1
0
Fork 0
flightgear/src/WeatherCM/FGPhysicalProperties.cpp
1999-12-23 17:35:10 +00:00

293 lines
9.6 KiB
C++

/*****************************************************************************
Module: FGPhysicalProperties.cpp
Author: Christian Mayer
Date started: 28.05.99
Called by: main program
-------- Copyright (C) 1999 Christian Mayer (fgfs@christianmayer.de) --------
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place - Suite 330, Boston, MA 02111-1307, USA.
Further information about the GNU General Public License can also be found on
the world wide web at http://www.gnu.org.
FUNCTIONAL DESCRIPTION
------------------------------------------------------------------------------
Initialice the FGPhysicalProperties struct to something sensible(?)
HISTORY
------------------------------------------------------------------------------
29.05.1999 Christian Mayer Created
16.06.1999 Durk Talsma Portability for Linux
20.06.1999 Christian Mayer added lots of consts
11.10.1999 Christian Mayer changed set<> to map<> on Bernie Bright's
suggestion
19.10.1999 Christian Mayer change to use PLIB's sg instead of Point[2/3]D
and lots of wee code cleaning
*****************************************************************************/
/****************************************************************************/
/* INCLUDES */
/****************************************************************************/
#include "FGPhysicalProperties.h"
#include "FGWeatherDefs.h"
#include "FGWeatherUtils.h"
/****************************************************************************/
/********************************** CODE ************************************/
/****************************************************************************/
FGPhysicalProperties::FGPhysicalProperties()
{
sgVec3 zero;
sgZeroVec3( zero );
/************************************************************************/
/* This standart constructor fills the class with a standard weather */
/************************************************************************/
Wind[-1000.0] = FGWindItem(zero); //no Wind by default
Wind[10000.0] = FGWindItem(zero); //no Wind by default
Turbulence[-1000.0] = FGTurbulenceItem(zero); //no Turbulence by default
Turbulence[10000.0] = FGTurbulenceItem(zero); //no Turbulence by default
//Initialice with the CINA atmosphere
Temperature[ 0.0] = +15.0 + 273.16;
Temperature[11000.0] = -56.5 + 273.16;
Temperature[20000.0] = -56.5 + 273.16;
AirPressure = FGAirPressureItem(101325.0);
VaporPressure[-1000.0] = FG_WEATHER_DEFAULT_VAPORPRESSURE; //in Pa (I *only* accept SI!)
VaporPressure[10000.0] = FG_WEATHER_DEFAULT_VAPORPRESSURE; //in Pa (I *only* accept SI!)
//Clouds.insert(FGCloudItem()) => none
SnowRainIntensity = 0.0;
snowRainType = Rain;
LightningProbability = 0.0;
}
unsigned int FGPhysicalProperties::getNumberOfCloudLayers(void) const
{
return Clouds.size();
}
FGCloudItem FGPhysicalProperties::getCloudLayer(unsigned int nr) const
{
map<WeatherPrecision,FGCloudItem>::const_iterator CloudsIt = Clouds.begin();
//set the iterator to the 'nr'th entry
for (; nr > 0; nr--)
CloudsIt++;
return CloudsIt->second;
}
ostream& operator<< ( ostream& out, const FGPhysicalProperties2D& p )
{
typedef map<FGPhysicalProperties::Altitude, FGWindItem >::const_iterator wind_iterator;
typedef map<FGPhysicalProperties::Altitude, FGTurbulenceItem>::const_iterator turbulence_iterator;
typedef map<FGPhysicalProperties::Altitude, WeatherPrecision>::const_iterator scalar_iterator;
out << "Position: (" << p.p[0] << ", " << p.p[1] << ", " << p.p[2] << ")\n";
out << "Stored Wind: ";
for (wind_iterator WindIt = p.Wind.begin();
WindIt != p.Wind.end();
WindIt++)
out << "(" << WindIt->second.x() << ", " << WindIt->second.y() << ", " << WindIt->second.z() << ") m/s at (" << WindIt->first << ") m; ";
out << "\n";
out << "Stored Turbulence: ";
for (turbulence_iterator TurbulenceIt = p.Turbulence.begin();
TurbulenceIt != p.Turbulence.end();
TurbulenceIt++)
out << "(" << TurbulenceIt->second.x() << ", " << TurbulenceIt->second.y() << ", " << TurbulenceIt->second.z() << ") m/s at (" << TurbulenceIt->first << ") m; ";
out << "\n";
out << "Stored Temperature: ";
for (scalar_iterator TemperatureIt = p.Temperature.begin();
TemperatureIt != p.Temperature.end();
TemperatureIt++)
out << Kelvin2Celsius(TemperatureIt->second) << " degC at " << TemperatureIt->first << "m; ";
out << "\n";
out << "Stored AirPressure: ";
out << p.AirPressure.getValue()/100.0 << " hPa at " << 0.0 << "m; ";
out << "\n";
out << "Stored VaporPressure: ";
for (scalar_iterator VaporPressureIt = p.VaporPressure.begin();
VaporPressureIt != p.VaporPressure.end();
VaporPressureIt++)
out << VaporPressureIt->second/100.0 << " hPa at " << VaporPressureIt->first << "m; ";
out << "\n";
return out << "\n";
}
inline double F(const WeatherPrecision factor, const WeatherPrecision a, const WeatherPrecision b, const WeatherPrecision r, const WeatherPrecision x)
{
const double c = 1.0 / (-b + a * r);
return factor * c * ( 1.0 / (r + x) + a * c * log(fabs((r + x) * (b + a * x))) );
}
WeatherPrecision FGPhysicalProperties::AirPressureAt(const WeatherPrecision x) const
{
const double rho0 = (AirPressure.getValue()*FG_WEATHER_DEFAULT_AIRDENSITY*FG_WEATHER_DEFAULT_TEMPERATURE)/(TemperatureAt(0)*FG_WEATHER_DEFAULT_AIRPRESSURE);
const double G = 6.673e-11; //Gravity; in m^3 kg^-1 s^-2
const double m = 5.977e24; //mass of the earth in kg
const double r = 6368e3; //radius of the earth in metres
const double factor = -(rho0 * TemperatureAt(0) * G * m) / AirPressure.getValue();
double a, b, FF = 0.0;
//ok, integrate from 0 to a now.
if (Temperature.size() < 2)
{ //take care of the case that there aren't enough points
//actually this should be impossible...
if (Temperature.size() == 0)
{
cerr << "ERROR in FGPhysicalProperties: Air pressure at " << x << " metres altiude requested,\n";
cerr << " but there isn't enough data stored! No temperature is aviable!\n";
return FG_WEATHER_DEFAULT_AIRPRESSURE;
}
//ok, I've got only one point. So I'm assuming that that temperature is
//the same for all altitudes.
a = 1;
b = TemperatureAt(0);
FF += F(factor, a, b, r, x );
FF -= F(factor, a, b, r, 0.0);
}
else
{ //I've got at least two entries now
//integrate 'backwards' by integrating the strip ]n,x] first, then ]n-1,n] ... to [0,n-m]
if (x>=0.0)
{
map<WeatherPrecision, WeatherPrecision>::const_iterator temp2 = Temperature.upper_bound(x);
map<WeatherPrecision, WeatherPrecision>::const_iterator temp1 = temp2; temp1--;
if (temp1->first == x)
{ //ignore that interval
temp1--; temp2--;
}
bool first_pass = true;
while(true)
{
if (temp2 == Temperature.end())
{
//temp2 doesn't exist. So cheat by assuming that the slope is the
//same as between the two earlier temperatures
temp1--; temp2--;
a = (temp2->second - temp1->second)/(temp2->first - temp1->first);
b = temp1->second - a * temp1->first;
temp1++; temp2++;
}
else
{
a = (temp2->second - temp1->second)/(temp2->first - temp1->first);
b = temp1->second - a * temp1->first;
}
if (first_pass)
{
FF += F(factor, a, b, r, x);
first_pass = false;
}
else
{
FF += F(factor, a, b, r, temp2->first);
}
if (temp1->first>0.0)
{
FF -= F(factor, a, b, r, temp1->first);
temp1--; temp2--;
}
else
{
FF -= F(factor, a, b, r, 0.0);
return AirPressure.getValue() * exp(FF);
}
}
}
else
{ //ok x is smaller than 0.0, so do everything in reverse
map<WeatherPrecision, WeatherPrecision>::const_iterator temp2 = Temperature.upper_bound(x);
map<WeatherPrecision, WeatherPrecision>::const_iterator temp1 = temp2; temp1--;
bool first_pass = true;
while(true)
{
if (temp2 == Temperature.begin())
{
//temp1 doesn't exist. So cheat by assuming that the slope is the
//same as between the two earlier temperatures
temp1 = Temperature.begin(); temp2++;
a = (temp2->second - temp1->second)/(temp2->first - temp1->first);
b = temp1->second - a * temp1->first;
temp2--;
}
else
{
a = (temp2->second - temp1->second)/(temp2->first - temp1->first);
b = temp1->second - a * temp1->first;
}
if (first_pass)
{
FF += F(factor, a, b, r, x);
first_pass = false;
}
else
{
FF += F(factor, a, b, r, temp2->first);
}
if (temp2->first<0.0)
{
FF -= F(factor, a, b, r, temp1->first);
if (temp2 == Temperature.begin())
{
temp1 = Temperature.begin(); temp2++;
}
else
{
temp1++; temp2++;
}
}
else
{
FF -= F(factor, a, b, r, 0.0);
return AirPressure.getValue() * exp(FF);
}
}
}
}
return AirPressure.getValue() * exp(FF);
}