1
0
Fork 0
flightgear/src/Systems/electrical.cxx
James Turner 43e3d7ef38 Electrical system: cache property nodes
Remove some hot spots in the electrical simulation, by caching
property nodes in two places.
2018-09-10 10:45:58 +01:00

734 lines
25 KiB
C++

// electrical.cxx - a flexible, generic electrical system model.
//
// Written by Curtis Olson, started September 2002.
//
// Copyright (C) 2002 Curtis L. Olson - http://www.flightgear.org/~curt
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//
// $Id$
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <cstdlib>
#include <cstring>
#include <simgear/structure/exception.hxx>
#include <simgear/misc/sg_path.hxx>
#include <simgear/debug/logstream.hxx>
#include <simgear/props/props_io.hxx>
#include <Main/fg_props.hxx>
#include <Main/globals.hxx>
#include "electrical.hxx"
FGElectricalComponent::FGElectricalComponent() :
kind(-1),
name(""),
volts(0.0),
load_amps(0.0)
{
}
void FGElectricalComponent::add_prop(const std::string &s)
{
auto nd = fgGetNode(s, true);
props.push_back(nd);
}
void FGElectricalComponent::publishVoltageToProps() const
{
const auto v = get_volts();
for (const auto& nd : props) {
nd->setFloatValue(v);
}
}
FGElectricalSupplier::FGElectricalSupplier ( SGPropertyNode *node ) {
kind = FG_SUPPLIER;
// cout << "Creating a supplier" << endl;
name = node->getStringValue("name");
string _model = node->getStringValue("kind");
// cout << "_model = " << _model << endl;
if ( _model == "battery" ) {
model = FG_BATTERY;
amp_hours = node->getFloatValue("amp-hours", 40.0);
percent_remaining = node->getFloatValue("percent-remaining", 1.0);
charge_amps = node->getFloatValue("charge-amps", 7.0);
} else if ( _model == "alternator" ) {
model = FG_ALTERNATOR;
rpm_src = node->getStringValue("rpm-source");
rpm_threshold = node->getFloatValue("rpm-threshold", 600.0);
ideal_amps = node->getFloatValue("amps", 60.0);
} else if ( _model == "external" ) {
model = FG_EXTERNAL;
ideal_amps = node->getFloatValue("amps", 60.0);
} else {
model = FG_UNKNOWN;
}
ideal_volts = node->getFloatValue("volts");
int i;
for ( i = 0; i < node->nChildren(); ++i ) {
SGPropertyNode *child = node->getChild(i);
// cout << " scanning: " << child->getName() << endl;
if ( !strcmp(child->getName(), "prop") ) {
string prop = child->getStringValue();
// cout << " Adding prop = " << prop << endl;
add_prop( prop );
fgSetFloat( prop.c_str(), ideal_amps );
}
}
_rpm_node = fgGetNode( rpm_src.c_str(), true);
}
float FGElectricalSupplier::apply_load( float amps, float dt ) {
if ( model == FG_BATTERY ) {
// calculate amp hours used
float amphrs_used = amps * dt / 3600.0;
// calculate percent of total available capacity
float percent_used = amphrs_used / amp_hours;
percent_remaining -= percent_used;
if ( percent_remaining < 0.0 ) {
percent_remaining = 0.0;
} else if ( percent_remaining > 1.0 ) {
percent_remaining = 1.0;
}
// cout << "battery percent = " << percent_remaining << endl;
return amp_hours * percent_remaining;
} else if ( model == FG_ALTERNATOR ) {
// scale alternator output for rpms < 600. For rpms >= 600
// give full output. This is just a WAG, and probably not how
// it really works but I'm keeping things "simple" to start.
float rpm = _rpm_node->getFloatValue();
float factor = rpm / rpm_threshold;
if ( factor > 1.0 ) {
factor = 1.0;
}
// cout << "alternator amps = " << amps * factor << endl;
float available_amps = ideal_amps * factor;
return available_amps - amps;
} else if ( model == FG_EXTERNAL ) {
// cout << "external amps = " << 0.0 << endl;
float available_amps = ideal_amps;
return available_amps - amps;
} else {
SG_LOG( SG_SYSTEMS, SG_ALERT, "unknown supplier type" );
}
return 0.0;
}
float FGElectricalSupplier::get_output_volts() {
if ( model == FG_BATTERY ) {
// cout << "battery amps = " << amps << endl;
float x = 1.0 - percent_remaining;
float tmp = -(3.0 * x - 1.0);
float factor = (tmp*tmp*tmp*tmp*tmp + 32) / 32;
// cout << "battery % = " << percent_remaining <<
// " factor = " << factor << endl;
// percent_remaining -= 0.001;
return ideal_volts * factor;
} else if ( model == FG_ALTERNATOR ) {
// scale alternator output for rpms < 600. For rpms >= 600
// give full output. This is just a WAG, and probably not how
// it really works but I'm keeping things "simple" to start.
float rpm = _rpm_node->getFloatValue();
float factor = rpm / rpm_threshold;
if ( factor > 1.0 ) {
factor = 1.0;
}
// cout << "alternator amps = " << amps * factor << endl;
return ideal_volts * factor;
} else if ( model == FG_EXTERNAL ) {
// cout << "external amps = " << 0.0 << endl;
return ideal_volts;
} else {
SG_LOG( SG_SYSTEMS, SG_ALERT, "unknown supplier type" );
}
return 0.0;
}
float FGElectricalSupplier::get_output_amps() {
if ( model == FG_BATTERY ) {
// cout << "battery amp_hours = " << amp_hours << endl;
// This is a WAG, but produce enough amps to burn the entire
// battery in one minute.
return amp_hours * 60.0;
} else if ( model == FG_ALTERNATOR ) {
// scale alternator output for rpms < 600. For rpms >= 600
// give full output. This is just a WAG, and probably not how
// it really works but I'm keeping things "simple" to start.
float rpm = _rpm_node->getFloatValue();
float factor = rpm / rpm_threshold;
if ( factor > 1.0 ) {
factor = 1.0;
}
// cout << "alternator amps = " << ideal_amps * factor << endl;
return ideal_amps * factor;
} else if ( model == FG_EXTERNAL ) {
// cout << "external amps = " << 0.0 << endl;
return ideal_amps;
} else {
SG_LOG( SG_SYSTEMS, SG_ALERT, "unknown supplier type" );
}
return 0.0;
}
FGElectricalBus::FGElectricalBus ( SGPropertyNode *node ) {
kind = FG_BUS;
name = node->getStringValue("name");
int i;
for ( i = 0; i < node->nChildren(); ++i ) {
SGPropertyNode *child = node->getChild(i);
if ( !strcmp(child->getName(), "prop") ) {
string prop = child->getStringValue();
add_prop( prop );
}
}
}
FGElectricalOutput::FGElectricalOutput ( SGPropertyNode *node ) {
kind = FG_OUTPUT;
load_amps = 0.1; // arbitrary default value
name = node->getStringValue("name");
SGPropertyNode *draw = node->getNode("rated-draw");
if ( draw != NULL ) {
load_amps = draw->getFloatValue();
}
// cout << "rated draw = " << output_amps << endl;
int i;
for ( i = 0; i < node->nChildren(); ++i ) {
SGPropertyNode *child = node->getChild(i);
if ( !strcmp(child->getName(), "prop") ) {
string prop = child->getStringValue();
add_prop( prop );
}
}
}
FGElectricalSwitch::FGElectricalSwitch( SGPropertyNode *node ) :
switch_node( NULL ),
rating_amps( 0.0f ),
circuit_breaker( false )
{
bool initial_state = true;
int i;
for ( i = 0; i < node->nChildren(); ++i ) {
SGPropertyNode *child = node->getChild(i);
string cname = child->getName();
string cval = child->getStringValue();
if ( cname == "prop" ) {
switch_node = fgGetNode( cval.c_str(), true );
// cout << "switch node = " << cval << endl;
} else if ( cname == "initial-state" ) {
if ( cval == "off" || cval == "false" ) {
initial_state = false;
}
// cout << "initial state = " << initial_state << endl;
} else if ( cname == "rating-amps" ) {
rating_amps = atof( cval.c_str() );
circuit_breaker = true;
// cout << "initial state = " << initial_state << endl;
}
}
switch_node->setBoolValue( initial_state );
// cout << " value = " << switch_node->getBoolValue() << endl;
}
FGElectricalConnector::FGElectricalConnector ( SGPropertyNode *node,
FGElectricalSystem *es ) {
kind = FG_CONNECTOR;
name = "connector";
int i;
for ( i = 0; i < node->nChildren(); ++i ) {
SGPropertyNode *child = node->getChild(i);
string cname = child->getName();
string cval = child->getStringValue();
// cout << " " << cname << " = " << cval << endl;
if ( cname == "input" ) {
FGElectricalComponent *s = es->find( child->getStringValue() );
if ( s != NULL ) {
add_input( s );
if ( s->get_kind() == FG_SUPPLIER ) {
s->add_output( this );
} else if ( s->get_kind() == FG_BUS ) {
s->add_output( this );
} else {
SG_LOG( SG_SYSTEMS, SG_ALERT,
"Attempt to connect to something that can't provide an output: "
<< child->getStringValue() );
}
} else {
SG_LOG( SG_SYSTEMS, SG_ALERT, "Can't find named source: "
<< child->getStringValue() );
}
} else if ( cname == "output" ) {
FGElectricalComponent *s = es->find( child->getStringValue() );
if ( s != NULL ) {
add_output( s );
if ( s->get_kind() == FG_BUS ) {
s->add_input( this );
} else if ( s->get_kind() == FG_OUTPUT ) {
s->add_input( this );
} else if ( s->get_kind() == FG_SUPPLIER &&
((FGElectricalSupplier *)s)->get_model()
== FGElectricalSupplier::FG_BATTERY ) {
s->add_output( this );
} else {
SG_LOG( SG_SYSTEMS, SG_ALERT,
"Attempt to connect to something that can't provide an input: "
<< child->getStringValue() );
}
} else {
SG_LOG( SG_SYSTEMS, SG_ALERT, "Can't find named source: "
<< child->getStringValue() );
}
} else if ( cname == "switch" ) {
// cout << "Switch = " << child->getStringValue() << endl;
FGElectricalSwitch s( child );
add_switch( s );
}
}
}
// set all switches to the specified state
void FGElectricalConnector::set_switches( bool state ) {
// cout << "setting switch state to " << state << endl;
for ( unsigned int i = 0; i < switches.size(); ++i ) {
switches[i].set_state( state );
}
}
// return true if all switches are true, false otherwise. A connector
// could have multiple switches, but they all need to be true(closed)
// for current to get through.
bool FGElectricalConnector::get_state() {
unsigned int i;
for ( i = 0; i < switches.size(); ++i ) {
if ( ! switches[i].get_state() ) {
return false;
}
}
return true;
}
FGElectricalSystem::FGElectricalSystem ( SGPropertyNode *node ) :
name(node->getStringValue("name", "electrical")),
num(node->getIntValue("number", 0)),
path(node->getStringValue("path")),
enabled(false)
{
}
FGElectricalSystem::~FGElectricalSystem () {
}
void FGElectricalSystem::init () {
SGPropertyNode_ptr config_props = new SGPropertyNode;
_volts_out = fgGetNode( "/systems/electrical/volts", true );
_amps_out = fgGetNode( "/systems/electrical/amps", true );
// allow the electrical system to be specified via the
// aircraft-set.xml file (for backwards compatibility) or through
// the aircraft-systems.xml file. If a -set.xml entry is
// specified, that overrides the system entry.
SGPropertyNode *path_n = fgGetNode("/sim/systems/electrical/path");
if ( path_n ) {
if ( path.length() ) {
SG_LOG( SG_SYSTEMS, SG_INFO,
"NOTICE: System manager configuration specifies an " <<
"electrical system: " << path << " but it is " <<
"being overridden by the one specified in the -set.xml " <<
"file: " << path_n->getStringValue() );
}
path = path_n->getStringValue();
}
if ( path.length() ) {
SGPath config = globals->resolve_aircraft_path(path);
// load an obsolete xml configuration
SG_LOG( SG_SYSTEMS, SG_DEV_WARN,
"Reading deprecated xml electrical system model from\n "
<< config.str() );
try {
readProperties( config, config_props );
if ( build(config_props) ) {
enabled = true;
} else {
throw sg_exception("Logic error in electrical system file.");
}
} catch (const sg_exception&) {
SG_LOG( SG_SYSTEMS, SG_ALERT,
"Failed to load electrical system model: "
<< config );
}
} else {
SG_LOG( SG_SYSTEMS, SG_INFO,
"No xml-based electrical model specified for this model!");
}
if ( !enabled ) {
_amps_out->setDoubleValue(0);
}
}
void FGElectricalSystem::bind ()
{
_serviceable_node = fgGetNode("/systems/electrical/serviceable", true);
}
void FGElectricalSystem::unbind ()
{
_serviceable_node.reset();
}
void FGElectricalSystem::update (double dt)
{
if ( !enabled ) {
return;
}
// cout << "Updating electrical system, dt = " << dt << endl;
_serviceable = _serviceable_node->getBoolValue();
unsigned int i;
// zero out the voltage before we start, but don't clear the
// requested load values.
for ( i = 0; i < suppliers.size(); ++i ) {
suppliers[i]->set_volts( 0.0 );
}
for ( i = 0; i < buses.size(); ++i ) {
buses[i]->set_volts( 0.0 );
}
for ( i = 0; i < outputs.size(); ++i ) {
outputs[i]->set_volts( 0.0 );
}
for ( i = 0; i < connectors.size(); ++i ) {
connectors[i]->set_volts( 0.0 );
}
// for each "external" supplier, propagate the electrical current
for ( i = 0; i < suppliers.size(); ++i ) {
FGElectricalSupplier *node = (FGElectricalSupplier *)suppliers[i];
if ( node->get_model() == FGElectricalSupplier::FG_EXTERNAL ) {
float load;
// cout << "Starting propagation: " << suppliers[i]->get_name()
// << endl;
load = propagate( suppliers[i], dt,
node->get_output_volts(),
node->get_output_amps(),
" " );
if ( node->apply_load( load, dt ) < 0.0 ) {
SG_LOG(SG_SYSTEMS, SG_ALERT,
"Error drawing more current than available!");
}
}
}
// for each "alternator" supplier, propagate the electrical
// current
for ( i = 0; i < suppliers.size(); ++i ) {
FGElectricalSupplier *node = (FGElectricalSupplier *)suppliers[i];
if ( node->get_model() == FGElectricalSupplier::FG_ALTERNATOR) {
float load;
// cout << "Starting propagation: " << suppliers[i]->get_name()
// << endl;
load = propagate( suppliers[i], dt,
node->get_output_volts(),
node->get_output_amps(),
" " );
if ( node->apply_load( load, dt ) < 0.0 ) {
SG_LOG(SG_SYSTEMS, SG_ALERT,
"Error drawing more current than available!");
}
}
}
// for each "battery" supplier, propagate the electrical
// current
for ( i = 0; i < suppliers.size(); ++i ) {
FGElectricalSupplier *node = (FGElectricalSupplier *)suppliers[i];
if ( node->get_model() == FGElectricalSupplier::FG_BATTERY ) {
float load;
// cout << "Starting propagation: " << suppliers[i]->get_name()
// << endl;
load = propagate( suppliers[i], dt,
node->get_output_volts(),
node->get_output_amps(),
" " );
// cout << "battery load = " << load << endl;
if ( node->apply_load( load, dt ) < 0.0 ) {
SG_LOG(SG_SYSTEMS, SG_ALERT,
"Error drawing more current than available!");
}
}
}
float alt_norm
= fgGetFloat("/systems/electrical/suppliers/alternator") / 60.0;
// impliment an extremely simplistic voltage model (assumes
// certain naming conventions in electrical system config)
// FIXME: we probably want to be able to feed power from all
// engines if they are running and the master-alt is switched on
float volts = 0.0;
if ( fgGetBool("/controls/engines/engine[0]/master-bat") ) {
volts = 24.0;
}
if ( fgGetBool("/controls/engines/engine[0]/master-alt") ) {
if ( fgGetFloat("/engines/engine[0]/rpm") > 800 ) {
float alt_contrib = 28.0;
if ( alt_contrib > volts ) {
volts = alt_contrib;
}
} else if ( fgGetFloat("/engines/engine[0]/rpm") > 200 ) {
float alt_contrib = 20.0;
if ( alt_contrib > volts ) {
volts = alt_contrib;
}
}
}
_volts_out->setFloatValue( volts );
// impliment an extremely simplistic amps model (assumes certain
// naming conventions in the electrical system config) ... FIXME:
// make this more generic
float amps = 0.0;
if ( fgGetBool("/controls/engines/engine[0]/master-bat") ) {
if ( fgGetBool("/controls/engines/engine[0]/master-alt") &&
fgGetFloat("/engines/engine[0]/rpm") > 800 )
{
amps += 40.0 * alt_norm;
}
amps -= 15.0; // normal load
if ( fgGetBool("/controls/switches/flashing-beacon") ) {
amps -= 7.5;
}
if ( fgGetBool("/controls/switches/nav-lights") ) {
amps -= 7.5;
}
if ( amps > 7.0 ) {
amps = 7.0;
}
}
_amps_out->setFloatValue( amps );
}
bool FGElectricalSystem::build (SGPropertyNode* config_props) {
SGPropertyNode *node;
int i;
int count = config_props->nChildren();
for ( i = 0; i < count; ++i ) {
node = config_props->getChild(i);
string name = node->getName();
// cout << name << endl;
if ( name == "supplier" ) {
FGElectricalSupplier *s =
new FGElectricalSupplier( node );
suppliers.push_back( s );
} else if ( name == "bus" ) {
FGElectricalBus *b =
new FGElectricalBus( node );
buses.push_back( b );
} else if ( name == "output" ) {
FGElectricalOutput *o =
new FGElectricalOutput( node );
outputs.push_back( o );
} else if ( name == "connector" ) {
FGElectricalConnector *c =
new FGElectricalConnector( node, this );
connectors.push_back( c );
} else {
SG_LOG( SG_SYSTEMS, SG_ALERT, "Unknown component type specified: "
<< name );
return false;
}
}
return true;
}
// propagate the electrical current through the network, returns the
// total current drawn by the children of this node.
float FGElectricalSystem::propagate( FGElectricalComponent *node, double dt,
float input_volts, float input_amps,
string s ) {
s += " ";
float total_load = 0.0;
// determine the current to carry forward
float volts = 0.0;
if ( !_serviceable) {
volts = 0;
} else if ( node->get_kind() == FGElectricalComponent::FG_SUPPLIER ) {
// cout << s << "is a supplier (" << node->get_name() << ")" << endl;
FGElectricalSupplier *supplier = (FGElectricalSupplier *)node;
if ( supplier->get_model() == FGElectricalSupplier::FG_BATTERY ) {
// cout << s << " (and is a battery)" << endl;
float battery_volts = supplier->get_output_volts();
if ( battery_volts < (input_volts - 0.1) ) {
// special handling of a battery charge condition
// cout << s << " (and is being charged) in v = "
// << input_volts << " current v = " << battery_volts
// << endl;
supplier->apply_load( -supplier->get_charge_amps(), dt );
return supplier->get_charge_amps();
}
}
volts = input_volts;
} else if ( node->get_kind() == FGElectricalComponent::FG_BUS ) {
// cout << s << "is a bus (" << node->get_name() << ")" << endl;
volts = input_volts;
} else if ( node->get_kind() == FGElectricalComponent::FG_OUTPUT ) {
// cout << s << "is an output (" << node->get_name() << ")" << endl;
volts = input_volts;
if ( volts > 1.0 ) {
// draw current if we have voltage
total_load = node->get_load_amps();
}
} else if ( node->get_kind() == FGElectricalComponent::FG_CONNECTOR ) {
// cout << s << "is a connector (" << node->get_name() << ")" << endl;
if ( ((FGElectricalConnector *)node)->get_state() ) {
volts = input_volts;
} else {
volts = 0.0;
}
// cout << s << " input_volts = " << volts << endl;
} else {
SG_LOG( SG_SYSTEMS, SG_ALERT, "unknown node type" );
}
int i;
// if this node has found a stronger power source, update the
// value and propagate to all children
if ( volts > node->get_volts() ) {
node->set_volts( volts );
for ( i = 0; i < node->get_num_outputs(); ++i ) {
FGElectricalComponent *child = node->get_output(i);
// send current equal to load
total_load += propagate( child, dt,
volts, child->get_load_amps(),
s );
}
// if not an output node, register the downstream current draw
// (sum of all children) with this node. If volts are zero,
// current draw should be zero.
if ( node->get_kind() != FGElectricalComponent::FG_OUTPUT ) {
node->set_load_amps( total_load );
}
node->set_available_amps( input_amps - total_load );
node->publishVoltageToProps();
/*
cout << s << node->get_name() << " -> (volts) " << node->get_volts()
<< endl;
cout << s << node->get_name() << " -> (load amps) " << total_load
<< endl;
cout << s << node->get_name() << " -> (input amps) " << input_amps
<< endl;
cout << s << node->get_name() << " -> (extra amps) "
<< node->get_available_amps() << endl;
*/
return total_load;
} else {
// cout << s << "no further propagation" << endl;
return 0.0;
}
}
// search for the named component and return a pointer to it, NULL otherwise
FGElectricalComponent *FGElectricalSystem::find ( const string &name ) {
unsigned int i;
string s;
// search suppliers
for ( i = 0; i < suppliers.size(); ++i ) {
s = suppliers[i]->get_name();
// cout << " " << s << endl;
if ( s == name ) {
return suppliers[i];
}
}
// then search buses
for ( i = 0; i < buses.size(); ++i ) {
s = buses[i]->get_name();
// cout << " " << s << endl;
if ( s == name ) {
return buses[i];
}
}
// then search outputs
for ( i = 0; i < outputs.size(); ++i ) {
s = outputs[i]->get_name();
// cout << " " << s << endl;
if ( s == name ) {
return outputs[i];
}
}
// nothing found
return NULL;
}