1
0
Fork 0
flightgear/Tools/Construct/Triangulate/triangle.cxx
curt f13b3855c1 Sliver detection and elimination:
After I clip a polygon against the more important stuff, I
check the area and minimum interior angle of each of it's contours.
If both (area and min interior angle) are below some threshhold I'm
calling it a sliver.  Then I go and look for another polygon such that
result = polygon_union( poly, sliver ) yields a result that doesn't
have anymore contours than the original poly.  This means the sliver
is adjacent to poly.  So I replace poly with result (the union) and
keep going.
1999-06-07 03:40:33 +00:00

502 lines
16 KiB
C++

// triangle.cxx -- "Triangle" interface class
//
// Written by Curtis Olson, started March 1999.
//
// Copyright (C) 1999 Curtis L. Olson - curt@flightgear.org
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
#include "polygon.hxx"
#include "triangle.hxx"
// Constructor
FGTriangle::FGTriangle( void ) {
}
// Destructor
FGTriangle::~FGTriangle( void ) {
}
// populate this class based on the specified gpc_polys list
int
FGTriangle::build( const point_list& corner_list,
const point_list& fit_list,
const FGPolyList& gpc_polys )
{
int debug_counter = 0;
FGPolygon poly;
int index;
in_nodes.clear();
in_segs.clear();
// Point3D junkp;
// int junkc = 0;
// char junkn[256];
// FILE *junkfp;
// traverse the dem corner and fit lists and gpc_polys building a
// unified node list and converting the polygons so that they
// reference the node list by index (starting at zero) rather than
// listing the points explicitely
// first the corners since these are important
const_point_list_iterator f_current, f_last;
f_current = corner_list.begin();
f_last = corner_list.end();
for ( ; f_current != f_last; ++f_current ) {
index = in_nodes.unique_add( *f_current );
}
// next process the polygons
FGPolygon gpc_poly;
const_poly_list_iterator current, last;
// process polygons in priority order
cout << "prepairing node list and polygons" << endl;
for ( int i = 0; i < FG_MAX_AREA_TYPES; ++i ) {
polylist[i].clear();
// cout << "area type = " << i << endl;
debug_counter = 0;
current = gpc_polys.polys[i].begin();
last = gpc_polys.polys[i].end();
for ( ; current != last; ++current ) {
gpc_poly = *current;
cout << "processing a polygon, contours = "
<< gpc_poly.contours() << endl;
if (gpc_poly.contours() <= 0 ) {
cout << "FATAL ERROR! no contours in this polygon" << endl;
exit(-1);
}
poly.erase();
int j;
for ( j = 0; j < gpc_poly.contours(); ++j ) {
cout << " processing contour = " << j << ", nodes = "
<< gpc_poly.contour_size( j ) << ", hole = "
<< gpc_poly.get_hole_flag( j ) << endl;
// sprintf(junkn, "g.%d", junkc++);
// junkfp = fopen(junkn, "w");
for ( int k = 0; k < gpc_poly.contour_size( j ); k++ ) {
Point3D p = gpc_poly.get_pt( j, k );
index = in_nodes.unique_add( p );
// junkp = in_nodes.get_node( index );
// fprintf(junkfp, "%.4f %.4f\n", junkp.x(), junkp.y());
poly.add_node(j, p);
// cout << " - " << index << endl;
}
// fprintf(junkfp, "%.4f %.4f\n",
// gpc_poly->contour[j].vertex[0].x,
// gpc_poly->contour[j].vertex[0].y);
// fclose(junkfp);
poly.set_hole_flag( j, gpc_poly.get_hole_flag( j ) );
}
for ( j = 0; j < gpc_poly.contours(); ++j ) {
poly.calc_point_inside( j, in_nodes );
}
#if 0
// temporary ... write out hole/polygon info for debugging
for ( j = 0; j < (int)poly.contours(); ++j ) {
char pname[256];
sprintf(pname, "poly%02d-%02d-%02d", i, debug_counter, j);
FILE *fp = fopen( pname, "w" );
Point3D point;
for ( int k = 0; k < poly.contour_size( j ); ++k ) {
point = poly.get_pt( j, k );
fprintf( fp, "%.6f %.6f\n", point.x(), point.y() );
}
point = poly.get_pt( j, 0 );
fprintf( fp, "%.6f %.6f\n", point.x(), point.y() );
fclose(fp);
char hname[256];
sprintf(hname, "hole%02d-%02d-%02d", i, debug_counter, j);
FILE *fh = fopen( hname, "w" );
point = poly.get_point_inside( j );
fprintf( fh, "%.6f %.6f\n", point.x(), point.y() );
fclose(fh);
}
#endif
polylist[i].push_back( poly );
++debug_counter;
}
}
// last, do the rest of the height nodes
f_current = fit_list.begin();
f_last = fit_list.end();
for ( ; f_current != f_last; ++f_current ) {
index = in_nodes.course_add( *f_current );
}
for ( int i = 0; i < FG_MAX_AREA_TYPES; ++i ) {
if ( polylist[i].size() ) {
cout << get_area_name((AreaType)i) << " = "
<< polylist[i].size() << endl;
}
}
// traverse the polygon lists and build the segment (edge) list
// that is used by the "Triangle" lib.
cout << "building segment list" << endl;
int i1, i2;
Point3D p1, p2;
point_list node_list = in_nodes.get_node_list();
for ( int i = 0; i < FG_MAX_AREA_TYPES; ++i ) {
cout << "area type = " << i << endl;
poly_list_iterator tp_current, tp_last;
tp_current = polylist[i].begin();
tp_last = polylist[i].end();
// process each polygon in list
for ( ; tp_current != tp_last; ++tp_current ) {
poly = *tp_current;
cout << " processing a polygon with contours = "
<< poly.contours() << endl;
for ( int j = 0; j < (int)poly.contours(); ++j) {
for ( int k = 0; k < (int)(poly.contour_size(j) - 1); ++k ) {
p1 = poly.get_pt( j, k );
p2 = poly.get_pt( j, k + 1 );
i1 = in_nodes.find( p1 );
i2 = in_nodes.find( p2 );
// calc_line_params(i1, i2, &m, &b);
in_segs.unique_divide_and_add( node_list, FGTriSeg(i1, i2) );
}
p1 = poly.get_pt( j, 0 );
p2 = poly.get_pt( j, poly.contour_size(j) - 1 );
i1 = in_nodes.find( p1 );
i2 = in_nodes.find( p2 );
// calc_line_params(i1, i2, &m, &b);
in_segs.unique_divide_and_add( node_list, FGTriSeg(i1, i2) );
}
}
}
return 0;
}
// populate this class based on the specified gpc_polys list
int FGTriangle::rebuild( FGConstruct& c ) {
in_nodes.clear();
in_segs.clear();
in_nodes = c.get_tri_nodes();
in_segs = c.get_tri_segs();
return 0;
}
static void write_out_data(struct triangulateio *out) {
FILE *node = fopen("tile.node", "w");
fprintf(node, "%d 2 %d 0\n",
out->numberofpoints, out->numberofpointattributes);
for (int i = 0; i < out->numberofpoints; ++i) {
fprintf(node, "%d %.6f %.6f %.2f\n",
i, out->pointlist[2*i], out->pointlist[2*i + 1], 0.0);
}
fclose(node);
FILE *ele = fopen("tile.ele", "w");
fprintf(ele, "%d 3 0\n", out->numberoftriangles);
for (int i = 0; i < out->numberoftriangles; ++i) {
fprintf(ele, "%d ", i);
for (int j = 0; j < out->numberofcorners; ++j) {
fprintf(ele, "%d ", out->trianglelist[i * out->numberofcorners + j]);
}
for (int j = 0; j < out->numberoftriangleattributes; ++j) {
fprintf(ele, "%.6f ",
out->triangleattributelist[i
* out->numberoftriangleattributes
+ j]
);
}
fprintf(ele, "\n");
}
fclose(ele);
FILE *fp = fopen("tile.poly", "w");
fprintf(fp, "0 2 1 0\n");
fprintf(fp, "%d 0\n", out->numberofsegments);
for (int i = 0; i < out->numberofsegments; ++i) {
fprintf(fp, "%d %d %d\n",
i, out->segmentlist[2*i], out->segmentlist[2*i + 1]);
}
fprintf(fp, "%d\n", out->numberofholes);
for (int i = 0; i < out->numberofholes; ++i) {
fprintf(fp, "%d %.6f %.6f\n",
i, out->holelist[2*i], out->holelist[2*i + 1]);
}
fprintf(fp, "%d\n", out->numberofregions);
for (int i = 0; i < out->numberofregions; ++i) {
fprintf(fp, "%d %.6f %.6f %.6f\n",
i, out->regionlist[4*i], out->regionlist[4*i + 1],
out->regionlist[4*i + 2]);
}
fclose(fp);
}
// Front end triangulator for polygon list. Allocates and builds up
// all the needed structures for the triangulator, runs it, copies the
// results, and frees all the data structures used by the
// triangulator. "pass" can be 1 or 2. 1 = first pass which
// generates extra nodes for a better triangulation. 2 = second pass
// after split/reassem where we don't want any extra nodes generated.
int FGTriangle::run_triangulate( const string& angle, const int pass ) {
FGPolygon poly;
Point3D p;
struct triangulateio in, out, vorout;
int counter;
// point list
point_list node_list = in_nodes.get_node_list();
in.numberofpoints = node_list.size();
in.pointlist = (REAL *) malloc(in.numberofpoints * 2 * sizeof(REAL));
point_list_iterator tn_current, tn_last;
tn_current = node_list.begin();
tn_last = node_list.end();
counter = 0;
for ( ; tn_current != tn_last; ++tn_current ) {
in.pointlist[counter++] = tn_current->x();
in.pointlist[counter++] = tn_current->y();
}
in.numberofpointattributes = 1;
in.pointattributelist = (REAL *) malloc(in.numberofpoints *
in.numberofpointattributes *
sizeof(REAL));
for ( int i = 0; i < in.numberofpoints * in.numberofpointattributes; ++i) {
in.pointattributelist[i] = 0.0;
}
in.pointmarkerlist = (int *) malloc(in.numberofpoints * sizeof(int));
for ( int i = 0; i < in.numberofpoints; ++i) {
in.pointmarkerlist[i] = 0;
}
// triangle list
in.numberoftriangles = 0;
// segment list
triseg_list seg_list = in_segs.get_seg_list();
in.numberofsegments = seg_list.size();
in.segmentlist = (int *) malloc(in.numberofsegments * 2 * sizeof(int));
in.segmentmarkerlist = (int *) NULL;
triseg_list_iterator s_current, s_last;
s_current = seg_list.begin();
s_last = seg_list.end();
counter = 0;
for ( ; s_current != s_last; ++s_current ) {
in.segmentlist[counter++] = s_current->get_n1();
in.segmentlist[counter++] = s_current->get_n2();
}
// hole list (make holes for airport ignore areas)
in.numberofholes = polylist[(int)AirportIgnoreArea].size();
in.holelist = (REAL *) malloc(in.numberofholes * 2 * sizeof(REAL));
poly_list_iterator h_current, h_last;
h_current = polylist[(int)AirportIgnoreArea].begin();
h_last = polylist[(int)AirportIgnoreArea].end();
counter = 0;
for ( ; h_current != h_last; ++h_current ) {
poly = *h_current;
for ( int j = 0; j < poly.contours(); ++j ) {
p = poly.get_point_inside( j );
in.holelist[counter++] = p.x();
in.holelist[counter++] = p.y();
}
}
// region list
in.numberofregions = 0;
for ( int i = 0; i < FG_MAX_AREA_TYPES; ++i ) {
poly_list_iterator h_current, h_last;
h_current = polylist[i].begin();
h_last = polylist[i].end();
for ( ; h_current != h_last; ++h_current ) {
poly = *h_current;
for ( int j = 0; j < poly.contours(); ++j ) {
if ( ! poly.get_hole_flag( j ) ) {
++in.numberofregions;
}
}
}
}
in.regionlist = (REAL *) malloc(in.numberofregions * 4 * sizeof(REAL));
counter = 0;
for ( int i = 0; i < FG_MAX_AREA_TYPES; ++i ) {
poly_list_iterator h_current, h_last;
h_current = polylist[(int)i].begin();
h_last = polylist[(int)i].end();
for ( ; h_current != h_last; ++h_current ) {
poly = *h_current;
for ( int j = 0; j < poly.contours(); ++j ) {
if ( ! poly.get_hole_flag( j ) ) {
p = poly.get_point_inside( j );
cout << "Region point = " << p << endl;
in.regionlist[counter++] = p.x(); // x coord
in.regionlist[counter++] = p.y(); // y coord
in.regionlist[counter++] = i; // region attribute
in.regionlist[counter++] = -1.0; // area constraint
// (unused)
}
}
}
}
// prep the output structures
out.pointlist = (REAL *) NULL; // Not needed if -N switch used.
// Not needed if -N switch used or number of point attributes is zero:
out.pointattributelist = (REAL *) NULL;
out.pointmarkerlist = (int *) NULL; // Not needed if -N or -B switch used.
out.trianglelist = (int *) NULL; // Not needed if -E switch used.
// Not needed if -E switch used or number of triangle attributes is zero:
out.triangleattributelist = (REAL *) NULL;
out.neighborlist = (int *) NULL; // Needed only if -n switch used.
// Needed only if segments are output (-p or -c) and -P not used:
out.segmentlist = (int *) NULL;
// Needed only if segments are output (-p or -c) and -P and -B not used:
out.segmentmarkerlist = (int *) NULL;
out.edgelist = (int *) NULL; // Needed only if -e switch used.
out.edgemarkerlist = (int *) NULL; // Needed if -e used and -B not used.
vorout.pointlist = (REAL *) NULL; // Needed only if -v switch used.
// Needed only if -v switch used and number of attributes is not zero:
vorout.pointattributelist = (REAL *) NULL;
vorout.edgelist = (int *) NULL; // Needed only if -v switch used.
vorout.normlist = (REAL *) NULL; // Needed only if -v switch used.
// TEMPORARY
write_out_data(&in);
// Triangulate the points. Switches are chosen to read and write
// a PSLG (p), preserve the convex hull (c), number everything
// from zero (z), assign a regional attribute to each element (A),
// and produce an edge list (e), and a triangle neighbor list (n).
string tri_options;
if ( pass == 1 ) {
// use a quality value of 10 (q10) meaning no interior
// triangle angles less than 10 degrees
// tri_options = "pczAen";
if ( angle == "0" ) {
tri_options = "pczAen";
} else {
tri_options = "pczq" + angle + "Aen";
}
// // string tri_options = "pzAen";
// // string tri_options = "pczq15S400Aen";
} else if ( pass == 2 ) {
// no new points on boundary (Y), no internal segment
// splitting (YY), no quality refinement ()
tri_options = "pczYYAen";
} else {
cout << "unknown pass number = " << pass
<< " in FGTriangle::run_triangulate()" << endl;
exit(-1);
}
cout << "Triangulation with options = " << tri_options << endl;
triangulate(tri_options.c_str(), &in, &out, &vorout);
// TEMPORARY
// write_out_data(&out);
// now copy the results back into the corresponding FGTriangle
// structures
// nodes
out_nodes.clear();
for ( int i = 0; i < out.numberofpoints; ++i ) {
Point3D p( out.pointlist[2*i], out.pointlist[2*i + 1], 0.0 );
// cout << "point = " << p << endl;
out_nodes.simple_add( p );
}
// segments
out_segs.clear();
for ( int i = 0; i < out.numberofsegments; ++i ) {
out_segs.unique_add( FGTriSeg( out.segmentlist[2*i],
out.segmentlist[2*i+1] ) );
}
// triangles
elelist.clear();
int n1, n2, n3;
double attribute;
for ( int i = 0; i < out.numberoftriangles; ++i ) {
n1 = out.trianglelist[i * 3];
n2 = out.trianglelist[i * 3 + 1];
n3 = out.trianglelist[i * 3 + 2];
if ( out.numberoftriangleattributes > 0 ) {
attribute = out.triangleattributelist[i];
} else {
attribute = 0.0;
}
// cout << "triangle = " << n1 << " " << n2 << " " << n3 << endl;
elelist.push_back( FGTriEle( n1, n2, n3, attribute ) );
}
// free mem allocated to the "Triangle" structures
free(in.pointlist);
free(in.pointattributelist);
free(in.pointmarkerlist);
free(in.regionlist);
free(out.pointlist);
free(out.pointattributelist);
free(out.pointmarkerlist);
free(out.trianglelist);
free(out.triangleattributelist);
// free(out.trianglearealist);
free(out.neighborlist);
free(out.segmentlist);
free(out.segmentmarkerlist);
free(out.edgelist);
free(out.edgemarkerlist);
free(vorout.pointlist);
free(vorout.pointattributelist);
free(vorout.edgelist);
free(vorout.normlist);
return 0;
}