1
0
Fork 0
flightgear/Autopilot/autopilot.c

305 lines
7.7 KiB
C

/**************************************************************************
* autopilot.c -- autopilot subsystem
*
* Written by Jeff Goeke-Smith, started April 1998.
*
* Copyright (C) 1998 Jeff Goeke-Smith, jgoeke@voyager.net
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
*
**************************************************************************/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <assert.h>
#include <stdlib.h>
#include "autopilot.h"
#include <Include/fg_constants.h>
#include <Debug/fg_debug.h>
// The below routines were copied right from hud.c ( I hate reinventing
// the wheel more than necessary)
//// The following routines obtain information concerntin the aircraft's
//// current state and return it to calling instrument display routines.
//// They should eventually be member functions of the aircraft.
////
static double get_throttleval( void )
{
fgCONTROLS *pcontrols;
pcontrols = current_aircraft.controls;
return pcontrols->throttle[0]; // Hack limiting to one engine
}
static double get_aileronval( void )
{
fgCONTROLS *pcontrols;
pcontrols = current_aircraft.controls;
return pcontrols->aileron;
}
static double get_elevatorval( void )
{
fgCONTROLS *pcontrols;
pcontrols = current_aircraft.controls;
return pcontrols->elevator;
}
static double get_elev_trimval( void )
{
fgCONTROLS *pcontrols;
pcontrols = current_aircraft.controls;
return pcontrols->elevator_trim;
}
static double get_rudderval( void )
{
fgCONTROLS *pcontrols;
pcontrols = current_aircraft.controls;
return pcontrols->rudder;
}
static double get_speed( void )
{
fgFLIGHT *f;
f = current_aircraft.flight;
return( FG_V_equiv_kts ); // Make an explicit function call.
}
static double get_aoa( void )
{
fgFLIGHT *f;
f = current_aircraft.flight;
return( FG_Gamma_vert_rad * RAD_TO_DEG );
}
static double fgAPget_roll( void )
{
fgFLIGHT *f;
f = current_aircraft.flight;
return( FG_Phi * RAD_TO_DEG );
}
static double get_pitch( void )
{
fgFLIGHT *f;
f = current_aircraft.flight;
return( FG_Theta );
}
double fgAPget_heading( void )
{
fgFLIGHT *f;
f = current_aircraft.flight;
return( FG_Psi * RAD_TO_DEG );
}
static double get_altitude( void )
{
fgFLIGHT *f;
// double rough_elev;
f = current_aircraft.flight;
// rough_elev = mesh_altitude(FG_Longitude * RAD_TO_ARCSEC,
// FG_Latitude * RAD_TO_ARCSEC);
return( FG_Altitude * FEET_TO_METER /* -rough_elev */ );
}
static double get_sideslip( void )
{
fgFLIGHT *f;
f = current_aircraft.flight;
return( FG_Beta );
}
// End of copied section. ( thanks for the wheel :-)
// Local Prototype section
double LinearExtrapolate( double x,double x1, double y1, double x2, double y2);
// End Local ProtoTypes
fgAPDataPtr APDataGlobal; // global variable holding the AP info
void fgAPInit( fgAIRCRAFT *current_aircraft )
{
fgAPDataPtr APData ;
fgPrintf( FG_COCKPIT, FG_INFO, "Init AutoPilot Subsystem\n" );
APData = (fgAPDataPtr)calloc(sizeof(fgAPData),1);
if (APData == NULL) // I couldn't get the mem. Dying
// return ( NULL);
exit(1);
APData->Mode = 0 ; // turn the AP off
APData->Heading = 0.0; // default direction, due north
// These eventually need to be read from current_aircaft somehow.
APData->MaxRoll = 10; // the maximum roll, in Deg
APData->RollOut = 10; // the deg from heading to start rolling out at, in Deg
APData->MaxAileron= .1; // how far can I move the aleron from center.
APData->RollOutSmooth = 5; // Smoothing distance for alerion control
//Remove at a later date
APDataGlobal = APData;
};
int fgAPRun( void )
{
//Remove the following lines when the calling funcitons start passing in the data pointer
fgAPDataPtr APData;
APData = APDataGlobal;
// end section
if (APData->Mode == 0) // the autopilot is shut off
return 0 ;
if (APData->Mode == 1) // heading hold mode
{
double RelHeading;
double TargetRoll;
double RelRoll;
double AileronSet;
RelHeading = APData->Heading - fgAPget_heading(); // figure out how far off we are from desired heading
if (RelHeading > 180) // Normalize the number to the range (-180,180]
RelHeading-= 360; // too much calc, sorry ^^^^^^^^^
if (RelHeading <= -180)
RelHeading+=360;
//assert(RelHeading <= 180);
//assert(RelHeading > -180);
// Now it is time to deterime how far we should be rolled.
fgPrintf( FG_COCKPIT, FG_DEBUG, "RelHeading:\n");
if ( abs(RelHeading) > APData->RollOut ) // We are further from heading than the roll out point
{
if (RelHeading < 0 ) // set Target Roll to Max in desired direction
TargetRoll = 0-APData->MaxRoll;
else
TargetRoll = APData->MaxRoll;
}
else // We have to calculate the Target roll
{
/*
* This calculation engine thinks that the Target roll should be a line from (RollOut,MaxRoll) to
* (-RollOut, -MaxRoll) I hope this works well. If I get ambitious some day this might become a
* fancier curve or something.
*/
TargetRoll = LinearExtrapolate(RelHeading,-APData->RollOut,-APData->MaxRoll,APData->RollOut,APData->MaxRoll);
};
// Target Roll has now been Found.
// Compare Target roll to Current Roll, Generate Rel Roll
fgPrintf( FG_COCKPIT, FG_DEBUG, "TargetRoll:\n");
RelRoll = TargetRoll - fgAPget_roll();
if (RelRoll > 180) // Normalize the number to the range (-180,180]
RelRoll-= 360 ; // too much calc, sorry ^^^^^^^^^
if (RelRoll <= -180)
RelRoll+=360 ;
assert(RelRoll <= 180);
assert(RelRoll > -180);
if ( abs(RelRoll) > APData->RollOutSmooth ) // We are further from heading than the roll out smooth point
{
if (RelRoll < 0 ) // set Target Roll to Max in desired direction
AileronSet = 0-APData->MaxAileron;
else
AileronSet = APData->MaxAileron;
}
else
AileronSet = LinearExtrapolate(RelRoll,-APData->RollOutSmooth,-APData->MaxAileron,APData->RollOutSmooth,APData->MaxAileron);
fgAileronSet(AileronSet);
//Cool, it is done.
return 0;
}
//every thing else failed. Not in a valid autopilot mode
return -1;
}
void fgAPSetMode( int mode)
{
//Remove the following line when the calling funcitons start passing in the data pointer
fgAPDataPtr APData;
APData = APDataGlobal;
// end section
fgPrintf( FG_COCKPIT, FG_INFO, "APSetMode : %d\n", mode );
APData->Mode = mode; // set the new mode
APData->Heading = fgAPget_heading(); // Lock to current heading
}
double LinearExtrapolate( double x,double x1,double y1,double x2,double y2)
{
// This procedure extrapolates the y value for the x posistion on a line defined by x1,y1; x2,y2
//assert(x1 != x2); // Divide by zero error. Cold abort for now
double m, b, y; // the constants to find in y=mx+b
m=(y2-y1)/(x2-x1); // calculate the m
b= y1- m * x1; // calculate the b
y = m * x + b; // the final calculation
return (y);
};