34b8fbc58e
Use updated pre-compute API for random numbers By Marc Eberhard
1249 lines
40 KiB
C++
1249 lines
40 KiB
C++
// FGAIBallistic - FGAIBase-derived class creates a ballistic object
|
|
//
|
|
// Written by David Culp, started November 2003.
|
|
// - davidculp2@comcast.net
|
|
//
|
|
// With major additions by Mathias Froehlich & Vivian Meazza 2004-2008
|
|
//
|
|
// This program is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of the
|
|
// License, or (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful, but
|
|
// WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
# include <config.h>
|
|
#endif
|
|
|
|
#include <simgear/math/sg_random.hxx>
|
|
#include <simgear/math/sg_geodesy.hxx>
|
|
#include <simgear/scene/model/modellib.hxx>
|
|
|
|
#include <Scenery/scenery.hxx>
|
|
|
|
#include "AIBallistic.hxx"
|
|
|
|
#include <Main/util.hxx>
|
|
#include <Environment/gravity.hxx>
|
|
#include <Main/fg_props.hxx>
|
|
|
|
using namespace simgear;
|
|
using std::string;
|
|
|
|
const double FGAIBallistic::slugs_to_kgs = 14.5939029372;
|
|
const double FGAIBallistic::slugs_to_lbs = 32.1740485564;
|
|
|
|
FGAIBallistic::FGAIBallistic(object_type ot) :
|
|
FGAIBase(ot, false),
|
|
_height(0.0),
|
|
_speed(0),
|
|
_ht_agl_ft(0.0),
|
|
_azimuth(0.0),
|
|
_elevation(0.0),
|
|
_rotation(0.0),
|
|
hs(0),
|
|
_elapsed_time(0),
|
|
_az_random_error(0.0),
|
|
_el_random_error(0.0),
|
|
_aero_stabilised(false),
|
|
_drag_area(0.007),
|
|
_cd(0.029),
|
|
_init_cd(0.029),
|
|
_cd_randomness(0.0),
|
|
_buoyancy(0),
|
|
_life_timer(0.0),
|
|
_wind(true),
|
|
_mass(0),
|
|
_random(false),
|
|
_life_randomness(0.0),
|
|
_load_resistance(0),
|
|
_solid(false),
|
|
_force_stabilised(false),
|
|
_slave_to_ac(false),
|
|
_slave_load_to_ac(false),
|
|
_contents_lb(0),
|
|
_report_collision(false),
|
|
_report_impact(false),
|
|
_external_force(false),
|
|
_report_expiry(false),
|
|
_impact_report_node(fgGetNode("/ai/models/model-impact", true))
|
|
|
|
{
|
|
no_roll = false;
|
|
}
|
|
|
|
FGAIBallistic::~FGAIBallistic() {
|
|
}
|
|
|
|
void FGAIBallistic::readFromScenario(SGPropertyNode* scFileNode) {
|
|
if (!scFileNode){
|
|
return;
|
|
}
|
|
|
|
FGAIBase::readFromScenario(scFileNode);
|
|
|
|
//setPath(scFileNode->getStringValue("model", "Models/Geometry/rocket.ac"));
|
|
setRandom(scFileNode->getBoolValue("random", false));
|
|
setAzimuth(scFileNode->getDoubleValue("azimuth", 0.0));
|
|
setElevation(scFileNode->getDoubleValue("elevation", 0));
|
|
setDragArea(scFileNode->getDoubleValue("eda", 0.007));
|
|
setLife(scFileNode->getDoubleValue("life", 900.0));
|
|
setBuoyancy(scFileNode->getDoubleValue("buoyancy", 0));
|
|
//setWind_from_east(scFileNode->getDoubleValue("wind_from_east", 0));
|
|
//setWind_from_north(scFileNode->getDoubleValue("wind_from_north", 0));
|
|
setWind(scFileNode->getBoolValue("wind", false));
|
|
setRoll(scFileNode->getDoubleValue("roll", 0.0));
|
|
setCd(scFileNode->getDoubleValue("cd", 0.029));
|
|
//setMass(scFileNode->getDoubleValue("mass", 0.007));
|
|
setWeight(scFileNode->getDoubleValue("weight", 0.25));
|
|
setStabilisation(scFileNode->getBoolValue("aero-stabilised", false));
|
|
setNoRoll(scFileNode->getBoolValue("no-roll", false));
|
|
setImpact(scFileNode->getBoolValue("impact", false));
|
|
setExpiry(scFileNode->getBoolValue("expiry", false));
|
|
setCollision(scFileNode->getBoolValue("collision", false));
|
|
setImpactReportNode(scFileNode->getStringValue("impact-reports"));
|
|
setName(scFileNode->getStringValue("name", "Rocket"));
|
|
setFuseRange(scFileNode->getDoubleValue("fuse-range", 0.0));
|
|
setSMPath(scFileNode->getStringValue("submodel-path", ""));
|
|
setSubID(scFileNode->getIntValue("SubID", 0));
|
|
setExternalForce(scFileNode->getBoolValue("external-force", false));
|
|
setForcePath(scFileNode->getStringValue("force-path", ""));
|
|
setForceStabilisation(scFileNode->getBoolValue("force-stabilised", false));
|
|
setXoffset(scFileNode->getDoubleValue("x-offset", 0.0));
|
|
setYoffset(scFileNode->getDoubleValue("y-offset", 0.0));
|
|
setZoffset(scFileNode->getDoubleValue("z-offset", 0.0));
|
|
setPitchoffset(scFileNode->getDoubleValue("pitch-offset", 0.0));
|
|
setRolloffset(scFileNode->getDoubleValue("roll-offset", 0.0));
|
|
setYawoffset(scFileNode->getDoubleValue("yaw-offset", 0.0));
|
|
setGroundOffset(scFileNode->getDoubleValue("ground-offset", 0.0));
|
|
setLoadOffset(scFileNode->getDoubleValue("load-offset", 0.0));
|
|
setSlaved(scFileNode->getBoolValue("slaved", false));
|
|
setSlavedLoad(scFileNode->getBoolValue("slaved-load", false));
|
|
setContentsPath(scFileNode->getStringValue("contents"));
|
|
setParentName(scFileNode->getStringValue("parent"));
|
|
}
|
|
|
|
bool FGAIBallistic::init(ModelSearchOrder searchOrder)
|
|
{
|
|
FGAIBase::init(searchOrder);
|
|
reinit();
|
|
return true;
|
|
}
|
|
|
|
void FGAIBallistic::reinit() {
|
|
_impact_reported = false;
|
|
_collision_reported = false;
|
|
_expiry_reported = false;
|
|
|
|
_impact_lat = 0;
|
|
_impact_lon = 0;
|
|
_impact_elev = 0;
|
|
_impact_hdg = 0;
|
|
_impact_pitch = 0;
|
|
_impact_roll = 0;
|
|
_impact_speed = 0;
|
|
|
|
invisible = false;
|
|
|
|
_elapsed_time += (sg_random() * 100);
|
|
|
|
_life_timer = 0;
|
|
|
|
props->setStringValue("material/name", "");
|
|
props->setStringValue("name", _name.c_str());
|
|
props->setStringValue("submodels/path", _path.c_str());
|
|
|
|
if (_slave_to_ac) {
|
|
props->setStringValue("force/path", _force_path.c_str());
|
|
props->setStringValue("contents/path", _contents_path.c_str());
|
|
}
|
|
|
|
//cout << "init: name " << _name.c_str() << " _life_timer " << _life_timer
|
|
// << endl;
|
|
|
|
//if(_parent != ""){
|
|
// setParentNode();
|
|
//}
|
|
|
|
//setParentNodes(_selected_ac);
|
|
|
|
//props->setStringValue("vector/path", _vector_path.c_str());
|
|
|
|
// start with high value so that animations don't trigger yet
|
|
_ht_agl_ft = 1e10;
|
|
hdg = _azimuth;
|
|
pitch = _elevation;
|
|
roll = _rotation;
|
|
|
|
Transform();
|
|
|
|
if (_parent != "") {
|
|
setParentNode();
|
|
}
|
|
|
|
setParentNodes(_selected_ac);
|
|
|
|
FGAIBase::reinit();
|
|
}
|
|
|
|
void FGAIBallistic::bind() {
|
|
// FGAIBase::bind();
|
|
|
|
_tiedProperties.setRoot(props);
|
|
tie("sim/time/elapsed-sec",
|
|
SGRawValueMethods<FGAIBallistic,double>(*this,
|
|
&FGAIBallistic::_getTime, &FGAIBallistic::setTime));
|
|
//tie("mass-slug",
|
|
// SGRawValueMethods<FGAIBallistic,double>(*this,
|
|
// &FGAIBallistic::getMass));
|
|
|
|
tie("material/solid",
|
|
SGRawValuePointer<bool>(&_solid));
|
|
tie("altitude-agl-ft",
|
|
SGRawValuePointer<double>(&_ht_agl_ft));
|
|
tie("controls/slave-to-ac",
|
|
SGRawValueMethods<FGAIBallistic,bool>
|
|
(*this, &FGAIBallistic::getSlaved, &FGAIBallistic::setSlaved));
|
|
tie("controls/invisible",
|
|
SGRawValuePointer<bool>(&invisible));
|
|
|
|
if (_external_force || _slave_to_ac) {
|
|
tie("controls/force_stabilized",
|
|
SGRawValuePointer<bool>(&_force_stabilised));
|
|
tie("position/global-x",
|
|
SGRawValueMethods<FGAIBase,double>(*this, &FGAIBase::_getCartPosX, 0));
|
|
tie("position/global-y",
|
|
SGRawValueMethods<FGAIBase,double>(*this, &FGAIBase::_getCartPosY, 0));
|
|
tie("position/global-z",
|
|
SGRawValueMethods<FGAIBase,double>(*this, &FGAIBase::_getCartPosZ, 0));
|
|
tie("velocities/vertical-speed-fps",
|
|
SGRawValueMethods<FGAIBase,double>(*this, &FGAIBase::_getVS_fps, &FGAIBase::_setVS_fps));
|
|
tie("velocities/true-airspeed-kt",
|
|
SGRawValuePointer<double>(&speed));
|
|
tie("velocities/horizontal-speed-fps",
|
|
SGRawValuePointer<double>(&hs));
|
|
tie("position/altitude-ft",
|
|
SGRawValueMethods<FGAIBase,double>(*this, &FGAIBase::_getElevationFt, &FGAIBase::_setAltitude));
|
|
tie("position/latitude-deg",
|
|
SGRawValueMethods<FGAIBase,double>(*this, &FGAIBase::_getLatitude, &FGAIBase::_setLatitude));
|
|
tie("position/longitude-deg",
|
|
SGRawValueMethods<FGAIBase,double>(*this, &FGAIBase::_getLongitude, &FGAIBase::_setLongitude));
|
|
tie("orientation/hdg-deg",
|
|
SGRawValuePointer<double>(&hdg));
|
|
tie("orientation/pitch-deg",
|
|
SGRawValuePointer<double>(&pitch));
|
|
tie("orientation/roll-deg",
|
|
SGRawValuePointer<double>(&roll));
|
|
tie("controls/slave-load-to-ac",
|
|
SGRawValueMethods<FGAIBallistic,bool>
|
|
(*this, &FGAIBallistic::getSlavedLoad, &FGAIBallistic::setSlavedLoad));
|
|
tie("position/load-offset",
|
|
SGRawValueMethods<FGAIBallistic,double>
|
|
(*this, &FGAIBallistic::getLoadOffset, &FGAIBallistic::setLoadOffset));
|
|
tie("load/distance-to-hitch-ft",
|
|
SGRawValueMethods<FGAIBallistic,double>
|
|
(*this, &FGAIBallistic::getDistanceToHitch));
|
|
tie("load/elevation-to-hitch-deg",
|
|
SGRawValueMethods<FGAIBallistic,double>
|
|
(*this, &FGAIBallistic::getElevToHitch));
|
|
tie("load/bearing-to-hitch-deg",
|
|
SGRawValueMethods<FGAIBallistic,double>
|
|
(*this, &FGAIBallistic::getBearingToHitch));
|
|
tie("material/load-resistance",
|
|
SGRawValuePointer<double>(&_load_resistance));
|
|
}
|
|
}
|
|
|
|
void FGAIBallistic::update(double dt)
|
|
{
|
|
FGAIBase::update(dt);
|
|
|
|
if (_slave_to_ac) {
|
|
slaveToAC(dt);
|
|
Transform();
|
|
}
|
|
else if (!invisible) {
|
|
Run(dt);
|
|
Transform();
|
|
}
|
|
|
|
}
|
|
|
|
void FGAIBallistic::setAzimuth(double az) {
|
|
if (_random)
|
|
hdg = _azimuth = az - _az_random_error + 2 * _az_random_error * sg_random();
|
|
else
|
|
hdg = _azimuth = az;
|
|
}
|
|
|
|
void FGAIBallistic::setAzimuthRandomError(double error) {
|
|
_az_random_error = error;
|
|
}
|
|
|
|
void FGAIBallistic::setElevationRandomError(double error) {
|
|
_el_random_error = error;
|
|
}
|
|
|
|
void FGAIBallistic::setElevation(double el) {
|
|
if (_random)
|
|
pitch = _elevation = el - _el_random_error + 2 * _el_random_error * sg_random();
|
|
else
|
|
pitch = _elevation = el;
|
|
}
|
|
|
|
void FGAIBallistic::setRoll(double rl) {
|
|
roll = _rotation = rl;
|
|
}
|
|
|
|
void FGAIBallistic::setStabilisation(bool val) {
|
|
_aero_stabilised = val;
|
|
}
|
|
|
|
void FGAIBallistic::setForceStabilisation(bool val) {
|
|
_force_stabilised = val;
|
|
}
|
|
|
|
void FGAIBallistic::setNoRoll(bool nr) {
|
|
no_roll = nr;
|
|
}
|
|
|
|
void FGAIBallistic::setDragArea(double a) {
|
|
_drag_area = a;
|
|
}
|
|
|
|
void FGAIBallistic::setLife(double seconds) {
|
|
if (_random)
|
|
life = seconds * _life_randomness + (seconds * (1 -_life_randomness) * sg_random());
|
|
else
|
|
life = seconds;
|
|
}
|
|
|
|
void FGAIBallistic::setBuoyancy(double fpss) {
|
|
_buoyancy = fpss;
|
|
}
|
|
|
|
void FGAIBallistic::setWind_from_east(double fps) {
|
|
_wind_from_east = fps;
|
|
}
|
|
|
|
void FGAIBallistic::setWind_from_north(double fps) {
|
|
_wind_from_north = fps;
|
|
}
|
|
|
|
void FGAIBallistic::setWind(bool val) {
|
|
_wind = val;
|
|
}
|
|
|
|
void FGAIBallistic::setCd(double cd) {
|
|
_cd = cd;
|
|
_init_cd = cd;
|
|
}
|
|
|
|
void FGAIBallistic::setCdRandomness(double randomness) {
|
|
_cd_randomness = randomness;
|
|
}
|
|
|
|
void FGAIBallistic::setMass(double m) {
|
|
_mass = m;
|
|
}
|
|
|
|
void FGAIBallistic::setWeight(double w) {
|
|
_weight_lb = w;
|
|
}
|
|
|
|
void FGAIBallistic::setLifeRandomness(double randomness) {
|
|
_life_randomness = randomness;
|
|
}
|
|
|
|
void FGAIBallistic::setRandom(bool r) {
|
|
_random = r;
|
|
}
|
|
|
|
void FGAIBallistic::setImpact(bool i) {
|
|
_report_impact = i;
|
|
}
|
|
|
|
void FGAIBallistic::setCollision(bool c) {
|
|
_report_collision = c;
|
|
}
|
|
|
|
void FGAIBallistic::setExpiry(bool e) {
|
|
_report_expiry = e;
|
|
}
|
|
|
|
void FGAIBallistic::setExternalForce(bool f) {
|
|
_external_force = f;
|
|
}
|
|
|
|
void FGAIBallistic::setImpactReportNode(const string& path) {
|
|
if (!path.empty())
|
|
_impact_report_node = fgGetNode(path.c_str(), true);
|
|
}
|
|
|
|
void FGAIBallistic::setSMPath(const string& s) {
|
|
_path = s;
|
|
//cout << "submodel path " << _path << endl;
|
|
}
|
|
|
|
void FGAIBallistic::setFuseRange(double f) {
|
|
_fuse_range = f;
|
|
}
|
|
|
|
void FGAIBallistic::setSubID(int i) {
|
|
_subID = i;
|
|
}
|
|
|
|
void FGAIBallistic::setSubmodel(const string& s) {
|
|
_submodel = s;
|
|
}
|
|
|
|
void FGAIBallistic::setGroundOffset(double g) {
|
|
_ground_offset = g;
|
|
}
|
|
|
|
void FGAIBallistic::setLoadOffset(double l) {
|
|
_load_offset = l;
|
|
}
|
|
|
|
double FGAIBallistic::getLoadOffset() const {
|
|
return _load_offset;
|
|
}
|
|
|
|
void FGAIBallistic::setSlaved(bool s) {
|
|
_slave_to_ac = s;
|
|
}
|
|
|
|
void FGAIBallistic::setContentsPath(const string& path) {
|
|
_contents_path = path;
|
|
|
|
if (!path.empty()) {
|
|
_contents_node = fgGetNode(path.c_str(), true);
|
|
}
|
|
}
|
|
|
|
void FGAIBallistic::setContentsNode(SGPropertyNode_ptr node) {
|
|
if (node != 0) {
|
|
_contents_node = node;
|
|
_contents_path = _contents_node->getDisplayName();
|
|
}
|
|
}
|
|
|
|
void FGAIBallistic::setParentNodes(SGPropertyNode_ptr node) {
|
|
if (node != 0) {
|
|
_pnode = node;
|
|
_p_pos_node = _pnode->getChild("position", 0, true);
|
|
_p_lat_node = _p_pos_node->getChild("latitude-deg", 0, true);
|
|
_p_lon_node = _p_pos_node->getChild("longitude-deg", 0, true);
|
|
_p_alt_node = _p_pos_node->getChild("altitude-ft", 0, true);
|
|
_p_agl_node = _p_pos_node->getChild("altitude-agl-ft", 0, true);
|
|
|
|
|
|
_p_ori_node = _pnode->getChild("orientation", 0, true);
|
|
_p_pch_node = _p_ori_node->getChild("pitch-deg", 0, true);
|
|
_p_rll_node = _p_ori_node->getChild("roll-deg", 0, true);
|
|
_p_hdg_node = _p_ori_node->getChild("true-heading-deg",0, true);
|
|
|
|
_p_vel_node = _pnode->getChild("velocities", 0, true);
|
|
_p_spd_node = _p_vel_node->getChild("true-airspeed-kt", 0, true);
|
|
}
|
|
}
|
|
|
|
void FGAIBallistic::setParentPos() {
|
|
if (_pnode != 0) {
|
|
double lat = _p_lat_node->getDoubleValue();
|
|
double lon = _p_lon_node->getDoubleValue();
|
|
double alt = _p_alt_node->getDoubleValue();
|
|
|
|
_parentpos.setLongitudeDeg(lon);
|
|
_parentpos.setLatitudeDeg(lat);
|
|
_parentpos.setElevationFt(alt);
|
|
}
|
|
}
|
|
|
|
bool FGAIBallistic::getSlaved() const {
|
|
return _slave_to_ac;
|
|
}
|
|
|
|
double FGAIBallistic::getMass() const {
|
|
return _mass;
|
|
}
|
|
|
|
double FGAIBallistic::getContents() {
|
|
if (_contents_node) {
|
|
_contents_lb = _contents_node->getChild("level-lbs", 0, 1)->getDoubleValue();
|
|
}
|
|
return _contents_lb;
|
|
}
|
|
|
|
void FGAIBallistic::setContents(double c) {
|
|
if (_contents_node)
|
|
_contents_lb = _contents_node->getChild("level-gal_us", 0, 1)->setDoubleValue(c);
|
|
}
|
|
|
|
void FGAIBallistic::setSlavedLoad(bool l) {
|
|
_slave_load_to_ac = l;
|
|
}
|
|
|
|
bool FGAIBallistic::getSlavedLoad() const {
|
|
return _slave_load_to_ac;
|
|
}
|
|
|
|
void FGAIBallistic::setForcePath(const string& p) {
|
|
_force_path = p;
|
|
if (!_force_path.empty()) {
|
|
SGPropertyNode *fnode = fgGetNode(_force_path.c_str(), 0, true );
|
|
_force_node = fnode->getChild("force-lb", 0, true);
|
|
_force_azimuth_node = fnode->getChild("force-azimuth-deg", 0, true);
|
|
_force_elevation_node = fnode->getChild("force-elevation-deg", 0, true);
|
|
}
|
|
}
|
|
|
|
bool FGAIBallistic::getHtAGL(double start) {
|
|
const simgear::BVHMaterial* mat = 0;
|
|
if (getGroundElevationM(SGGeod::fromGeodM(pos, start),
|
|
_elevation_m, &mat)) {
|
|
const SGMaterial* material = dynamic_cast<const SGMaterial*>(mat);
|
|
_ht_agl_ft = pos.getElevationFt() - _elevation_m * SG_METER_TO_FEET;
|
|
|
|
if (material) {
|
|
const std::vector<string>& names = material->get_names();
|
|
_solid = material->get_solid();
|
|
_load_resistance = material->get_load_resistance();
|
|
_frictionFactor = material->get_friction_factor();
|
|
|
|
if (!names.empty())
|
|
props->setStringValue("material/name", names[0].c_str());
|
|
else
|
|
props->setStringValue("material/name", "");
|
|
|
|
_mat_name = names[0];
|
|
|
|
//cout << "material " << _mat_name
|
|
//<< " solid " << _solid
|
|
//<< " load " << _load_resistance
|
|
//<< " frictionFactor " << _frictionFactor
|
|
//<< endl;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
double FGAIBallistic::getRecip(double az) {
|
|
// calculate the reciprocal of the input azimuth
|
|
if (az - 180 < 0) {
|
|
return az + 180;
|
|
}
|
|
else {
|
|
return az - 180;
|
|
}
|
|
}
|
|
|
|
void FGAIBallistic::setPch(double e, double dt, double coeff) {
|
|
double c = dt / (coeff + dt);
|
|
pitch = (e * c) + (pitch * (1 - c));
|
|
}
|
|
|
|
void FGAIBallistic::setBnk(double r, double dt, double coeff) {
|
|
double c = dt / (coeff + dt);
|
|
roll = (r * c) + (roll * (1 - c));
|
|
}
|
|
|
|
void FGAIBallistic::setSpd(double s, double dt, double coeff) {
|
|
double c = dt / (coeff + dt);
|
|
_speed = (s * c) + (_speed * (1 - c));
|
|
}
|
|
|
|
void FGAIBallistic::setHt(double h, double dt, double coeff) {
|
|
double c = dt / (coeff + dt);
|
|
_height = (h * c) + (_height * (1 - c));
|
|
}
|
|
|
|
int FGAIBallistic::setHdg(double tgt_hdg, double dt, double coeff) {
|
|
double recip = getRecip(hdg);
|
|
double c = dt / (coeff + dt);
|
|
//cout << "set heading " << tgt_hdg << endl;
|
|
//we need to ensure that we turn the short way to the new hdg
|
|
if (tgt_hdg < recip && tgt_hdg < hdg && hdg > 180) {
|
|
hdg = ((tgt_hdg + 360) * c) + (hdg * (1 - c));
|
|
// cout << "case 1: right turn" << endl;
|
|
} else if (tgt_hdg > recip && tgt_hdg > hdg && hdg <= 180){
|
|
hdg = ((tgt_hdg - 360) * c) + (hdg * (1 - c));
|
|
// cout << "case 2: left turn" << endl;
|
|
} else {
|
|
hdg = (tgt_hdg * c) + (hdg * (1 - c));
|
|
// cout << "case 4: left turn" << endl;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
double FGAIBallistic::getTgtXOffset() const {
|
|
return _tgt_x_offset;
|
|
}
|
|
|
|
double FGAIBallistic::getTgtYOffset() const {
|
|
return _tgt_y_offset;
|
|
}
|
|
|
|
double FGAIBallistic::getTgtZOffset() const {
|
|
return _tgt_z_offset;
|
|
}
|
|
|
|
void FGAIBallistic::setTgtXOffset(double x) {
|
|
_tgt_x_offset = x;
|
|
}
|
|
|
|
void FGAIBallistic::setTgtYOffset(double y) {
|
|
_tgt_y_offset = y;
|
|
}
|
|
|
|
void FGAIBallistic::setTgtZOffset(double z) {
|
|
_tgt_z_offset = z;
|
|
}
|
|
|
|
void FGAIBallistic::slaveToAC(double dt) {
|
|
if (invisible)
|
|
return;
|
|
|
|
double hdg, pch, rll;//, agl = 0;
|
|
|
|
if (_pnode != 0) {
|
|
setParentPos();
|
|
hdg = _p_hdg_node->getDoubleValue();
|
|
pch = _p_pch_node->getDoubleValue();
|
|
rll = _p_rll_node->getDoubleValue();
|
|
// agl = _p_agl_node->getDoubleValue();
|
|
setOffsetPos(_parentpos, hdg, pch, rll);
|
|
setSpeed(_p_spd_node->getDoubleValue());
|
|
}
|
|
else {
|
|
hdg = manager->get_user_heading();
|
|
pch = manager->get_user_pitch();
|
|
rll = manager->get_user_roll();
|
|
// agl = manager->get_user_agl();
|
|
setOffsetPos(globals->get_aircraft_position(), hdg, pch, rll);
|
|
setSpeed(manager->get_user_speed());
|
|
}
|
|
|
|
pos.setLatitudeDeg(_offsetpos.getLatitudeDeg());
|
|
pos.setLongitudeDeg(_offsetpos.getLongitudeDeg());
|
|
pos.setElevationFt(_offsetpos.getElevationFt());
|
|
setHeading(hdg);
|
|
setPitch(pch + _pitch_offset);
|
|
setBank(rll + _roll_offset);
|
|
setOffsetVelocity(dt, pos);
|
|
setTime(0);
|
|
|
|
//update the mass (slugs)
|
|
_mass = (_weight_lb + getContents()) / slugs_to_lbs;
|
|
|
|
_impact_reported = false;
|
|
|
|
//cout << _name << " _mass "<<_mass <<" " << getContents()
|
|
//<< " " << getContents() / slugs_to_lbs << " weight " << _weight_lb << endl;
|
|
// cout << _name << " update hs " << hs << " vs " << vs << endl;
|
|
}
|
|
|
|
void FGAIBallistic::Run(double dt) {
|
|
_life_timer += dt;
|
|
|
|
//_pass += 1;
|
|
//cout<<"AIBallistic run: name " << _name.c_str()
|
|
// << " dt " << dt << " _life_timer " << _life_timer << " pass " << _pass << endl;
|
|
|
|
// if life = -1 the object does not die
|
|
if (_life_timer > life && life != -1) {
|
|
if (_report_expiry && !_expiry_reported && !_impact_reported && !_collision_reported) {
|
|
//cout<<"AIBallistic run: name " << _name.c_str() << " expiry "
|
|
//<< " _life_timer " << _life_timer<< endl;
|
|
handle_expiry();
|
|
}
|
|
else {
|
|
//cout<<"AIBallistic run: name " << _name.c_str()
|
|
// << " die " << " _life_timer " << _life_timer << endl;
|
|
setDie(true);
|
|
}
|
|
|
|
setTime(0);
|
|
}
|
|
|
|
// Set the contents in the appropriate tank or other property in the parent to zero
|
|
setContents(0);
|
|
|
|
if (_random) {
|
|
// Keep the new Cd within +- 10% of the current Cd to avoid a fluctuating value
|
|
double cd_min = _cd * 0.9;
|
|
double cd_max = _cd * 1.1;
|
|
|
|
// Randomize Cd by +- a certain percentage of the initial Cd
|
|
_cd = _init_cd * (1 - _cd_randomness + 2 * _cd_randomness * sg_random());
|
|
|
|
if (_cd < cd_min) _cd = cd_min;
|
|
if (_cd > cd_max) _cd = cd_max;
|
|
}
|
|
|
|
// Adjust Cd by Mach number. The equations are based on curves
|
|
// for a conventional shell/bullet (no boat-tail).
|
|
double Cdm;
|
|
|
|
if (Mach < 0.7)
|
|
Cdm = 0.0125 * Mach + _cd;
|
|
else if (Mach < 1.2)
|
|
Cdm = 0.3742 * pow(Mach, 2) - 0.252 * Mach + 0.0021 + _cd;
|
|
else
|
|
Cdm = 0.2965 * pow(Mach, -1.1506) + _cd;
|
|
|
|
//cout <<_name << " Mach " << Mach << " Cdm " << Cdm
|
|
// << " ballistic speed kts "<< speed << endl;
|
|
|
|
// drag = Cd * 0.5 * rho * speed * speed * drag_area;
|
|
// rho is adjusted for altitude in void FGAIBase::update,
|
|
// using Standard Atmosphere (sealevel temperature 15C)
|
|
// acceleration = drag/mass;
|
|
// adjust speed by drag
|
|
speed -= (Cdm * 0.5 * rho * speed * speed * _drag_area/_mass) * dt;
|
|
|
|
// don't let speed become negative
|
|
if (speed < 0.0)
|
|
speed = 0.0;
|
|
|
|
// double speed_fps = speed * SG_KT_TO_FPS;
|
|
|
|
// calculate vertical and horizontal speed components
|
|
calcVSHS();
|
|
|
|
//resolve horizontal speed into north and east components:
|
|
//and convert horizontal speed (fps) to degrees per second
|
|
calcNE();
|
|
|
|
// If wind not required, set to zero
|
|
if (!_wind) {
|
|
_wind_from_north = 0;
|
|
_wind_from_east = 0;
|
|
}
|
|
else {
|
|
_wind_from_north = manager->get_wind_from_north();
|
|
_wind_from_east = manager->get_wind_from_east();
|
|
}
|
|
|
|
// Calculate velocity due to external force
|
|
double force_speed_north_deg_sec = 0;
|
|
double force_speed_east_deg_sec = 0;
|
|
double hs_force_fps = 0;
|
|
double v_force_acc_fpss = 0;
|
|
double force_speed_north_fps = 0;
|
|
double force_speed_east_fps = 0;
|
|
double h_force_lbs = 0;
|
|
double normal_force_lbs = 0;
|
|
double normal_force_fpss = 0;
|
|
double static_friction_force_lbs = 0;
|
|
double dynamic_friction_force_lbs = 0;
|
|
double friction_force_speed_north_fps = 0;
|
|
double friction_force_speed_east_fps = 0;
|
|
double friction_force_speed_north_deg_sec = 0;
|
|
double friction_force_speed_east_deg_sec = 0;
|
|
double force_elevation_deg = 0;
|
|
double force_azimuth_deg = 0;
|
|
double force_lbs = 0;
|
|
|
|
if (_external_force) {
|
|
//cout << _name << " external force " << hdg << " az " << _azimuth << endl;
|
|
|
|
SGPropertyNode *n = fgGetNode(_force_path.c_str(), true);
|
|
force_lbs = n->getChild("force-lb", 0, true)->getDoubleValue();
|
|
force_elevation_deg = n->getChild("force-elevation-deg", 0, true)->getDoubleValue();
|
|
force_azimuth_deg = n->getChild("force-azimuth-deg", 0, true)->getDoubleValue();
|
|
|
|
// Resolve force into vertical and horizontal components:
|
|
double v_force_lbs = force_lbs * sin( force_elevation_deg * SG_DEGREES_TO_RADIANS );
|
|
h_force_lbs = force_lbs * cos( force_elevation_deg * SG_DEGREES_TO_RADIANS );
|
|
|
|
// Perform ground interaction if impacts are not calculated
|
|
if (!_report_impact && getHtAGL(10000)) {
|
|
double deadzone = 0.1;
|
|
|
|
if (_ht_agl_ft <= (0 + _ground_offset + deadzone) && _solid) {
|
|
normal_force_lbs = (_mass * slugs_to_lbs) - v_force_lbs;
|
|
|
|
if (normal_force_lbs < 0)
|
|
normal_force_lbs = 0;
|
|
|
|
pos.setElevationFt(0 + _ground_offset);
|
|
if (vs_fps < 0)
|
|
vs_fps *= -0.5;
|
|
|
|
// Calculate friction. We assume a static coefficient of
|
|
// friction (mu) of 0.62 (wood on concrete)
|
|
double mu = 0.62;
|
|
|
|
static_friction_force_lbs = mu * normal_force_lbs * _frictionFactor;
|
|
|
|
// Adjust horizontal force. We assume that a speed of <= 5 fps is static
|
|
if (h_force_lbs <= static_friction_force_lbs && hs <= 5) {
|
|
h_force_lbs = hs = 0;
|
|
_speed_north_fps = _speed_east_fps = 0;
|
|
}
|
|
else
|
|
dynamic_friction_force_lbs = (static_friction_force_lbs * 0.95);
|
|
|
|
// Ignore wind when on the ground for now
|
|
//TODO fix this
|
|
_wind_from_north = 0;
|
|
_wind_from_east = 0;
|
|
}
|
|
}
|
|
|
|
//acceleration = (force(lbsf)/mass(slugs))
|
|
v_force_acc_fpss = v_force_lbs / _mass;
|
|
normal_force_fpss = normal_force_lbs / _mass;
|
|
double h_force_acc_fpss = h_force_lbs / _mass;
|
|
double dynamic_friction_acc_fpss = dynamic_friction_force_lbs / _mass;
|
|
|
|
// velocity = acceleration * dt
|
|
hs_force_fps = h_force_acc_fpss * dt;
|
|
double friction_force_fps = dynamic_friction_acc_fpss * dt;
|
|
|
|
//resolve horizontal speeds into north and east components:
|
|
force_speed_north_fps = cos(force_azimuth_deg * SG_DEGREES_TO_RADIANS) * hs_force_fps;
|
|
force_speed_east_fps = sin(force_azimuth_deg * SG_DEGREES_TO_RADIANS) * hs_force_fps;
|
|
|
|
friction_force_speed_north_fps = cos(getRecip(hdg) * SG_DEGREES_TO_RADIANS) * friction_force_fps;
|
|
friction_force_speed_east_fps = sin(getRecip(hdg) * SG_DEGREES_TO_RADIANS) * friction_force_fps;
|
|
|
|
// convert horizontal speed (fps) to degrees per second
|
|
force_speed_north_deg_sec = force_speed_north_fps / ft_per_deg_lat;
|
|
force_speed_east_deg_sec = force_speed_east_fps / ft_per_deg_lon;
|
|
|
|
friction_force_speed_north_deg_sec = friction_force_speed_north_fps / ft_per_deg_lat;
|
|
friction_force_speed_east_deg_sec = friction_force_speed_east_fps / ft_per_deg_lon;
|
|
}
|
|
|
|
// convert wind speed (fps) to degrees lat/lon per second
|
|
double wind_speed_from_north_deg_sec = _wind_from_north / ft_per_deg_lat;
|
|
double wind_speed_from_east_deg_sec = _wind_from_east / ft_per_deg_lon;
|
|
|
|
//recombine the horizontal velocity components
|
|
hs = sqrt(((_speed_north_fps + force_speed_north_fps + friction_force_speed_north_fps)
|
|
* (_speed_north_fps + force_speed_north_fps + friction_force_speed_north_fps))
|
|
+ ((_speed_east_fps + force_speed_east_fps + friction_force_speed_east_fps)
|
|
* (_speed_east_fps + force_speed_east_fps + friction_force_speed_east_fps)));
|
|
|
|
if (hs <= 0.00001)
|
|
hs = 0;
|
|
|
|
// adjust vertical speed for acceleration of gravity, buoyancy, and vertical force
|
|
double gravity = SG_METER_TO_FEET * (Environment::Gravity::instance()->getGravity(pos));
|
|
vs_fps -= (gravity - _buoyancy - v_force_acc_fpss - normal_force_fpss) * dt;
|
|
|
|
if (vs_fps <= 0.00001 && vs_fps >= -0.00001)
|
|
vs_fps = 0;
|
|
|
|
// set new position
|
|
if (_slave_load_to_ac) {
|
|
setOffsetPos(pos,
|
|
manager->get_user_heading(),
|
|
manager->get_user_pitch(),
|
|
manager->get_user_roll()
|
|
);
|
|
pos.setLatitudeDeg(_offsetpos.getLatitudeDeg());
|
|
pos.setLongitudeDeg(_offsetpos.getLongitudeDeg());
|
|
pos.setElevationFt(_offsetpos.getElevationFt());
|
|
|
|
if (getHtAGL(10000)) {
|
|
double deadzone = 0.1;
|
|
|
|
if (_ht_agl_ft <= (0 + _ground_offset + deadzone) && _solid) {
|
|
pos.setElevationFt(0 + _ground_offset);
|
|
}
|
|
else {
|
|
pos.setElevationFt(_offsetpos.getElevationFt() + _load_offset);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
pos.setLatitudeDeg( pos.getLatitudeDeg()
|
|
+ (speed_north_deg_sec - wind_speed_from_north_deg_sec
|
|
+ force_speed_north_deg_sec + friction_force_speed_north_deg_sec) * dt );
|
|
pos.setLongitudeDeg( pos.getLongitudeDeg()
|
|
+ (speed_east_deg_sec - wind_speed_from_east_deg_sec
|
|
+ force_speed_east_deg_sec + friction_force_speed_east_deg_sec) * dt );
|
|
pos.setElevationFt(pos.getElevationFt() + vs_fps * dt);
|
|
}
|
|
|
|
// cout << _name << " run hs " << hs << " vs " << vs << endl;
|
|
|
|
// recalculate total speed
|
|
if ( vs_fps == 0 && hs == 0)
|
|
speed = 0;
|
|
else
|
|
speed = sqrt( vs_fps * vs_fps + hs * hs) / SG_KT_TO_FPS;
|
|
|
|
// recalculate elevation and azimuth (velocity vectors)
|
|
_elevation = atan2( vs_fps, hs ) * SG_RADIANS_TO_DEGREES;
|
|
_azimuth = atan2((_speed_east_fps + force_speed_east_fps + friction_force_speed_east_fps),
|
|
(_speed_north_fps + force_speed_north_fps + friction_force_speed_north_fps))
|
|
* SG_RADIANS_TO_DEGREES;
|
|
|
|
// rationalise azimuth
|
|
if (_azimuth < 0)
|
|
_azimuth += 360;
|
|
|
|
if (_aero_stabilised) { // we simulate rotational moment of inertia by using a filter
|
|
//cout<< "_aero_stabilised " << hdg << " az " << _azimuth << endl;
|
|
const double coeff = 0.9;
|
|
|
|
// we assume a symetrical MI about the pitch and yaw axis
|
|
setPch(_elevation, dt, coeff);
|
|
setHdg(_azimuth, dt, coeff);
|
|
}
|
|
else if (_force_stabilised) { // we simulate rotational moment of inertia by using a filter
|
|
//cout<< "_force_stabilised "<< endl;
|
|
|
|
const double coeff = 0.9;
|
|
double ratio = h_force_lbs/(_mass * slugs_to_lbs);
|
|
|
|
if (ratio > 1) ratio = 1;
|
|
if (ratio < -1) ratio = -1;
|
|
|
|
double force_pitch = acos(ratio) * SG_RADIANS_TO_DEGREES;
|
|
|
|
if (force_pitch <= force_elevation_deg)
|
|
force_pitch = force_elevation_deg;
|
|
|
|
// we assume a symetrical MI about the pitch and yaw axis
|
|
setPch(force_pitch,dt, coeff);
|
|
setHdg(_azimuth, dt, coeff);
|
|
}
|
|
|
|
// Do impacts and collisions
|
|
if (_report_impact && !_impact_reported)
|
|
handle_impact();
|
|
|
|
if (_report_collision && !_collision_reported)
|
|
handle_collision();
|
|
|
|
// Set destruction flag if altitude less than sea level -1000
|
|
if (altitude_ft < -1000.0 && life != -1)
|
|
setDie(true);
|
|
}
|
|
|
|
double FGAIBallistic::_getTime() const {
|
|
return _life_timer;
|
|
}
|
|
|
|
void FGAIBallistic::setTime(double s) {
|
|
_life_timer = s;
|
|
}
|
|
|
|
void FGAIBallistic::handleEndOfLife(double elevation) {
|
|
report_impact(elevation);
|
|
|
|
// Make the submodel invisible if the submodel is immortal, otherwise kill it if it has no subsubmodels
|
|
if (life == -1) {
|
|
invisible = true;
|
|
}
|
|
else if (_subID == 0) {
|
|
// Kill the AIObject if there is no subsubmodel
|
|
setDie(true);
|
|
}
|
|
}
|
|
|
|
void FGAIBallistic::handle_impact() {
|
|
// Try terrain intersection
|
|
double start = pos.getElevationM() + 100;
|
|
|
|
if (!getHtAGL(start))
|
|
return;
|
|
|
|
if (_ht_agl_ft <= 0) {
|
|
SG_LOG(SG_AI, SG_DEBUG, "AIBallistic: terrain impact material" << _mat_name);
|
|
_impact_reported = true;
|
|
handleEndOfLife(_elevation_m);
|
|
}
|
|
}
|
|
|
|
void FGAIBallistic::handle_expiry() {
|
|
_expiry_reported = true;
|
|
handleEndOfLife(pos.getElevationM());
|
|
}
|
|
|
|
void FGAIBallistic::handle_collision()
|
|
{
|
|
const FGAIBase *object = manager->calcCollision(pos.getElevationFt(),
|
|
pos.getLatitudeDeg(),pos.getLongitudeDeg(), _fuse_range);
|
|
|
|
if (object) {
|
|
report_impact(pos.getElevationM(), object);
|
|
_collision_reported = true;
|
|
}
|
|
}
|
|
|
|
void FGAIBallistic::report_impact(double elevation, const FGAIBase *object)
|
|
{
|
|
_impact_lat = pos.getLatitudeDeg();
|
|
_impact_lon = pos.getLongitudeDeg();
|
|
_impact_elev = elevation;
|
|
_impact_speed = speed * SG_KT_TO_MPS;
|
|
_impact_hdg = hdg;
|
|
_impact_pitch = pitch;
|
|
_impact_roll = roll;
|
|
|
|
SGPropertyNode *n = props->getNode("impact", true);
|
|
|
|
if (object)
|
|
n->setStringValue("type", object->getTypeString());
|
|
else
|
|
n->setStringValue("type", "terrain");
|
|
|
|
SG_LOG(SG_AI, SG_DEBUG, "AIBallistic: object impact " << _name
|
|
<< " lon " <<_impact_lon << " lat " <<_impact_lat << " sec " << _life_timer);
|
|
|
|
n->setDoubleValue("longitude-deg", _impact_lon);
|
|
n->setDoubleValue("latitude-deg", _impact_lat);
|
|
n->setDoubleValue("elevation-m", _impact_elev);
|
|
n->setDoubleValue("heading-deg", _impact_hdg);
|
|
n->setDoubleValue("pitch-deg", _impact_pitch);
|
|
n->setDoubleValue("roll-deg", _impact_roll);
|
|
n->setDoubleValue("speed-mps", _impact_speed);
|
|
|
|
_impact_report_node->setStringValue(props->getPath());
|
|
}
|
|
|
|
SGVec3d FGAIBallistic::getCartHitchPos() const {
|
|
// convert geodetic positions to geocentered
|
|
SGVec3d cartuserPos = globals->get_aircraft_position_cart();
|
|
|
|
//SGVec3d cartPos = getCartPos();
|
|
|
|
// Transform to the right coordinate frame, configuration is done in
|
|
// the x-forward, y-right, z-up coordinates (feet), computation
|
|
// in the simulation usual body x-forward, y-right, z-down coordinates
|
|
// (meters) )
|
|
SGVec3d _off(_x_offset * SG_FEET_TO_METER,
|
|
_y_offset * SG_FEET_TO_METER,
|
|
-_z_offset * SG_FEET_TO_METER);
|
|
|
|
// Transform the user position to the horizontal local coordinate system.
|
|
SGQuatd hlTrans = SGQuatd::fromLonLat(globals->get_aircraft_position());
|
|
|
|
// and postrotate the orientation of the user model wrt the horizontal
|
|
// local frame
|
|
hlTrans *= SGQuatd::fromYawPitchRollDeg(
|
|
manager->get_user_heading(),
|
|
manager->get_user_pitch(),
|
|
manager->get_user_roll());
|
|
|
|
// The offset converted to the usual body fixed coordinate system
|
|
// rotated to the earth-fixed coordinates axis
|
|
SGVec3d off = hlTrans.backTransform(_off);
|
|
|
|
// Add the position offset of the user model to get the geocentered position
|
|
SGVec3d offsetPos = cartuserPos + off;
|
|
return offsetPos;
|
|
}
|
|
|
|
void FGAIBallistic::setOffsetPos(SGGeod inpos, double heading, double pitch, double roll) {
|
|
// Convert the hitch geocentered position to geodetic
|
|
SGVec3d cartoffsetPos = getCartOffsetPos(inpos, heading, pitch, roll);
|
|
SGGeodesy::SGCartToGeod(cartoffsetPos, _offsetpos);
|
|
}
|
|
|
|
double FGAIBallistic::getDistanceToHitch() const {
|
|
//calculate the distance load to hitch
|
|
SGVec3d carthitchPos = getCartHitchPos();
|
|
SGVec3d cartPos = getCartPos();
|
|
|
|
SGVec3d diff = carthitchPos - cartPos;
|
|
double distance = norm(diff);
|
|
return distance * SG_METER_TO_FEET;
|
|
}
|
|
|
|
double FGAIBallistic::getElevToHitch() const {
|
|
// now the angle, positive angles are upwards
|
|
double distance = getDistanceToHitch() * SG_FEET_TO_METER;
|
|
double angle = 0;
|
|
double daltM = _offsetpos.getElevationM() - pos.getElevationM();
|
|
|
|
if (fabs(distance) < SGLimits<float>::min()) {
|
|
angle = 0;
|
|
} else {
|
|
double sAngle = daltM/distance;
|
|
sAngle = SGMiscd::min(1, SGMiscd::max(-1, sAngle));
|
|
angle = SGMiscd::rad2deg(asin(sAngle));
|
|
}
|
|
|
|
return angle;
|
|
}
|
|
|
|
double FGAIBallistic::getBearingToHitch() const {
|
|
//calculate the bearing and range of the second pos from the first
|
|
double distance = getDistanceToHitch() * SG_FEET_TO_METER;
|
|
double az1, az2;
|
|
|
|
geo_inverse_wgs_84(pos, _offsetpos, &az1, &az2, &distance);
|
|
|
|
return az1;
|
|
}
|
|
|
|
double FGAIBallistic::getRelBrgHitchToUser() const {
|
|
//calculate the relative bearing
|
|
double az1, az2, distance;
|
|
|
|
geo_inverse_wgs_84(_offsetpos, globals->get_aircraft_position(), &az1, &az2, &distance);
|
|
|
|
double rel_brg = az1 - hdg;
|
|
|
|
SG_NORMALIZE_RANGE(rel_brg, -180.0, 180.0);
|
|
|
|
return rel_brg;
|
|
}
|
|
|
|
double FGAIBallistic::getElevHitchToUser() const {
|
|
// Calculate the distance from the user position
|
|
SGVec3d carthitchPos = getCartHitchPos();
|
|
SGVec3d cartuserPos = globals->get_aircraft_position_cart();
|
|
|
|
SGVec3d diff = cartuserPos - carthitchPos;
|
|
|
|
double distance = norm(diff);
|
|
double angle = 0;
|
|
|
|
double daltM = globals->get_aircraft_position().getElevationM() - _offsetpos.getElevationM();
|
|
|
|
// Now the angle, positive angles are upwards
|
|
if (fabs(distance) < SGLimits<float>::min()) {
|
|
angle = 0;
|
|
}
|
|
else {
|
|
double sAngle = daltM/distance;
|
|
sAngle = SGMiscd::min(1, SGMiscd::max(-1, sAngle));
|
|
angle = SGMiscd::rad2deg(asin(sAngle));
|
|
}
|
|
|
|
return angle;
|
|
}
|
|
|
|
void FGAIBallistic::setTgtOffsets(double dt, double coeff) {
|
|
double c = dt / (coeff + dt);
|
|
|
|
_x_offset = (_tgt_x_offset * c) + (_x_offset * (1 - c));
|
|
_y_offset = (_tgt_y_offset * c) + (_y_offset * (1 - c));
|
|
_z_offset = (_tgt_z_offset * c) + (_z_offset * (1 - c));
|
|
}
|
|
|
|
void FGAIBallistic::calcVSHS() {
|
|
// Calculate vertical and horizontal speed components
|
|
double speed_fps = speed * SG_KT_TO_FPS;
|
|
|
|
if (speed == 0.0) {
|
|
hs = vs_fps = 0.0;
|
|
}
|
|
else {
|
|
vs_fps = sin( _elevation * SG_DEGREES_TO_RADIANS ) * speed_fps;
|
|
hs = cos( _elevation * SG_DEGREES_TO_RADIANS ) * speed_fps;
|
|
}
|
|
}
|
|
|
|
void FGAIBallistic::calcNE() {
|
|
// Resolve horizontal speed into north and east components:
|
|
_speed_north_fps = cos(_azimuth / SG_RADIANS_TO_DEGREES) * hs;
|
|
_speed_east_fps = sin(_azimuth / SG_RADIANS_TO_DEGREES) * hs;
|
|
|
|
// Convert horizontal speed (fps) to degrees per second
|
|
speed_north_deg_sec = _speed_north_fps / ft_per_deg_lat;
|
|
speed_east_deg_sec = _speed_east_fps / ft_per_deg_lon;
|
|
}
|
|
|
|
SGVec3d FGAIBallistic::getCartOffsetPos(SGGeod inpos, double user_heading,
|
|
double user_pitch, double user_roll
|
|
) const {
|
|
// Convert geodetic positions to geocentered
|
|
SGVec3d cartuserPos = SGVec3d::fromGeod(inpos);
|
|
|
|
// Transform to the right coordinate frame, configuration is done in
|
|
// the x-forward, y-right, z-up coordinates (feet), computation
|
|
// in the simulation usual body x-forward, y-right, z-down coordinates
|
|
// (meters) )
|
|
SGVec3d _off(_x_offset * SG_FEET_TO_METER,
|
|
_y_offset * SG_FEET_TO_METER,
|
|
-_z_offset * SG_FEET_TO_METER);
|
|
|
|
// Transform the user position to the horizontal local coordinate system.
|
|
SGQuatd hlTrans = SGQuatd::fromLonLat(inpos);
|
|
|
|
// And postrotate the orientation of the user model wrt the horizontal
|
|
// local frame
|
|
hlTrans *= SGQuatd::fromYawPitchRollDeg(
|
|
user_heading,
|
|
user_pitch,
|
|
user_roll);
|
|
|
|
// The offset converted to the usual body fixed coordinate system
|
|
// rotated to the earth-fixed coordinates axis
|
|
SGVec3d off = hlTrans.backTransform(_off);
|
|
|
|
// Add the position offset of the user model to get the geocentered position
|
|
SGVec3d offsetPos = cartuserPos + off;
|
|
|
|
return offsetPos;
|
|
}
|
|
|
|
void FGAIBallistic::setOffsetVelocity(double dt, SGGeod offsetpos) {
|
|
// Calculate the distance from the previous offset position
|
|
SGVec3d cartoffsetPos = SGVec3d::fromGeod(offsetpos);
|
|
SGVec3d diff = cartoffsetPos - _oldcartoffsetPos;
|
|
|
|
double distance = norm(diff);
|
|
// Calculate speed knots
|
|
speed = (distance / dt) * SG_MPS_TO_KT;
|
|
|
|
// Now calulate the angle between the old and current postion positions (degrees)
|
|
double angle = 0;
|
|
double daltM = offsetpos.getElevationM() - _oldoffsetpos.getElevationM();
|
|
|
|
if (fabs(distance) < SGLimits<float>::min()) {
|
|
angle = 0;
|
|
}
|
|
else {
|
|
double sAngle = daltM / distance;
|
|
sAngle = SGMiscd::min(1, SGMiscd::max(-1, sAngle));
|
|
angle = SGMiscd::rad2deg(asin(sAngle));
|
|
}
|
|
|
|
_elevation = angle;
|
|
|
|
// Calculate vertical and horizontal speed components
|
|
calcVSHS();
|
|
|
|
// Calculate the bearing of the new offset position from the old
|
|
// Don't do this if speed is low
|
|
//cout << "speed " << speed << endl;
|
|
if (speed > 0.1) {
|
|
double az1, az2, dist;
|
|
geo_inverse_wgs_84(_oldoffsetpos, offsetpos, &az1, &az2, &dist);
|
|
_azimuth = az1;
|
|
//cout << "offset az " << _azimuth << endl;
|
|
}
|
|
else {
|
|
_azimuth = hdg;
|
|
//cout << " slow offset az " << _azimuth << endl;
|
|
}
|
|
|
|
// Resolve horizontal speed into north and east components
|
|
calcNE();
|
|
|
|
// And finally store the new values
|
|
_oldcartoffsetPos = cartoffsetPos;
|
|
_oldoffsetpos = offsetpos;
|
|
}
|