1
0
Fork 0
flightgear/src/Time/light.cxx
James Turner 6d0c2070fd Use future-proof SGPath APIs.
Remove uses of .str(), .c_str() and some other methods of SGPath.
Pass SGPath directly where possible, or explicitly convert to the
appropriate 8-bit encoding.
2016-06-28 10:08:38 +01:00

440 lines
16 KiB
C++

//
// light.cxx -- lighting routines
//
// Written by Curtis Olson, started April 1998.
//
// Copyright (C) 1998 Curtis L. Olson - http://www.flightgear.org/~curt
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//
// $Id$
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <simgear/compiler.h>
#include <cmath>
#include <simgear/constants.h>
#include <simgear/debug/logstream.hxx>
#include <simgear/math/interpolater.hxx>
#include <simgear/misc/sg_path.hxx>
#include <simgear/scene/sky/sky.hxx>
#include <simgear/screen/colors.hxx>
#include <simgear/timing/sg_time.hxx>
#include <simgear/structure/event_mgr.hxx>
#include <Main/main.hxx>
#include <Main/globals.hxx>
#include <Main/fg_props.hxx>
#include <Viewer/renderer.hxx>
#include <Viewer/view.hxx>
#include "light.hxx"
#include "sunsolver.hxx"
// Constructor
FGLight::FGLight ()
: _ambient_tbl( NULL ),
_diffuse_tbl( NULL ),
_specular_tbl( NULL ),
_sky_tbl( NULL ),
_sun_lon(0),
_sun_lat(0),
_moon_lon(0),
_moon_gc_lat(0),
_sun_vec(0, 0, 0, 0),
_moon_vec(0, 0, 0, 0),
_sun_vec_inv(0, 0, 0, 0),
_moon_vec_inv(0, 0, 0, 0),
_sun_angle(0),
_moon_angle(0),
_prev_sun_angle(0),
_sun_rotation(0),
_moon_rotation(0),
_scene_ambient(0, 0, 0, 0),
_scene_diffuse(0, 0, 0, 0),
_scene_specular(0, 0, 0, 0),
_scene_chrome(0, 0, 0, 0),
_sun_color(1, 1, 1, 0),
_sky_color(0, 0, 0, 0),
_fog_color(0, 0, 0, 0),
_cloud_color(0, 0, 0, 0),
_adj_fog_color(0, 0, 0, 0),
_adj_sky_color(0, 0, 0, 0),
_saturation(1.0),
_scattering(0.8),
_overcast(0.0),
_dt_total(0)
{
}
// Destructor
FGLight::~FGLight ()
{
delete _ambient_tbl;
delete _diffuse_tbl;
delete _specular_tbl;
delete _sky_tbl;
}
// initialize lighting tables
void FGLight::init () {
SG_LOG( SG_EVENT, SG_INFO,
"Initializing Lighting interpolation tables." );
// build the path names of the lookup tables
SGPath path( globals->get_fg_root() );
// initialize ambient, diffuse and specular tables
SGPath ambient_path = path;
ambient_path.append( "Lighting/ambient" );
_ambient_tbl = new SGInterpTable( ambient_path );
SGPath diffuse_path = path;
diffuse_path.append( "Lighting/diffuse" );
_diffuse_tbl = new SGInterpTable( diffuse_path );
SGPath specular_path = path;
specular_path.append( "Lighting/specular" );
_specular_tbl = new SGInterpTable( specular_path );
// initialize sky table
SGPath sky_path = path;
sky_path.append( "Lighting/sky" );
_sky_tbl = new SGInterpTable( sky_path );
globals->get_event_mgr()->addTask("updateSunPos", this,
&FGLight::updateSunPos, 0.5 );
}
void FGLight::reinit () {
_prev_sun_angle = -9999.0;
_dt_total = 0;
delete _ambient_tbl;
delete _diffuse_tbl;
delete _specular_tbl;
delete _sky_tbl;
init();
updateSunPos();
update_sky_color();
update_adj_fog_color();
}
void FGLight::bind () {
SGPropertyNode *prop = globals->get_props();
// Write Only
tie(prop,"/rendering/scene/saturation", SGRawValuePointer<float>(&_saturation));
tie(prop,"/rendering/scene/scattering", SGRawValuePointer<float>(&_scattering));
tie(prop,"/rendering/scene/overcast", SGRawValuePointer<float>(&_overcast));
_sunAngleRad = prop->getNode("/sim/time/sun-angle-rad", true);
_sunAngleRad->setDoubleValue(_sun_angle);
_humidity = fgGetNode("/environment/relative-humidity", true);
// Read Only
tie(prop,"/rendering/scene/ambient/red", SGRawValuePointer<float>(&_scene_ambient[0]));
tie(prop,"/rendering/scene/ambient/green", SGRawValuePointer<float>(&_scene_ambient[1]));
tie(prop,"/rendering/scene/ambient/blue", SGRawValuePointer<float>(&_scene_ambient[2]));
tie(prop,"/rendering/scene/diffuse/red", SGRawValuePointer<float>(&_scene_diffuse[0]));
tie(prop,"/rendering/scene/diffuse/green", SGRawValuePointer<float>(&_scene_diffuse[1]));
tie(prop,"/rendering/scene/diffuse/blue", SGRawValuePointer<float>(&_scene_diffuse[2]));
tie(prop,"/rendering/scene/specular/red", SGRawValuePointer<float>(&_scene_specular[0]));
tie(prop,"/rendering/scene/specular/green", SGRawValuePointer<float>(&_scene_specular[1]));
tie(prop,"/rendering/scene/specular/blue", SGRawValuePointer<float>(&_scene_specular[2]));
tie(prop,"/rendering/dome/sun/red", SGRawValuePointer<float>(&_sun_color[0]));
tie(prop,"/rendering/dome/sun/green", SGRawValuePointer<float>(&_sun_color[1]));
tie(prop,"/rendering/dome/sun/blue", SGRawValuePointer<float>(&_sun_color[2]));
tie(prop,"/rendering/dome/sky/red", SGRawValuePointer<float>(&_sky_color[0]));
tie(prop,"/rendering/dome/sky/green", SGRawValuePointer<float>(&_sky_color[1]));
tie(prop,"/rendering/dome/sky/blue", SGRawValuePointer<float>(&_sky_color[2]));
tie(prop,"/rendering/dome/cloud/red", SGRawValuePointer<float>(&_cloud_color[0]));
tie(prop,"/rendering/dome/cloud/green", SGRawValuePointer<float>(&_cloud_color[1]));
tie(prop,"/rendering/dome/cloud/blue", SGRawValuePointer<float>(&_cloud_color[2]));
tie(prop,"/rendering/dome/fog/red", SGRawValuePointer<float>(&_fog_color[0]));
tie(prop,"/rendering/dome/fog/green", SGRawValuePointer<float>(&_fog_color[1]));
tie(prop,"/rendering/dome/fog/blue", SGRawValuePointer<float>(&_fog_color[2]));
// Sun vector
tie(prop,"/ephemeris/sun/local/x", SGRawValuePointer<float>(&_sun_vec[0]));
tie(prop,"/ephemeris/sun/local/y", SGRawValuePointer<float>(&_sun_vec[1]));
tie(prop,"/ephemeris/sun/local/z", SGRawValuePointer<float>(&_sun_vec[2]));
// Properties used directly by effects
_chromeProps[0] = prop->getNode("/rendering/scene/chrome-light/red", true);
_chromeProps[1] = prop->getNode("/rendering/scene/chrome-light/green",
true);
_chromeProps[2] = prop->getNode("/rendering/scene/chrome-light/blue", true);
_chromeProps[3] = prop->getNode("/rendering/scene/chrome-light/alpha",
true);
for (int i = 0; i < 4; ++i)
_chromeProps[i]->setValue(0.0);
}
void FGLight::unbind () {
_tiedProperties.Untie();
for (int i = 0; i < 4; ++i)
_chromeProps[i] = SGPropertyNode_ptr();
_sunAngleRad = SGPropertyNode_ptr();
_humidity = SGPropertyNode_ptr();
}
// update lighting parameters based on current sun position
void FGLight::update( double dt )
{
update_adj_fog_color();
if (_prev_sun_angle != _sun_angle) {
_prev_sun_angle = _sun_angle;
update_sky_color();
}
}
void FGLight::update_sky_color () {
const SGVec4f base_sky_color( 0.31, 0.43, 0.69, 1.0 );
const SGVec4f base_fog_color( 0.63, 0.72, 0.88, 1.0 );
// calculate lighting parameters based on sun's relative angle to
// local up
float av = _humidity->getFloatValue() * 45;
float visibility_log = log(av)/11.0;
float visibility_inv = (45000.0 - av)/45000.0;
float deg = _sun_angle * SGD_RADIANS_TO_DEGREES;
if (_saturation < 0.0) _saturation = 0.0;
else if (_saturation > 1.0) _saturation = 1.0;
if (_scattering < 0.0) _scattering = 0.0;
else if (_scattering > 1.0) _scattering = 1.0;
if (_overcast < 0.0) _overcast = 0.0;
else if (_overcast > 1.0) _overcast = 1.0;
float ambient = _ambient_tbl->interpolate( deg ) + visibility_inv/10;
float diffuse = _diffuse_tbl->interpolate( deg );
float specular = _specular_tbl->interpolate( deg ) * visibility_log;
float sky_brightness = _sky_tbl->interpolate( deg );
ambient *= _saturation;
diffuse *= _saturation;
specular *= _saturation;
sky_brightness *= _saturation;
// sky_brightness = 0.15; // used to force a dark sky (when testing)
/** fog color */
float sqr_sky_brightness = sky_brightness * sky_brightness * _scattering;
_fog_color = base_fog_color * sqr_sky_brightness;
_fog_color[3] = base_fog_color[3];
gamma_correct_rgb( _fog_color.data() );
/** sky color */
static const SGVec4f one_vec( 1.0f, 1.0f, 1.0f, 1.0f);
SGVec4f overcast_color = (one_vec - base_sky_color) * _overcast;
_sky_color = (base_sky_color + overcast_color) * sky_brightness;
_sky_color[3] = base_sky_color[3];
gamma_correct_rgb( _sky_color.data() );
/** cloud color */
_cloud_color = base_fog_color * sky_brightness;
/** adjust the cloud colors for sunrise/sunset effects (darken them) */
if (_sun_angle > 1.0) {
float sun2 = 1.0 / sqrt(_sun_angle);
_cloud_color *= sun2;
}
_cloud_color[3] = base_fog_color[3];
gamma_correct_rgb( _cloud_color.data() );
/** ambient light */
_scene_ambient = _fog_color * ambient;
_scene_ambient[3] = _fog_color[3];
gamma_correct_rgb( _scene_ambient.data() );
/** diffuse light */
SGSky* thesky = globals->get_renderer()->getSky();
SGVec4f color = thesky->get_scene_color();
_scene_diffuse = color * diffuse;
_scene_diffuse[3] = color[3];
gamma_correct_rgb( _scene_diffuse.data() );
SGVec4f chrome = _scene_ambient * .4f + _scene_diffuse;
chrome[3] = 1.0f;
if (chrome != _scene_chrome) {
_scene_chrome = chrome;
for (int i = 0; i < 4; ++i)
_chromeProps[i]->setValue(static_cast<double>(_scene_chrome[i]));
}
/** specular light */
_sun_color = thesky->get_sun_color();
_scene_specular = _sun_color * specular;
_scene_specular[3] = _sun_color[3];
gamma_correct_rgb( _scene_specular.data() );
}
// calculate fog color adjusted for sunrise/sunset effects
void FGLight::update_adj_fog_color () {
// double pitch = globals->get_current_view()->getPitch_deg()
// * SGD_DEGREES_TO_RADIANS;
// double pitch_offset = globals->get_current_view()-> getPitchOffset_deg()
// * SGD_DEGREES_TO_RADIANS;
double heading = globals->get_current_view()->getHeading_deg()
* SGD_DEGREES_TO_RADIANS;
double heading_offset = globals->get_current_view()->getHeadingOffset_deg()
* SGD_DEGREES_TO_RADIANS;
// set fog color (we'll try to match the sunset color in the
// direction we are looking
// Do some sanity checking ...
if ( _sun_rotation < -2.0 * SGD_2PI || _sun_rotation > 2.0 * SGD_2PI ) {
SG_LOG( SG_EVENT, SG_ALERT, "Sun rotation bad = " << _sun_rotation );
return;
}
if ( heading < -2.0 * SGD_2PI || heading > 2.0 * SGD_2PI ) {
SG_LOG( SG_EVENT, SG_ALERT, "Heading rotation bad = " << heading );
return;
}
if ( heading_offset < -2.0 * SGD_2PI || heading_offset > 2.0 * SGD_2PI ) {
SG_LOG( SG_EVENT, SG_ALERT, "Heading offset bad = " << heading_offset );
return;
}
static float gamma = system_gamma;
// first determine the difference between our view angle and local
// direction to the sun
//double vert_rotation = pitch + pitch_offset;
// revert to unmodified values before using them.
//
SGSky* thesky = globals->get_renderer()->getSky();
SGVec4f color = thesky->get_scene_color();
gamma_restore_rgb( _fog_color.data(), gamma );
gamma_restore_rgb( _sky_color.data(), gamma );
// Calculate the fog color in the direction of the sun for
// sunrise/sunset effects.
//
_sun_color[0] = color[0]*color[0]*color[0];
_sun_color[1] = color[1]*color[1]*color[1];
_sun_color[2] = color[2]*color[2];
// interpolate between the sunrise/sunset color and the color
// at the opposite direction of this effect. Take in account
// the current visibility.
//
float av = thesky->get_visibility();
if (av > 45000) av = 45000;
float avf = 0.87 - (45000 - av) / 83333.33;
float sif = 0.5 - cos(_sun_angle*2)/2;
if (sif < 1e-3)
sif = 1e-3;
// determine horizontal angle between current view direction and sun
// since _sun_rotation is relative to South, and heading is in the local frame
// we need to account for the 180 degrees offset and differing signs
// hence the negation and SGD_PI adjustment.
double hor_rotation = -_sun_rotation - SGD_PI - heading + heading_offset;
if (hor_rotation < 0 )
hor_rotation = fmod(hor_rotation, SGD_2PI) + SGD_2PI;
else
hor_rotation = fmod(hor_rotation, SGD_2PI);
float rf1 = fabs((hor_rotation - SGD_PI) / SGD_PI); // 0.0 .. 1.0
float rf2 = avf * pow(rf1*rf1, 1/sif) * 1.0639 * _saturation * _scattering;
float rf3 = 1.0 - rf2;
gamma = system_gamma * (0.9 - sif*avf);
_adj_fog_color = rf3 * _fog_color + rf2 * _sun_color;
_adj_fog_color[3] = 0;
gamma_correct_rgb( _adj_fog_color.data(), gamma);
// make sure the colors have their original value before they are being
// used by the rest of the program.
//
gamma_correct_rgb( _fog_color.data(), gamma );
gamma_correct_rgb( _sky_color.data(), gamma );
}
// update the cur_time_params structure with the current sun position
void FGLight::updateSunPos()
{
SGTime *t = globals->get_time_params();
fgSunPositionGST(t->getGst(), &_sun_lon, &_sun_lat);
// It might seem that sun_gc_lat needs to be converted to geodetic
// latitude here, but it doesn't. The sun latitude is the latitude
// of the point on the earth where the up vector has the same
// angle from geocentric Z as the sun direction. But geodetic
// latitude is defined as 90 - angle of up vector from Z!
SGVec3d sunpos = SGVec3d::fromGeoc(SGGeoc::fromRadM(_sun_lon, _sun_lat,
SGGeodesy::EQURAD));
// update the sun light vector
_sun_vec = SGVec4f(toVec3f(normalize(sunpos)), 0);
_sun_vec_inv = - _sun_vec;
// calculate the sun's relative angle to local up
SGQuatd hlOr = SGQuatd::fromLonLat( globals->get_view_position() );
SGVec3d world_up = hlOr.backTransform( -SGVec3d::e3() );
// cout << "nup = " << nup[0] << "," << nup[1] << ","
// << nup[2] << endl;
// cout << "nsun = " << nsun[0] << "," << nsun[1] << ","
// << nsun[2] << endl;
SGVec3d nsun = normalize(sunpos);
SGVec3d nup = normalize(world_up);
_sun_angle = acos( dot( nup, nsun ) );
double signedPI = (_sun_angle < 0.0) ? -SGD_PI : SGD_PI;
_sun_angle = fmod(_sun_angle+signedPI, SGD_2PI) - signedPI;
// Get direction to the sun in the local frame.
SGVec3d local_sun_vec = hlOr.transform(nsun);
// Angle from South.
// atan2(y,x) returns the angle between the positive X-axis
// and the vector with the origin at 0, going through (x,y)
// Since the local frame coordinates have x-positive pointing Nord and
// y-positive pointing East we need to negate local_sun_vec.x()
// _sun_rotation is positive counterclockwise from South (sun in the East)
// and negative clockwise from South (sun in the West)
_sun_rotation = atan2(local_sun_vec.y(), -local_sun_vec.x());
// cout << " Sky needs to rotate = " << _sun_rotation << " rads = "
// << _sun_rotation * SGD_RADIANS_TO_DEGREES << " degrees." << endl;
_sunAngleRad->setDoubleValue(_sun_angle);
}