305 lines
7.7 KiB
C
305 lines
7.7 KiB
C
/**************************************************************************
|
|
* autopilot.c -- autopilot subsystem
|
|
*
|
|
* Written by Jeff Goeke-Smith, started April 1998.
|
|
*
|
|
* Copyright (C) 1998 Jeff Goeke-Smith, jgoeke@voyager.net
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2 of the
|
|
* License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
*
|
|
*
|
|
**************************************************************************/
|
|
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
# include <config.h>
|
|
#endif
|
|
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "autopilot.h"
|
|
|
|
#include <Include/fg_constants.h>
|
|
#include <Debug/fg_debug.h>
|
|
|
|
|
|
// The below routines were copied right from hud.c ( I hate reinventing
|
|
// the wheel more than necessary)
|
|
//// The following routines obtain information concerntin the aircraft's
|
|
//// current state and return it to calling instrument display routines.
|
|
//// They should eventually be member functions of the aircraft.
|
|
////
|
|
|
|
static double get_throttleval( void )
|
|
{
|
|
fgCONTROLS *pcontrols;
|
|
|
|
pcontrols = current_aircraft.controls;
|
|
return pcontrols->throttle[0]; // Hack limiting to one engine
|
|
}
|
|
|
|
static double get_aileronval( void )
|
|
{
|
|
fgCONTROLS *pcontrols;
|
|
|
|
pcontrols = current_aircraft.controls;
|
|
return pcontrols->aileron;
|
|
}
|
|
|
|
static double get_elevatorval( void )
|
|
{
|
|
fgCONTROLS *pcontrols;
|
|
|
|
pcontrols = current_aircraft.controls;
|
|
return pcontrols->elevator;
|
|
}
|
|
|
|
static double get_elev_trimval( void )
|
|
{
|
|
fgCONTROLS *pcontrols;
|
|
|
|
pcontrols = current_aircraft.controls;
|
|
return pcontrols->elevator_trim;
|
|
}
|
|
|
|
static double get_rudderval( void )
|
|
{
|
|
fgCONTROLS *pcontrols;
|
|
|
|
pcontrols = current_aircraft.controls;
|
|
return pcontrols->rudder;
|
|
}
|
|
|
|
static double get_speed( void )
|
|
{
|
|
fgFLIGHT *f;
|
|
|
|
f = current_aircraft.flight;
|
|
return( FG_V_equiv_kts ); // Make an explicit function call.
|
|
}
|
|
|
|
static double get_aoa( void )
|
|
{
|
|
fgFLIGHT *f;
|
|
|
|
f = current_aircraft.flight;
|
|
return( FG_Gamma_vert_rad * RAD_TO_DEG );
|
|
}
|
|
|
|
static double fgAPget_roll( void )
|
|
{
|
|
fgFLIGHT *f;
|
|
|
|
f = current_aircraft.flight;
|
|
return( FG_Phi * RAD_TO_DEG );
|
|
}
|
|
|
|
static double get_pitch( void )
|
|
{
|
|
fgFLIGHT *f;
|
|
|
|
f = current_aircraft.flight;
|
|
return( FG_Theta );
|
|
}
|
|
|
|
double fgAPget_heading( void )
|
|
{
|
|
fgFLIGHT *f;
|
|
|
|
f = current_aircraft.flight;
|
|
return( FG_Psi * RAD_TO_DEG );
|
|
}
|
|
|
|
static double get_altitude( void )
|
|
{
|
|
fgFLIGHT *f;
|
|
// double rough_elev;
|
|
|
|
f = current_aircraft.flight;
|
|
// rough_elev = mesh_altitude(FG_Longitude * RAD_TO_ARCSEC,
|
|
// FG_Latitude * RAD_TO_ARCSEC);
|
|
|
|
return( FG_Altitude * FEET_TO_METER /* -rough_elev */ );
|
|
}
|
|
|
|
static double get_sideslip( void )
|
|
{
|
|
fgFLIGHT *f;
|
|
|
|
f = current_aircraft.flight;
|
|
|
|
return( FG_Beta );
|
|
}
|
|
|
|
// End of copied section. ( thanks for the wheel :-)
|
|
|
|
// Local Prototype section
|
|
|
|
double LinearExtrapolate( double x,double x1, double y1, double x2, double y2);
|
|
|
|
// End Local ProtoTypes
|
|
|
|
fgAPDataPtr APDataGlobal; // global variable holding the AP info
|
|
|
|
|
|
|
|
void fgAPInit( fgAIRCRAFT *current_aircraft )
|
|
{
|
|
fgAPDataPtr APData ;
|
|
|
|
fgPrintf( FG_COCKPIT, FG_INFO, "Init AutoPilot Subsystem\n" );
|
|
|
|
APData = (fgAPDataPtr)calloc(sizeof(fgAPData),1);
|
|
|
|
if (APData == NULL) // I couldn't get the mem. Dying
|
|
// return ( NULL);
|
|
exit(1);
|
|
|
|
APData->Mode = 0 ; // turn the AP off
|
|
APData->Heading = 0.0; // default direction, due north
|
|
|
|
// These eventually need to be read from current_aircaft somehow.
|
|
|
|
APData->MaxRoll = 10; // the maximum roll, in Deg
|
|
APData->RollOut = 10; // the deg from heading to start rolling out at, in Deg
|
|
APData->MaxAileron= .1; // how far can I move the aleron from center.
|
|
APData->RollOutSmooth = 5; // Smoothing distance for alerion control
|
|
|
|
//Remove at a later date
|
|
APDataGlobal = APData;
|
|
|
|
};
|
|
|
|
int fgAPRun( void )
|
|
{
|
|
|
|
//Remove the following lines when the calling funcitons start passing in the data pointer
|
|
fgAPDataPtr APData;
|
|
|
|
APData = APDataGlobal;
|
|
// end section
|
|
|
|
if (APData->Mode == 0) // the autopilot is shut off
|
|
return 0 ;
|
|
|
|
if (APData->Mode == 1) // heading hold mode
|
|
{
|
|
double RelHeading;
|
|
double TargetRoll;
|
|
double RelRoll;
|
|
double AileronSet;
|
|
|
|
RelHeading = APData->Heading - fgAPget_heading(); // figure out how far off we are from desired heading
|
|
if (RelHeading > 180) // Normalize the number to the range (-180,180]
|
|
RelHeading-= 360; // too much calc, sorry ^^^^^^^^^
|
|
if (RelHeading <= -180)
|
|
RelHeading+=360;
|
|
|
|
//assert(RelHeading <= 180);
|
|
//assert(RelHeading > -180);
|
|
|
|
// Now it is time to deterime how far we should be rolled.
|
|
fgPrintf( FG_COCKPIT, FG_DEBUG, "RelHeading:\n");
|
|
|
|
|
|
if ( abs(RelHeading) > APData->RollOut ) // We are further from heading than the roll out point
|
|
{
|
|
if (RelHeading < 0 ) // set Target Roll to Max in desired direction
|
|
TargetRoll = 0-APData->MaxRoll;
|
|
else
|
|
TargetRoll = APData->MaxRoll;
|
|
}
|
|
else // We have to calculate the Target roll
|
|
{
|
|
/*
|
|
* This calculation engine thinks that the Target roll should be a line from (RollOut,MaxRoll) to
|
|
* (-RollOut, -MaxRoll) I hope this works well. If I get ambitious some day this might become a
|
|
* fancier curve or something.
|
|
*/
|
|
TargetRoll = LinearExtrapolate(RelHeading,-APData->RollOut,-APData->MaxRoll,APData->RollOut,APData->MaxRoll);
|
|
};
|
|
|
|
// Target Roll has now been Found.
|
|
|
|
// Compare Target roll to Current Roll, Generate Rel Roll
|
|
fgPrintf( FG_COCKPIT, FG_DEBUG, "TargetRoll:\n");
|
|
|
|
RelRoll = TargetRoll - fgAPget_roll();
|
|
|
|
if (RelRoll > 180) // Normalize the number to the range (-180,180]
|
|
RelRoll-= 360 ; // too much calc, sorry ^^^^^^^^^
|
|
if (RelRoll <= -180)
|
|
RelRoll+=360 ;
|
|
|
|
|
|
assert(RelRoll <= 180);
|
|
assert(RelRoll > -180);
|
|
|
|
|
|
if ( abs(RelRoll) > APData->RollOutSmooth ) // We are further from heading than the roll out smooth point
|
|
{
|
|
if (RelRoll < 0 ) // set Target Roll to Max in desired direction
|
|
AileronSet = 0-APData->MaxAileron;
|
|
else
|
|
AileronSet = APData->MaxAileron;
|
|
}
|
|
|
|
else
|
|
AileronSet = LinearExtrapolate(RelRoll,-APData->RollOutSmooth,-APData->MaxAileron,APData->RollOutSmooth,APData->MaxAileron);
|
|
|
|
fgAileronSet(AileronSet);
|
|
|
|
//Cool, it is done.
|
|
return 0;
|
|
}
|
|
|
|
//every thing else failed. Not in a valid autopilot mode
|
|
return -1;
|
|
|
|
}
|
|
|
|
void fgAPSetMode( int mode)
|
|
{
|
|
//Remove the following line when the calling funcitons start passing in the data pointer
|
|
fgAPDataPtr APData;
|
|
|
|
APData = APDataGlobal;
|
|
// end section
|
|
|
|
fgPrintf( FG_COCKPIT, FG_INFO, "APSetMode : %d\n", mode );
|
|
|
|
APData->Mode = mode; // set the new mode
|
|
APData->Heading = fgAPget_heading(); // Lock to current heading
|
|
}
|
|
|
|
|
|
double LinearExtrapolate( double x,double x1,double y1,double x2,double y2)
|
|
{
|
|
// This procedure extrapolates the y value for the x posistion on a line defined by x1,y1; x2,y2
|
|
//assert(x1 != x2); // Divide by zero error. Cold abort for now
|
|
|
|
double m, b, y; // the constants to find in y=mx+b
|
|
|
|
m=(y2-y1)/(x2-x1); // calculate the m
|
|
|
|
b= y1- m * x1; // calculate the b
|
|
|
|
y = m * x + b; // the final calculation
|
|
|
|
return (y);
|
|
|
|
};
|