1
0
Fork 0
flightgear/src/FDM/LaRCsim/basic_gear.c
2003-07-26 00:19:14 +00:00

349 lines
13 KiB
C

/***************************************************************************
TITLE: gear
----------------------------------------------------------------------------
FUNCTION: Landing gear model for example simulation
----------------------------------------------------------------------------
MODULE STATUS: developmental
----------------------------------------------------------------------------
GENEALOGY: Created 931012 by E. B. Jackson
----------------------------------------------------------------------------
DESIGNED BY: E. B. Jackson
CODED BY: E. B. Jackson
MAINTAINED BY: E. B. Jackson
----------------------------------------------------------------------------
MODIFICATION HISTORY:
----------------------------------------------------------------------------
REFERENCES:
----------------------------------------------------------------------------
CALLED BY:
----------------------------------------------------------------------------
CALLS TO:
----------------------------------------------------------------------------
INPUTS:
----------------------------------------------------------------------------
OUTPUTS:
--------------------------------------------------------------------------*/
#include <math.h>
#include "ls_types.h"
#include "ls_constants.h"
#include "ls_generic.h"
#include "ls_cockpit.h"
#define HEIGHT_AGL_WHEEL d_wheel_rwy_local_v[2]
static void sub3( DATA v1[], DATA v2[], DATA result[] )
{
result[0] = v1[0] - v2[0];
result[1] = v1[1] - v2[1];
result[2] = v1[2] - v2[2];
}
static void add3( DATA v1[], DATA v2[], DATA result[] )
{
result[0] = v1[0] + v2[0];
result[1] = v1[1] + v2[1];
result[2] = v1[2] + v2[2];
}
static void cross3( DATA v1[], DATA v2[], DATA result[] )
{
result[0] = v1[1]*v2[2] - v1[2]*v2[1];
result[1] = v1[2]*v2[0] - v1[0]*v2[2];
result[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
static void multtrans3x3by3( DATA m[][3], DATA v[], DATA result[] )
{
result[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2];
result[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2];
result[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2];
}
static void mult3x3by3( DATA m[][3], DATA v[], DATA result[] )
{
result[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2];
result[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2];
result[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2];
}
static void clear3( DATA v[] )
{
v[0] = 0.; v[1] = 0.; v[2] = 0.;
}
void basic_gear()
{
char rcsid[] = "junk";
#define NUM_WHEELS 4
// char gear_strings[NUM_WHEELS][12]={"nose","right main", "left main", "tail skid"};
/*
* Aircraft specific initializations and data goes here
*/
static int num_wheels = NUM_WHEELS; /* number of wheels */
static DATA d_wheel_rp_body_v[NUM_WHEELS][3] = /* X, Y, Z locations,full extension */
{
{ .422, 0., .29 }, /*nose*/ /* in feet */
{ 0.026, 0.006, .409 }, /*right main*/
{ 0.026, -.006, .409 }, /*left main*/
{ -1.32, 0, .17 } /*tail skid */
};
// static DATA gear_travel[NUM_WHEELS] = /*in Z-axis*/
// { -0.5, 2.5, 2.5, 0};
static DATA spring_constant[NUM_WHEELS] = /* springiness, lbs/ft */
{ 2., .65, .65, 1. };
static DATA spring_damping[NUM_WHEELS] = /* damping, lbs/ft/sec */
{ 1., .3, .3, .5 };
static DATA percent_brake[NUM_WHEELS] = /* percent applied braking */
{ 0., 0., 0., 0. }; /* 0 = none, 1 = full */
static DATA caster_angle_rad[NUM_WHEELS] = /* steerable tires - in */
{ 0., 0., 0., 0}; /* radians, +CW */
/*
* End of aircraft specific code
*/
/*
* Constants & coefficients for tyres on tarmac - ref [1]
*/
/* skid function looks like:
*
* mu ^
* |
* max_mu | +
* | /|
* sliding_mu | / +------
* | /
* | /
* +--+------------------------>
* | | | sideward V
* 0 bkout skid
* V V
*/
static int it_rolls[NUM_WHEELS] = { 1,1,1,0};
static DATA sliding_mu[NUM_WHEELS] = { 0.5, 0.5, 0.5, 0.3};
static DATA rolling_mu[NUM_WHEELS] = { 0.01, 0.01, 0.01, 0.0};
static DATA max_brake_mu[NUM_WHEELS] ={ 0.0, 0.6, 0.6, 0.0};
static DATA max_mu = 0.8;
static DATA bkout_v = 0.1;
static DATA skid_v = 1.0;
/*
* Local data variables
*/
DATA d_wheel_cg_body_v[3]; /* wheel offset from cg, X-Y-Z */
DATA d_wheel_cg_local_v[3]; /* wheel offset from cg, N-E-D */
DATA d_wheel_rwy_local_v[3]; /* wheel offset from rwy, N-E-U */
DATA v_wheel_cg_local_v[3]; /*wheel velocity rel to cg N-E-D*/
// DATA v_wheel_body_v[3]; /* wheel velocity, X-Y-Z */
DATA v_wheel_local_v[3]; /* wheel velocity, N-E-D */
DATA f_wheel_local_v[3]; /* wheel reaction force, N-E-D */
// DATA altitude_local_v[3]; /*altitude vector in local (N-E-D) i.e. (0,0,h)*/
// DATA altitude_body_v[3]; /*altitude vector in body (X,Y,Z)*/
DATA temp3a[3];
// DATA temp3b[3];
DATA tempF[3];
DATA tempM[3];
DATA reaction_normal_force; /* wheel normal (to rwy) force */
DATA cos_wheel_hdg_angle, sin_wheel_hdg_angle; /* temp storage */
DATA v_wheel_forward, v_wheel_sideward, abs_v_wheel_sideward;
DATA forward_mu, sideward_mu; /* friction coefficients */
DATA beta_mu; /* breakout friction slope */
DATA forward_wheel_force, sideward_wheel_force;
int i; /* per wheel loop counter */
/*
* Execution starts here
*/
beta_mu = max_mu/(skid_v-bkout_v);
clear3( F_gear_v ); /* Initialize sum of forces... */
clear3( M_gear_v ); /* ...and moments */
/*
* Put aircraft specific executable code here
*/
percent_brake[1] = Brake_pct[0];
percent_brake[2] = Brake_pct[1];
caster_angle_rad[0] =
(0.01 + 0.04 * (1 - V_calibrated_kts / 130)) * Rudder_pedal;
for (i=0;i<num_wheels;i++) /* Loop for each wheel */
{
/* printf("%s:\n",gear_strings[i]); */
/*========================================*/
/* Calculate wheel position w.r.t. runway */
/*========================================*/
/* printf("\thgcg: %g, theta: %g,phi: %g\n",D_cg_above_rwy,Theta*RAD_TO_DEG,Phi*RAD_TO_DEG); */
/* First calculate wheel location w.r.t. cg in body (X-Y-Z) axes... */
sub3( d_wheel_rp_body_v[i], D_cg_rp_body_v, d_wheel_cg_body_v );
/* then converting to local (North-East-Down) axes... */
multtrans3x3by3( T_local_to_body_m, d_wheel_cg_body_v, d_wheel_cg_local_v );
/* Runway axes correction - third element is Altitude, not (-)Z... */
d_wheel_cg_local_v[2] = -d_wheel_cg_local_v[2]; /* since altitude = -Z */
/* Add wheel offset to cg location in local axes */
add3( d_wheel_cg_local_v, D_cg_rwy_local_v, d_wheel_rwy_local_v );
/* remove Runway axes correction so right hand rule applies */
d_wheel_cg_local_v[2] = -d_wheel_cg_local_v[2]; /* now Z positive down */
/*============================*/
/* Calculate wheel velocities */
/*============================*/
/* contribution due to angular rates */
cross3( Omega_body_v, d_wheel_cg_body_v, temp3a );
/* transform into local axes */
multtrans3x3by3( T_local_to_body_m, temp3a,v_wheel_cg_local_v );
/* plus contribution due to cg velocities */
add3( v_wheel_cg_local_v, V_local_rel_ground_v, v_wheel_local_v );
clear3(f_wheel_local_v);
reaction_normal_force=0;
if( HEIGHT_AGL_WHEEL < 0. )
/*the wheel is underground -- which implies ground contact
so calculate reaction forces */
{
/*===========================================*/
/* Calculate forces & moments for this wheel */
/*===========================================*/
/* Add any anticipation, or frame lead/prediction, here... */
/* no lead used at present */
/* Calculate sideward and forward velocities of the wheel
in the runway plane */
cos_wheel_hdg_angle = cos(caster_angle_rad[i] + Psi);
sin_wheel_hdg_angle = sin(caster_angle_rad[i] + Psi);
v_wheel_forward = v_wheel_local_v[0]*cos_wheel_hdg_angle
+ v_wheel_local_v[1]*sin_wheel_hdg_angle;
v_wheel_sideward = v_wheel_local_v[1]*cos_wheel_hdg_angle
- v_wheel_local_v[0]*sin_wheel_hdg_angle;
/* Calculate normal load force (simple spring constant) */
reaction_normal_force = 0.;
reaction_normal_force = spring_constant[i]*d_wheel_rwy_local_v[2]
- v_wheel_local_v[2]*spring_damping[i];
/* printf("\treaction_normal_force: %g\n",reaction_normal_force); */
if (reaction_normal_force > 0.) reaction_normal_force = 0.;
/* to prevent damping component from swamping spring component */
/* Calculate friction coefficients */
if(it_rolls[i])
{
forward_mu = (max_brake_mu[i] - rolling_mu[i])*percent_brake[i] + rolling_mu[i];
abs_v_wheel_sideward = sqrt(v_wheel_sideward*v_wheel_sideward);
sideward_mu = sliding_mu[i];
if (abs_v_wheel_sideward < skid_v)
sideward_mu = (abs_v_wheel_sideward - bkout_v)*beta_mu;
if (abs_v_wheel_sideward < bkout_v) sideward_mu = 0.;
}
else
{
forward_mu=sliding_mu[i];
sideward_mu=sliding_mu[i];
}
/* Calculate foreward and sideward reaction forces */
forward_wheel_force = forward_mu*reaction_normal_force;
sideward_wheel_force = sideward_mu*reaction_normal_force;
if(v_wheel_forward < 0.) forward_wheel_force = -forward_wheel_force;
if(v_wheel_sideward < 0.) sideward_wheel_force = -sideward_wheel_force;
/* printf("\tFfwdgear: %g Fsidegear: %g\n",forward_wheel_force,sideward_wheel_force);
*/
/* Rotate into local (N-E-D) axes */
f_wheel_local_v[0] = forward_wheel_force*cos_wheel_hdg_angle
- sideward_wheel_force*sin_wheel_hdg_angle;
f_wheel_local_v[1] = forward_wheel_force*sin_wheel_hdg_angle
+ sideward_wheel_force*cos_wheel_hdg_angle;
f_wheel_local_v[2] = reaction_normal_force;
/* Convert reaction force from local (N-E-D) axes to body (X-Y-Z) */
mult3x3by3( T_local_to_body_m, f_wheel_local_v, tempF );
/* Calculate moments from force and offsets in body axes */
cross3( d_wheel_cg_body_v, tempF, tempM );
/* Sum forces and moments across all wheels */
add3( tempF, F_gear_v, F_gear_v );
add3( tempM, M_gear_v, M_gear_v );
}
/* printf("\tN: %g,dZrwy: %g dZdotrwy: %g\n",reaction_normal_force,HEIGHT_AGL_WHEEL,v_wheel_cg_local_v[2]); */
/* printf("\tFxgear: %g Fygear: %g, Fzgear: %g\n",F_X_gear,F_Y_gear,F_Z_gear); */
/* printf("\tMgear: %g, Lgear: %g, Ngear: %g\n\n",M_m_gear,M_l_gear,M_n_gear); */
}
}