixture[0]", tmp );
// throttle
tmp = (float)analog_in_data[8] / 690.0f;
fgSetFloat( "/controls/throttle[0]", tmp );
// nav1 volume
tmp = (float)analog_in_data[25] / 1024.0f;
fgSetFloat( "/radios/nav[0]/volume", tmp );
// nav2 volume
tmp = (float)analog_in_data[24] / 1024.0f;
fgSetFloat( "/radios/nav[1]/volume", tmp );
// adf volume
tmp = (float)analog_in_data[26] / 1024.0f;
fgSetFloat( "/radios/adf/volume", tmp );
// nav2 obs tuner
tmp = (float)analog_in_data[29] * 360.0f / 1024.0f;
fgSetFloat( "/radios/nav[1]/radials/selected-deg", tmp );
// nav1 obs tuner
tmp1 = (float)analog_in_data[30] * 360.0f / 1024.0f;
tmp2 = (float)analog_in_data[31] * 360.0f / 1024.0f;
fgSetFloat( "/radios/nav[0]/radials/selected-deg", tmp1 );
return true;
}
/////////////////////////////////////////////////////////////////////
// Read radio switches
/////////////////////////////////////////////////////////////////////
bool FGATC610x::do_radio_switches() {
float freq, inc;
ATC610xReadRadios( radios_fd, radio_switch_data );
// DME Switch
dme_switch = (radio_switch_data[7] >> 4) & 0x03;
if ( dme_switch == 0 ) {
// off
fgSetInt( "/radios/dme/switch-position", 0 );
} else if ( dme_switch == 2 ) {
// nav1
fgSetInt( "/radios/dme/switch-position", 1 );
} else if ( dme_switch == 1 ) {
// nav2
fgSetInt( "/radios/dme/switch-position", 3 );
}
// Com1 Swap
int com1_swap = !((radio_switch_data[7] >> 1) & 0x01);
static int last_com1_swap;
if ( com1_swap && (last_com1_swap != com1_swap) ) {
float tmp = com1_freq->getFloatValue();
fgSetFloat( "/radios/comm[0]/frequencies/selected-mhz",
com1_stby_freq->getFloatValue() );
fgSetFloat( "/radios/comm[0]/frequencies/standby-mhz", tmp );
}
last_com1_swap = com1_swap;
// Com2 Swap
int com2_swap = !((radio_switch_data[15] >> 1) & 0x01);
static int last_com2_swap;
if ( com2_swap && (last_com2_swap != com2_swap) ) {
float tmp = com2_freq->getFloatValue();
fgSetFloat( "/radios/comm[1]/frequencies/selected-mhz",
com2_stby_freq->getFloatValue() );
fgSetFloat( "/radios/comm[1]/frequencies/standby-mhz", tmp );
}
last_com2_swap = com2_swap;
// Nav1 Swap
int nav1_swap = radio_switch_data[11] & 0x01;
static int last_nav1_swap;
if ( nav1_swap && (last_nav1_swap != nav1_swap) ) {
float tmp = nav1_freq->getFloatValue();
fgSetFloat( "/radios/nav[0]/frequencies/selected-mhz",
nav1_stby_freq->getFloatValue() );
fgSetFloat( "/radios/nav[0]/frequencies/standby-mhz", tmp );
}
last_nav1_swap = nav1_swap;
// Nav2 Swap
int nav2_swap = !(radio_switch_data[19] & 0x01);
static int last_nav2_swap;
if ( nav2_swap && (last_nav2_swap != nav2_swap) ) {
float tmp = nav2_freq->getFloatValue();
fgSetFloat( "/radios/nav[1]/frequencies/selected-mhz",
nav2_stby_freq->getFloatValue() );
fgSetFloat( "/radios/nav[1]/frequencies/standby-mhz", tmp );
}
last_nav2_swap = nav2_swap;
// Com1 Tuner
int com1_tuner_fine = (radio_switch_data[5] >> 4) & 0x0f;
int com1_tuner_course = radio_switch_data[5] & 0x0f;
// cout << "com1 = " << com1_tuner_fine << " " << com1_tuner_course << endl;
static int last_com1_tuner_fine = com1_tuner_fine;
static int last_com1_tuner_course = com1_tuner_course;
inc = 0.0;
if ( com1_tuner_fine != last_com1_tuner_fine ) {
if ( com1_tuner_fine == 0x0c && last_com1_tuner_fine == 0x01 ) {
inc = -0.025;
} else if ( com1_tuner_fine == 0x01 && last_com1_tuner_fine == 0x0c ) {
inc = -0.025;
} else if ( com1_tuner_fine > last_com1_tuner_fine ) {
inc = 0.025;
} else {
inc = -0.025;
}
}
if ( com1_tuner_course != last_com1_tuner_course ) {
if ( com1_tuner_course == 0x0c && last_com1_tuner_course == 0x01 ) {
inc = -1.0;
} else if ( com1_tuner_course == 0x01
&& last_com1_tuner_course == 0x0c ) {
inc = -1.0;
} else if ( com1_tuner_course > last_com1_tuner_course ) {
inc = 1.0;
} else {
inc = -1.0;
}
}
last_com1_tuner_fine = com1_tuner_fine;
last_com1_tuner_course = com1_tuner_course;
freq = com1_stby_freq->getFloatValue() + inc;
if ( freq < 0.0 ) {
freq = 140.0;
}
if ( freq > 140.0 ) {
freq = 0.0;
}
fgSetFloat( "/radios/comm[0]/frequencies/standby-mhz", freq );
// Com2 Tuner
int com2_tuner_fine = (radio_switch_data[13] >> 4) & 0x0f;
int com2_tuner_course = radio_switch_data[13] & 0x0f;
static int last_com2_tuner_fine = com2_tuner_fine;
static int last_com2_tuner_course = com2_tuner_course;
inc = 0.0;
if ( com2_tuner_fine != last_com2_tuner_fine ) {
if ( com2_tuner_fine == 0x0c && last_com2_tuner_fine == 0x01 ) {
inc = -0.025;
} else if ( com2_tuner_fine == 0x01 && last_com2_tuner_fine == 0x0c ) {
inc = -0.025;
} else if ( com2_tuner_fine > last_com2_tuner_fine ) {
inc = 0.025;
} else {
inc = -0.025;
}
}
if ( com2_tuner_course != last_com2_tuner_course ) {
if ( com2_tuner_course == 0x0c && last_com2_tuner_course == 0x01 ) {
inc = -1.0;
} else if ( com2_tuner_course == 0x01
&& last_com2_tuner_course == 0x0c ) {
inc = -1.0;
} else if ( com2_tuner_course > last_com2_tuner_course ) {
inc = 1.0;
} else {
inc = -1.0;
}
}
last_com2_tuner_fine = com2_tuner_fine;
last_com2_tuner_course = com2_tuner_course;
freq = com2_stby_freq->getFloatValue() + inc;
if ( freq < 0.0 ) {
freq = 140.0;
}
if ( freq > 140.0 ) {
freq = 0.0;
}
fgSetFloat( "/radios/comm[1]/frequencies/standby-mhz", freq );
// Nav1 Tuner
int nav1_tuner_fine = (radio_switch_data[9] >> 4) & 0x0f;
int nav1_tuner_course = radio_switch_data[9] & 0x0f;
static int last_nav1_tuner_fine = nav1_tuner_fine;
static int last_nav1_tuner_course = nav1_tuner_course;
inc = 0.0;
if ( nav1_tuner_fine != last_nav1_tuner_fine ) {
if ( nav1_tuner_fine == 0x0c && last_nav1_tuner_fine == 0x01 ) {
inc = -0.05;
} else if ( nav1_tuner_fine == 0x01 && last_nav1_tuner_fine == 0x0c ) {
inc = -0.05;
} else if ( nav1_tuner_fine > last_nav1_tuner_fine ) {
inc = 0.05;
} else {
inc = -0.05;
}
}
if ( nav1_tuner_course != last_nav1_tuner_course ) {
if ( nav1_tuner_course == 0x0c && last_nav1_tuner_course == 0x01 ) {
inc = -1.0;
} else if ( nav1_tuner_course == 0x01
&& last_nav1_tuner_course == 0x0c ) {
inc = -1.0;
} else if ( nav1_tuner_course > last_nav1_tuner_course ) {
inc = 1.0;
} else {
inc = -1.0;
}
}
last_nav1_tuner_fine = nav1_tuner_fine;
last_nav1_tuner_course = nav1_tuner_course;
freq = nav1_stby_freq->getFloatValue() + inc;
if ( freq < 108.0 ) {
freq = 117.95;
}
if ( freq > 117.95 ) {
freq = 108.0;
}
fgSetFloat( "/radios/nav[0]/frequencies/standby-mhz", freq );
// Nav2 Tuner
int nav2_tuner_fine = (radio_switch_data[17] >> 4) & 0x0f;
int nav2_tuner_course = radio_switch_data[17] & 0x0f;
static int last_nav2_tuner_fine = nav2_tuner_fine;
static int last_nav2_tuner_course = nav2_tuner_course;
inc = 0.0;
if ( nav2_tuner_fine != last_nav2_tuner_fine ) {
if ( nav2_tuner_fine == 0x0c && last_nav2_tuner_fine == 0x01 ) {
inc = -0.05;
} else if ( nav2_tuner_fine == 0x01 && last_nav2_tuner_fine == 0x0c ) {
inc = -0.05;
} else if ( nav2_tuner_fine > last_nav2_tuner_fine ) {
inc = 0.05;
} else {
inc = -0.05;
}
}
if ( nav2_tuner_course != last_nav2_tuner_course ) {
if ( nav2_tuner_course == 0x0c && last_nav2_tuner_course == 0x01 ) {
inc = -1.0;
} else if ( nav2_tuner_course == 0x01
&& last_nav2_tuner_course == 0x0c ) {
inc = -1.0;
} else if ( nav2_tuner_course > last_nav2_tuner_course ) {
inc = 1.0;
} else {
inc = -1.0;
}
}
last_nav2_tuner_fine = nav2_tuner_fine;
last_nav2_tuner_course = nav2_tuner_course;
freq = nav2_stby_freq->getFloatValue() + inc;
if ( freq < 108.0 ) {
freq = 117.95;
}
if ( freq > 117.95 ) {
freq = 108.0;
}
fgSetFloat( "/radios/nav[1]/frequencies/standby-mhz", freq );
// ADF Tuner
int adf_tuner_fine = (radio_switch_data[21] >> 4) & 0x0f;
int adf_tuner_course = radio_switch_data[21] & 0x0f;
// cout << "adf = " << adf_tuner_fine << " " << adf_tuner_course << endl;
static int last_adf_tuner_fine = adf_tuner_fine;
static int last_adf_tuner_course = adf_tuner_course;
inc = 0.0;
if ( adf_tuner_fine != last_adf_tuner_fine ) {
if ( adf_tuner_fine == 0x0c && last_adf_tuner_fine == 0x01 ) {
inc = -1.0;
} else if ( adf_tuner_fine == 0x01 && last_adf_tuner_fine == 0x0c ) {
inc = -1.0;
} else if ( adf_tuner_fine > last_adf_tuner_fine ) {
inc = 1.0;
} else {
inc = -1.0;
}
}
if ( adf_tuner_course != last_adf_tuner_course ) {
if ( adf_tuner_course == 0x0c && last_adf_tuner_course == 0x01 ) {
inc = -25.0;
} else if ( adf_tuner_course == 0x01
&& last_adf_tuner_course == 0x0c ) {
inc = -25.0;
} else if ( adf_tuner_course > last_adf_tuner_course ) {
inc = 25.0;
} else {
inc = -25.0;
}
}
last_adf_tuner_fine = adf_tuner_fine;
last_adf_tuner_course = adf_tuner_course;
freq = adf_freq->getFloatValue() + inc;
if ( freq < 100.0 ) {
freq = 1299;
}
if ( freq > 1299 ) {
freq = 100.0;
}
fgSetFloat( "/radios/adf/frequencies/selected-khz", freq );
return true;
}
/////////////////////////////////////////////////////////////////////
// Update the radio display
/////////////////////////////////////////////////////////////////////
bool FGATC610x::do_radio_display() {
char digits[10];
int i;
if ( dme_switch != 0 ) {
// DME minutes
float minutes = dme_min->getFloatValue();
if ( minutes > 999 ) {
minutes = 999.0;
}
sprintf(digits, "%03.0f", minutes);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[0] = digits[1] << 4 | digits[2];
radio_display_data[1] = 0xf0 | digits[0];
// DME knots
float knots = dme_kt->getFloatValue();
if ( knots > 999 ) {
knots = 999.0;
}
sprintf(digits, "%03.0f", knots);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[2] = digits[1] << 4 | digits[2];
radio_display_data[3] = 0xf0 | digits[0];
// DME distance (nm)
float nm = dme_nm->getFloatValue();
if ( nm > 99 ) {
nm = 99.0;
}
sprintf(digits, "%04.1f", nm);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[4] = digits[1] << 4 | digits[3];
radio_display_data[5] = 0x00 | digits[0];
// the 0x00 in the upper nibble of the 6th byte of each
// display turns on the decimal point
} else {
// blank dem display
for ( i = 0; i < 6; ++i ) {
radio_display_data[i] = 0xff;
}
}
// Com1 standby frequency
float com1_stby = com1_stby_freq->getFloatValue();
if ( fabs(com1_stby) > 999.99 ) {
com1_stby = 0.0;
}
sprintf(digits, "%06.3f", com1_stby);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[6] = digits[4] << 4 | digits[5];
radio_display_data[7] = digits[1] << 4 | digits[2];
radio_display_data[8] = 0xf0 | digits[0];
// Com1 in use frequency
float com1 = com1_freq->getFloatValue();
if ( fabs(com1) > 999.99 ) {
com1 = 0.0;
}
sprintf(digits, "%06.3f", com1);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[9] = digits[4] << 4 | digits[5];
radio_display_data[10] = digits[1] << 4 | digits[2];
radio_display_data[11] = 0x00 | digits[0];
// the 0x00 in the upper nibble of the 6th byte of each display
// turns on the decimal point
// Com2 standby frequency
float com2_stby = com2_stby_freq->getFloatValue();
if ( fabs(com2_stby) > 999.99 ) {
com2_stby = 0.0;
}
sprintf(digits, "%06.3f", com2_stby);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[18] = digits[4] << 4 | digits[5];
radio_display_data[19] = digits[1] << 4 | digits[2];
radio_display_data[20] = 0xf0 | digits[0];
// Com2 in use frequency
float com2 = com2_freq->getFloatValue();
if ( fabs(com2) > 999.99 ) {
com2 = 0.0;
}
sprintf(digits, "%06.3f", com2);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[21] = digits[4] << 4 | digits[5];
radio_display_data[22] = digits[1] << 4 | digits[2];
radio_display_data[23] = 0x00 | digits[0];
// the 0x00 in the upper nibble of the 6th byte of each display
// turns on the decimal point
// Nav1 standby frequency
float nav1_stby = nav1_stby_freq->getFloatValue();
if ( fabs(nav1_stby) > 999.99 ) {
nav1_stby = 0.0;
}
sprintf(digits, "%06.2f", nav1_stby);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[12] = digits[4] << 4 | digits[5];
radio_display_data[13] = digits[1] << 4 | digits[2];
radio_display_data[14] = 0xf0 | digits[0];
// Nav1 in use frequency
float nav1 = nav1_freq->getFloatValue();
if ( fabs(nav1) > 999.99 ) {
nav1 = 0.0;
}
sprintf(digits, "%06.2f", nav1);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[15] = digits[4] << 4 | digits[5];
radio_display_data[16] = digits[1] << 4 | digits[2];
radio_display_data[17] = 0x00 | digits[0];
// the 0x00 in the upper nibble of the 6th byte of each display
// turns on the decimal point
// Nav2 standby frequency
float nav2_stby = nav2_stby_freq->getFloatValue();
if ( fabs(nav2_stby) > 999.99 ) {
nav2_stby = 0.0;
}
sprintf(digits, "%06.2f", nav2_stby);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[24] = digits[4] << 4 | digits[5];
radio_display_data[25] = digits[1] << 4 | digits[2];
radio_display_data[26] = 0xf0 | digits[0];
// Nav2 in use frequency
float nav2 = nav2_freq->getFloatValue();
if ( fabs(nav2) > 999.99 ) {
nav2 = 0.0;
}
sprintf(digits, "%06.2f", nav2);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[27] = digits[4] << 4 | digits[5];
radio_display_data[28] = digits[1] << 4 | digits[2];
radio_display_data[29] = 0x00 | digits[0];
// the 0x00 in the upper nibble of the 6th byte of each display
// turns on the decimal point
// ADF standby frequency
float adf_stby = adf_stby_freq->getFloatValue();
if ( fabs(adf_stby) > 999.99 ) {
adf_stby = 0.0;
}
sprintf(digits, "%03.0f", adf_stby);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[30] = digits[2] << 4 | 0x0f;
radio_display_data[31] = digits[0] << 4 | digits[1];
// ADF in use frequency
float adf = adf_freq->getFloatValue();
if ( fabs(adf) > 999.99 ) {
adf = 0.0;
}
sprintf(digits, "%03.0f", adf);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[33] = digits[1] << 4 | digits[2];
radio_display_data[34] = 0xf0 | digits[0];
ATC610xSetRadios( radios_fd, radio_display_data );
return true;
}
/////////////////////////////////////////////////////////////////////
// Drive the stepper motors
/////////////////////////////////////////////////////////////////////
bool FGATC610x::do_steppers() {
float diff = mag_compass->getFloatValue() - compass_position;
while ( diff < -180.0 ) { diff += 360.0; }
while ( diff > 180.0 ) { diff -= 360.0; }
int steps = (int)(diff * 4);
// cout << "steps = " << steps << endl;
if ( steps > 4 ) { steps = 4; }
if ( steps < -4 ) { steps = -4; }
if ( abs(steps) > 0 ) {
unsigned char cmd = 0x80; // stepper command
if ( steps > 0 ) {
cmd |= 0x20; // go up
} else {
cmd |= 0x00; // go down
}
cmd |= abs(steps);
// sync compass_position with hardware position
compass_position += (float)steps / 4.0;
ATC610xSetStepper( stepper_fd, ATC_COMPASS_CH, cmd );
}
return true;
}
/////////////////////////////////////////////////////////////////////
// Read the switch positions
/////////////////////////////////////////////////////////////////////
// decode the packed switch data
static void update_switch_matrix(
int board,
unsigned char switch_data[ATC_SWITCH_BYTES],
int switch_matrix[2][ATC_NUM_COLS][ATC_SWITCH_BYTES] )
{
for ( int row = 0; row < ATC_SWITCH_BYTES; ++row ) {
unsigned char switches = switch_data[row];
for( int column = 0; column < ATC_NUM_COLS; ++column ) {
switch_matrix[board][column][row] = switches & 1;
switches = switches >> 1;
}
}
}
bool FGATC610x::do_switches() {
ATC610xReadSwitches( switches_fd, switch_data );
// unpack the switch data
int switch_matrix[2][ATC_NUM_COLS][ATC_SWITCH_BYTES];
update_switch_matrix( board, switch_data, switch_matrix );
// magnetos and starter switch
if ( switch_matrix[board][3][1] == 1 ) {
fgSetInt( "/controls/magnetos[0]", 3 );
fgSetBool( "/controls/starter[0]", true );
} else if ( switch_matrix[board][2][1] == 1 ) {
fgSetInt( "/controls/magnetos[0]", 3 );
fgSetBool( "/controls/starter[0]", false );
} else if ( switch_matrix[board][1][1] == 1 ) {
fgSetInt( "/controls/magnetos[0]", 2 );
fgSetBool( "/controls/starter[0]", false );
} else if ( switch_matrix[board][0][1] == 1 ) {
fgSetInt( "/controls/magnetos[0]", 1 );
fgSetBool( "/controls/starter[0]", false );
} else {
fgSetInt( "/controls/magnetos[0]", 0 );
fgSetBool( "/controls/starter[0]", false );
}
// flaps
if ( switch_matrix[board][6][3] == 1 ) {
fgSetFloat( "/controls/flaps", 1.0 );
} else if ( switch_matrix[board][5][3] == 1 ) {
fgSetFloat( "/controls/flaps", 0.66 );
} else if ( switch_matrix[board][4][3] == 1 ) {
fgSetFloat( "/controls/flaps", 0.33 );
} else if ( switch_matrix[board][4][3] == 0 ) {
fgSetFloat( "/controls/flaps", 0.0 );
}
return true;
}
bool FGATC610x::process() {
// Lock the hardware, skip if it's not ready yet
if ( ATC610xLock( lock_fd ) > 0 ) {
do_analog_in();
do_radio_switches();
do_radio_display();
do_steppers();
do_switches();
ATC610xRelease( lock_fd );
return true;
} else {
return false;
}
}
bool FGATC610x::close() {
return true;
}