1
0
Fork 0
flightgear/src/FDM/YASim/Gear.cpp

353 lines
11 KiB
C++

#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include "Math.hpp"
#include "BodyEnvironment.hpp"
#include "RigidBody.hpp"
#include <cfloat>
#include <simgear/bvh/BVHMaterial.hxx>
#include <FDM/flight.hxx>
#include "Gear.hpp"
namespace yasim {
static const float YASIM_PI = 3.14159265358979323846;
static const float maxGroundBumpAmplitude=0.4;
//Amplitude can be positive and negative
Gear::Gear()
{
int i;
for(i=0; i<3; i++)
_pos[i] = _cmpr[i] = 0;
_spring = 1;
_damp = 0;
_sfric = 0.8f;
_dfric = 0.7f;
_brake = 0;
_rot = 0;
_initialLoad = 0;
_extension = 1;
_castering = false;
_frac = 0;
_ground_frictionFactor = 1;
_ground_rollingFriction = 0.02;
_ground_loadCapacity = 1e30;
_ground_loadResistance = 1e30;
_ground_isSolid = 1;
_ground_bumpiness = 0;
_onWater = 0;
_onSolid = 1;
_global_x = 0.0;
_global_y = 0.0;
_reduceFrictionByExtension = 0;
_spring_factor_not_planing = 1;
_speed_planing = 0;
_isContactPoint = 0;
_ignoreWhileSolving = 0;
for(i=0; i<3; i++)
_global_ground[i] = _global_vel[i] = 0;
_global_ground[2] = 1;
_global_ground[3] = -1e3;
}
void Gear::setGlobalGround(double *global_ground, float* global_vel,
double globalX, double globalY,
const simgear::BVHMaterial *material)
{
int i;
double frictionFactor,rollingFriction,loadCapacity,loadResistance,bumpiness;
bool isSolid;
for(i=0; i<4; i++) _global_ground[i] = global_ground[i];
for(i=0; i<3; i++) _global_vel[i] = global_vel[i];
if (material) {
loadCapacity = (*material).get_load_resistance();
frictionFactor =(*material).get_friction_factor();
rollingFriction = (*material).get_rolling_friction();
loadResistance = (*material).get_load_resistance();
bumpiness = (*material).get_bumpiness();
isSolid = (*material).get_solid();
} else {
// no material, assume solid
loadCapacity = DBL_MAX;
frictionFactor = 1.0;
rollingFriction = 0.02;
loadResistance = DBL_MAX;
bumpiness = 0.0;
isSolid = true;
}
_ground_frictionFactor = frictionFactor;
_ground_rollingFriction = rollingFriction;
_ground_loadCapacity = loadCapacity;
_ground_loadResistance = loadResistance;
_ground_bumpiness = bumpiness;
_ground_isSolid = isSolid;
_global_x = globalX;
_global_y = globalY;
}
void Gear::getGlobalGround(double* global_ground)
{
for(int i=0; i<4; i++) global_ground[i] = _global_ground[i];
}
void Gear::getForce(float* force, float* contact)
{
Math::set3(_force, force);
Math::set3(_contact, contact);
}
float Gear::getBumpAltitude()
{
if (_ground_bumpiness<0.001) return 0.0;
double x = _global_x*0.1;
double y = _global_y*0.1;
x -= Math::floor(x);
y -= Math::floor(y);
x *= 2*YASIM_PI;
y *= 2*YASIM_PI;
//now x and y are in the range of 0..2pi
//we need a function, that is periodically on 2pi and gives some
//height. This is not very fast, but for a beginning.
//maybe this should be done by interpolating between some precalculated
//values
float h = Math::sin(x)+Math::sin(7*x)+Math::sin(8*x)+Math::sin(13*x);
h += Math::sin(2*y)+Math::sin(5*y)+Math::sin(9*y*x)+Math::sin(17*y);
return h*(1/8.)*_ground_bumpiness*maxGroundBumpAmplitude;
}
void Gear::integrate(float dt)
{
// Slowly spin down wheel
if (_rollSpeed > 0) {
// The brake factor of 13.0 * dt was copied from JSBSim's FGLGear.cpp and seems to work reasonably.
// If more precise control is needed, then we need wheel mass and diameter parameters.
_rollSpeed -= (13.0 * dt + 1300 * _brake * dt);
if (_rollSpeed < 0) _rollSpeed = 0;
}
return;
}
void Gear::calcForce(RigidBody* body, State *s, float* v, float* rot)
{
// Init the return values
int i;
for(i=0; i<3; i++) _force[i] = _contact[i] = 0;
// Don't bother if gear is retracted
if(_extension < 1)
{
_wow = 0;
_frac = 0;
return;
}
// Dont bother if we are in the "wrong" ground
if (!((_onWater&&!_ground_isSolid)||(_onSolid&&_ground_isSolid))) {
_wow = 0;
_frac = 0;
_compressDist = 0;
_rollSpeed = 0;
_casterAngle = 0;
return;
}
// The ground plane transformed to the local frame.
float ground[4];
s->planeGlobalToLocal(_global_ground, ground);
// The velocity of the contact patch transformed to local coordinates.
float glvel[3];
s->globalToLocal(_global_vel, glvel);
// First off, make sure that the gear "tip" is below the ground.
// If it's not, there's no force.
float a = ground[3] - Math::dot3(_pos, ground);
float BumpAltitude=0;
if (a<maxGroundBumpAmplitude)
{
BumpAltitude=getBumpAltitude();
a+=BumpAltitude;
}
_compressDist = -a;
if(a > 0) {
_wow = 0;
_frac = 0;
_compressDist = 0;
_casterAngle = 0;
return;
}
// Now a is the distance from the tip to ground, so make b the
// distance from the base to ground. We can get the fraction
// (0-1) of compression from a/(a-b). Note the minus sign -- stuff
// above ground is negative.
float tmp[3];
Math::add3(_cmpr, _pos, tmp);
float b = ground[3] - Math::dot3(tmp, ground)+BumpAltitude;
// Calculate the point of ground _contact.
if(b < 0)
_frac = 1;
else
_frac = a/(a-b);
for(i=0; i<3; i++)
_contact[i] = _pos[i] + _frac*_cmpr[i];
// Turn _cmpr into a unit vector and a magnitude
float cmpr[3];
float clen = Math::mag3(_cmpr);
Math::mul3(1/clen, _cmpr, cmpr);
// Now get the velocity of the point of contact
float cv[3];
body->pointVelocity(_contact, rot, cv);
Math::add3(cv, v, cv);
Math::sub3(cv, glvel, cv);
// Finally, we can start adding up the forces. First the spring
// compression. (note the clamping of _frac to 1):
_frac = (_frac > 1) ? 1 : _frac;
// Add the initial load to frac, but with continous transistion around 0
float frac_with_initial_load;
if (_frac>0.2 || _initialLoad==0.0)
frac_with_initial_load = _frac+_initialLoad;
else
frac_with_initial_load = (_frac+_initialLoad)
*_frac*_frac*3*25-_frac*_frac*_frac*2*125;
float fmag = frac_with_initial_load*clen*_spring;
if (_speed_planing>0)
{
float v = Math::mag3(cv);
if (v < _speed_planing)
{
float frac = v/_speed_planing;
fmag = fmag*_spring_factor_not_planing*(1-frac)+fmag*frac;
}
}
// Then the damping. Use the only the velocity into the ground
// (projection along "ground") projected along the compression
// axis. So Vdamp = ground*(ground dot cv) dot cmpr
Math::mul3(Math::dot3(ground, cv), ground, tmp);
float dv = Math::dot3(cmpr, tmp);
float damp = _damp * dv;
if(damp > fmag) damp = fmag; // can't pull the plane down!
if(damp < -fmag) damp = -fmag; // sanity
// The actual force applied is only the component perpendicular to
// the ground. Side forces come from velocity only.
_wow = (fmag - damp) * -Math::dot3(cmpr, ground);
Math::mul3(-_wow, ground, _force);
// Wheels are funky. Split the velocity along the ground plane
// into rolling and skidding components. Assuming small angles,
// we generate "forward" and "left" unit vectors (the compression
// goes "up") for the gear, make a "steer" direction from these,
// and then project it onto the ground plane. Project the
// velocity onto the ground plane too, and extract the "steer"
// component. The remainder is the skid velocity.
float gup[3]; // "up" unit vector from the ground
Math::set3(ground, gup);
Math::mul3(-1, gup, gup);
float xhat[] = {1,0,0};
float steer[3], skid[3];
Math::cross3(gup, xhat, skid); // up cross xhat =~ skid
Math::unit3(skid, skid); // == skid
Math::cross3(skid, gup, steer); // skid cross up == steer
if(_rot != 0) {
// Correct for a rotation
float srot = Math::sin(_rot);
float crot = Math::cos(_rot);
float tx = steer[0];
float ty = steer[1];
steer[0] = crot*tx + srot*ty;
steer[1] = -srot*tx + crot*ty;
tx = skid[0];
ty = skid[1];
skid[0] = crot*tx + srot*ty;
skid[1] = -srot*tx + crot*ty;
}
float vsteer = Math::dot3(cv, steer);
float vskid = Math::dot3(cv, skid);
float wgt = Math::dot3(_force, gup); // force into the ground
if(_castering) {
_rollSpeed = Math::sqrt(vsteer*vsteer + vskid*vskid);
// Don't modify caster angle when the wheel isn't moving,
// or else the angle will animate the "jitter" of a stopped
// gear.
if(_rollSpeed > 0.05)
_casterAngle = Math::atan2(vskid, vsteer);
return;
} else {
_rollSpeed = vsteer;
_casterAngle = _rot;
}
float fsteer,fskid;
if(_ground_isSolid)
{
fsteer = (_brake * _ground_frictionFactor
+(1-_brake)*_ground_rollingFriction
)*calcFriction(wgt, vsteer);
fskid = calcFriction(wgt, vskid)*(_ground_frictionFactor);
}
else
{
fsteer = calcFrictionFluid(wgt, vsteer)*_ground_frictionFactor;
fskid = 10*calcFrictionFluid(wgt, vskid)*_ground_frictionFactor;
//factor 10: floats have different drag in x and y.
}
if(vsteer > 0) fsteer = -fsteer;
if(vskid > 0) fskid = -fskid;
//reduce friction if wanted by _reduceFrictionByExtension
float factor = (1-_frac)*(1-_reduceFrictionByExtension)+_frac*1;
factor = Math::clamp(factor,0,1);
fsteer *= factor;
fskid *= factor;
// Phoo! All done. Add it up and get out of here.
Math::mul3(fsteer, steer, tmp);
Math::add3(tmp, _force, _force);
Math::mul3(fskid, skid, tmp);
Math::add3(tmp, _force, _force);
}
float Gear::calcFriction(float wgt, float v) //used on solid ground
{
// How slow is stopped? 10 cm/second?
const float STOP = 0.1f;
const float iSTOP = 1.0f/STOP;
v = Math::abs(v);
if(v < STOP) return v*iSTOP * wgt * _sfric;
else return wgt * _dfric;
}
float Gear::calcFrictionFluid(float wgt, float v) //used on fluid ground
{
// How slow is stopped? 1 cm/second?
const float STOP = 0.01f;
const float iSTOP = 1.0f/STOP;
v = Math::abs(v);
if(v < STOP) return v*iSTOP * wgt * _sfric;
else return wgt * _dfric*v*v*0.01;
//*0.01: to get _dfric of the same size than _dfric on solid
}
}; // namespace yasim