1
0
Fork 0
flightgear/Tools/Prep/GenAirports/area.cxx
1999-04-06 23:37:07 +00:00

218 lines
5.9 KiB
C++

// area.c -- routines to assist with inserting "areas" into FG terrain
//
// Written by Curtis Olson, started March 1998.
//
// Copyright (C) 1998 Curtis L. Olson - curt@me.umn.edu
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
//
#include <math.h>
#include <stdio.h>
#include <Include/fg_constants.h>
#include "area.hxx"
#include "point2d.hxx"
// calc new x, y for a rotation
double rot_x(double x, double y, double theta) {
return ( x * cos(theta) + y * sin(theta) );
}
// calc new x, y for a rotation
double rot_y(double x, double y, double theta) {
return ( -x * sin(theta) + y * cos(theta) );
}
// calc new lon/lat given starting lon/lat, and offset radial, and
// distance. NOTE: distance is specified in meters (and converted
// internally to radians)
point2d calc_lon_lat( point2d orig, point2d offset ) {
point2d result;
// printf("calc_lon_lat() offset.theta = %.2f offset.dist = %.2f\n",
// offset.theta, offset.dist);
offset.dist *= METER_TO_NM * NM_TO_RAD;
result.lat = asin( sin(orig.lat) * cos(offset.dist) +
cos(orig.lat) * sin(offset.dist) * cos(offset.theta) );
if ( cos(result.lat) < FG_EPSILON ) {
result.lon = orig.lon; // endpoint a pole
} else {
result.lon =
fmod(orig.lon - asin( sin(offset.theta) * sin(offset.dist) /
cos(result.lat) ) + FG_PI, FG_2PI) - FG_PI;
}
return(result);
}
list < point2d >
batch_cart_to_polar_2d( list < point2d > in_list)
{
list < point2d > out_list;
list < point2d > :: iterator current;
list < point2d > :: iterator last;
point2d p;
current = in_list.begin();
last = in_list.end();
for ( ; current != last ; ++current ) {
p = cart_to_polar_2d( *current );
out_list.push_back(p);
}
return out_list;
}
// given a set of 2d coordinates relative to a center point, and the
// lon, lat of that center point (specified in degrees), as well as a
// potential orientation angle, generate the corresponding lon and lat
// of the original 2d verticies.
list < point2d >
gen_area(point2d origin, double angle, list < point2d > cart_list)
{
list < point2d > rad_list;
list < point2d > result_list;
list < point2d > :: iterator current;
list < point2d > :: iterator last;
point2d origin_rad, p;
origin_rad.lon = origin.lon * DEG_TO_RAD;
origin_rad.lat = origin.lat * DEG_TO_RAD;
// convert to polar coordinates
rad_list = batch_cart_to_polar_2d(cart_list);
/*
// display points
printf("converted to polar\n");
current = rad_list.begin();
last = rad_list.end();
while ( current != last ) {
printf("(%.2f, %.2f)\n", current->theta, current->dist);
++current;
}
printf("\n");
*/
// rotate by specified angle
// printf("Rotating points by %.2f\n", angle);
current = rad_list.begin();
last = rad_list.end();
for ( ; current != last ; ++current ) {
current->theta -= angle;
while ( current->theta > FG_2PI ) {
current->theta -= FG_2PI;
// (*current).theta -= angle;
// while ( (*current).theta > FG_2PI ) {
// (*current).theta -= FG_2PI;
}
// printf("(%.2f, %.2f)\n", current->theta, current->dist);
}
// printf("\n");
// find actual lon,lat of coordinates
// printf("convert to lon, lat relative to %.2f %.2f\n",
// origin.lon, origin.lat);
current = rad_list.begin();
last = rad_list.end();
for ( ; current != last ; ++current ) {
p = calc_lon_lat(origin_rad, *current);
// convert from radians to degress
p.lon *= RAD_TO_DEG;
p.lat *= RAD_TO_DEG;
// printf("(%.8f, %.8f)\n", p.lon, p.lat);
result_list.push_back(p);
}
// printf("\n");
return result_list;
}
// generate an area for a runway
list < point2d >
gen_runway_area( double lon, double lat, double heading,
double length, double width)
{
list < point2d > result_list;
list < point2d > tmp_list;
list < point2d > :: iterator current;
list < point2d > :: iterator last;
point2d p;
point2d origin;
double l, w;
int i;
/*
printf("runway: lon = %.2f lat = %.2f hdg = %.2f len = %.2f width = %.2f\n",
lon, lat, heading, length, width);
*/
origin.lon = lon;
origin.lat = lat;
l = length / 2.0;
w = width / 2.0;
// generate untransformed runway area vertices
p.x = l; p.y = w; tmp_list.push_back(p);
p.x = l; p.y = -w; tmp_list.push_back(p);
p.x = -l; p.y = -w; tmp_list.push_back(p);
p.x = -l; p.y = w; tmp_list.push_back(p);
/*
// display points
printf("Untransformed, unrotated runway\n");
current = tmp_list.begin();
last = tmp_list.end();
while ( current != last ) {
printf("(%.2f, %.2f)\n", current->x, current->y);
++current;
}
printf("\n");
*/
// rotate, transform, and convert points to lon, lat in degrees
result_list = gen_area(origin, heading, tmp_list);
/*
// display points
printf("Results in radians.\n");
current = result_list.begin();
last = result_list.end();
while ( current != last ) {
printf("(%.8f, %.8f)\n", current->lon, current->lat);
++current;
}
printf("\n");
*/
return result_list;
}