1
0
Fork 0
flightgear/src/Environment/environment_ctrl.cxx
ehofman 667e64e1eb - remove the SG_GLxxxx_H #defines, since OSG provides its own versions
- this exposed a bizarre issue on Mac where dragging in <AGL/agl.h> in
   extensions.hxx was pulling in all of Carbon to the global namespace
   - very scary. As a result, I now need to explicitly include CoreFoundation
   in fg_init.cxx.
 - change SG_USING_STD(x) to using std::x
2008-07-27 16:25:13 +00:00

979 lines
32 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// environment_ctrl.cxx -- manager for natural environment information.
//
// Written by David Megginson, started February 2002.
//
// Copyright (C) 2002 David Megginson - david@megginson.com
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//
// $Id$
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <stdlib.h>
#include <math.h>
#include <algorithm>
#include <simgear/debug/logstream.hxx>
#include <simgear/structure/commands.hxx>
#include <simgear/structure/exception.hxx>
#include <Airports/simple.hxx>
#include <Main/fg_props.hxx>
#include <Main/util.hxx>
#include "environment_mgr.hxx"
#include "environment_ctrl.hxx"
using std::sort;
class metar_filter : public FGAirportSearchFilter {
virtual bool pass(FGAirport *a) { return a->getMetar(); }
} metar_only;
////////////////////////////////////////////////////////////////////////
// Implementation of FGEnvironmentCtrl abstract base class.
////////////////////////////////////////////////////////////////////////
FGEnvironmentCtrl::FGEnvironmentCtrl ()
: _environment(0),
_lon_deg(0),
_lat_deg(0),
_elev_ft(0)
{
}
FGEnvironmentCtrl::~FGEnvironmentCtrl ()
{
}
void
FGEnvironmentCtrl::setEnvironment (FGEnvironment * environment)
{
_environment = environment;
}
void
FGEnvironmentCtrl::setLongitudeDeg (double lon_deg)
{
_lon_deg = lon_deg;
}
void
FGEnvironmentCtrl::setLatitudeDeg (double lat_deg)
{
_lat_deg = lat_deg;
}
void
FGEnvironmentCtrl::setElevationFt (double elev_ft)
{
_elev_ft = elev_ft;
}
void
FGEnvironmentCtrl::setPosition (double lon_deg, double lat_deg, double elev_ft)
{
_lon_deg = lon_deg;
_lat_deg = lat_deg;
_elev_ft = elev_ft;
}
////////////////////////////////////////////////////////////////////////
// Implementation of FGUserDefEnvironmentCtrl.
////////////////////////////////////////////////////////////////////////
FGUserDefEnvironmentCtrl::FGUserDefEnvironmentCtrl ()
: _base_wind_speed_node(0),
_gust_wind_speed_node(0),
_current_wind_speed_kt(0),
_delta_wind_speed_kt(0)
{
}
FGUserDefEnvironmentCtrl::~FGUserDefEnvironmentCtrl ()
{
}
void
FGUserDefEnvironmentCtrl::init ()
{
// Fill in some defaults.
if (!fgHasNode("/environment/params/base-wind-speed-kt"))
fgSetDouble("/environment/params/base-wind-speed-kt",
fgGetDouble("/environment/wind-speed-kt"));
if (!fgHasNode("/environment/params/gust-wind-speed-kt"))
fgSetDouble("/environment/params/gust-wind-speed-kt",
fgGetDouble("/environment/params/base-wind-speed-kt"));
_base_wind_speed_node =
fgGetNode("/environment/params/base-wind-speed-kt", true);
_gust_wind_speed_node =
fgGetNode("/environment/params/gust-wind-speed-kt", true);
_current_wind_speed_kt = _base_wind_speed_node->getDoubleValue();
_delta_wind_speed_kt = 0.1;
}
void
FGUserDefEnvironmentCtrl::update (double dt)
{
double base_wind_speed = _base_wind_speed_node->getDoubleValue();
double gust_wind_speed = _gust_wind_speed_node->getDoubleValue();
if (gust_wind_speed < base_wind_speed) {
gust_wind_speed = base_wind_speed;
_gust_wind_speed_node->setDoubleValue(gust_wind_speed);
}
if (base_wind_speed == gust_wind_speed) {
_current_wind_speed_kt = base_wind_speed;
} else {
int rn = rand() % 128;
int sign = (_delta_wind_speed_kt < 0 ? -1 : 1);
double gust = _current_wind_speed_kt - base_wind_speed;
double incr = gust / 50;
if (rn == 0)
_delta_wind_speed_kt = - _delta_wind_speed_kt;
else if (rn < 4)
_delta_wind_speed_kt -= incr * sign;
else if (rn < 16)
_delta_wind_speed_kt += incr * sign;
_current_wind_speed_kt += _delta_wind_speed_kt;
if (_current_wind_speed_kt < base_wind_speed) {
_current_wind_speed_kt = base_wind_speed;
_delta_wind_speed_kt = 0.01;
} else if (_current_wind_speed_kt > gust_wind_speed) {
_current_wind_speed_kt = gust_wind_speed;
_delta_wind_speed_kt = -0.01;
}
}
if (_environment != 0)
_environment->set_wind_speed_kt(_current_wind_speed_kt);
}
////////////////////////////////////////////////////////////////////////
// Implementation of FGInterpolateEnvironmentCtrl.
////////////////////////////////////////////////////////////////////////
FGInterpolateEnvironmentCtrl::FGInterpolateEnvironmentCtrl ()
{
}
FGInterpolateEnvironmentCtrl::~FGInterpolateEnvironmentCtrl ()
{
unsigned int i;
for (i = 0; i < _boundary_table.size(); i++)
delete _boundary_table[i];
for (i = 0; i < _aloft_table.size(); i++)
delete _aloft_table[i];
}
void
FGInterpolateEnvironmentCtrl::init ()
{
read_table(fgGetNode("/environment/config/boundary", true),
_boundary_table);
read_table(fgGetNode("/environment/config/aloft", true),
_aloft_table);
}
void
FGInterpolateEnvironmentCtrl::reinit ()
{
unsigned int i;
for (i = 0; i < _boundary_table.size(); i++)
delete _boundary_table[i];
for (i = 0; i < _aloft_table.size(); i++)
delete _aloft_table[i];
_boundary_table.clear();
_aloft_table.clear();
init();
}
void
FGInterpolateEnvironmentCtrl::read_table (const SGPropertyNode * node,
vector<bucket *> &table)
{
for (int i = 0; i < node->nChildren(); i++) {
const SGPropertyNode * child = node->getChild(i);
if ( strcmp(child->getName(), "entry") == 0
&& child->getStringValue("elevation-ft", "")[0] != '\0'
&& ( child->getDoubleValue("elevation-ft") > 0.1 || i == 0 ) )
{
bucket * b = new bucket;
if (i > 0)
b->environment.copy(table[i-1]->environment);
b->environment.read(child);
b->altitude_ft = b->environment.get_elevation_ft();
table.push_back(b);
}
}
sort(table.begin(), table.end(), bucket::lessThan);
}
void
FGInterpolateEnvironmentCtrl::update (double delta_time_sec)
{
// FIXME
double altitude_ft = fgGetDouble("/position/altitude-ft");
double altitude_agl_ft = fgGetDouble("/position/altitude-agl-ft");
double boundary_transition =
fgGetDouble("/environment/config/boundary-transition-ft", 500);
// double ground_elevation_ft = altitude_ft - altitude_agl_ft;
int length = _boundary_table.size();
if (length > 0) {
// boundary table
double boundary_limit = _boundary_table[length-1]->altitude_ft;
if (boundary_limit >= altitude_agl_ft) {
do_interpolate(_boundary_table, altitude_agl_ft,
_environment);
return;
} else if ((boundary_limit + boundary_transition) >= altitude_agl_ft) {
// both tables
do_interpolate(_boundary_table, altitude_agl_ft, &env1);
do_interpolate(_aloft_table, altitude_ft, &env2);
double fraction =
(altitude_agl_ft - boundary_limit) / boundary_transition;
interpolate(&env1, &env2, fraction, _environment);
return;
}
}
// aloft table
do_interpolate(_aloft_table, altitude_ft, _environment);
}
void
FGInterpolateEnvironmentCtrl::do_interpolate (vector<bucket *> &table,
double altitude_ft,
FGEnvironment * environment)
{
int length = table.size();
if (length == 0)
return;
// Boundary conditions
if ((length == 1) || (table[0]->altitude_ft >= altitude_ft)) {
environment->copy(table[0]->environment);
return;
} else if (table[length-1]->altitude_ft <= altitude_ft) {
environment->copy(table[length-1]->environment);
return;
}
// Search the interpolation table
for (int i = 0; i < length - 1; i++) {
if ((i == length - 1) || (table[i]->altitude_ft <= altitude_ft)) {
FGEnvironment * env1 = &(table[i]->environment);
FGEnvironment * env2 = &(table[i+1]->environment);
double fraction;
if (table[i]->altitude_ft == table[i+1]->altitude_ft)
fraction = 1.0;
else
fraction =
((altitude_ft - table[i]->altitude_ft) /
(table[i+1]->altitude_ft - table[i]->altitude_ft));
interpolate(env1, env2, fraction, environment);
return;
}
}
}
bool
FGInterpolateEnvironmentCtrl::bucket::operator< (const bucket &b) const
{
return (altitude_ft < b.altitude_ft);
}
bool
FGInterpolateEnvironmentCtrl::bucket::lessThan(bucket *a, bucket *b)
{
return (a->altitude_ft) < (b->altitude_ft);
}
////////////////////////////////////////////////////////////////////////
// Implementation of FGMetarEnvironmentCtrl.
////////////////////////////////////////////////////////////////////////
FGMetarEnvironmentCtrl::FGMetarEnvironmentCtrl ()
: env( new FGInterpolateEnvironmentCtrl ),
_icao( "" ),
metar_loaded( false ),
search_interval_sec( 60.0 ), // 1 minute
same_station_interval_sec( 900.0 ), // 15 minutes
search_elapsed( 9999.0 ),
fetch_elapsed( 9999.0 ),
last_apt( 0 ),
proxy_host( fgGetNode("/sim/presets/proxy/host", true) ),
proxy_port( fgGetNode("/sim/presets/proxy/port", true) ),
proxy_auth( fgGetNode("/sim/presets/proxy/authentication", true) ),
metar_max_age( fgGetNode("/environment/params/metar-max-age-min", true) ),
// Interpolation constant definitions.
EnvironmentUpdatePeriodSec( 0.2 ),
MaxWindChangeKtsSec( 0.2 ),
MaxVisChangePercentSec( 0.05 ),
MaxPressureChangeInHgSec( 0.0033 ),
MaxCloudAltitudeChangeFtSec( 20.0 ),
MaxCloudThicknessChangeFtSec( 50.0 ),
MaxCloudInterpolationHeightFt( 5000.0 ),
_error_count( 0 ),
_stale_count( 0 ),
_dt( 0.0 ),
_error_dt( 0.0 )
{
#if defined(ENABLE_THREADS)
thread = new MetarThread(this);
thread->setProcessorAffinity(1);
thread->start();
#endif // ENABLE_THREADS
}
FGMetarEnvironmentCtrl::~FGMetarEnvironmentCtrl ()
{
#if defined(ENABLE_THREADS)
thread_stop();
#endif // ENABLE_THREADS
delete env;
env = NULL;
}
// use a "command" to set station temp at station elevation
static void set_temp_at_altitude( float temp_degc, float altitude_ft ) {
SGPropertyNode args;
SGPropertyNode *node = args.getNode("temp-degc", 0, true);
node->setFloatValue( temp_degc );
node = args.getNode("altitude-ft", 0, true);
node->setFloatValue( altitude_ft );
globals->get_commands()->execute("set-outside-air-temp-degc", &args);
}
static void set_dewpoint_at_altitude( float dewpoint_degc, float altitude_ft ) {
SGPropertyNode args;
SGPropertyNode *node = args.getNode("dewpoint-degc", 0, true);
node->setFloatValue( dewpoint_degc );
node = args.getNode("altitude-ft", 0, true);
node->setFloatValue( altitude_ft );
globals->get_commands()->execute("set-dewpoint-temp-degc", &args);
}
void
FGMetarEnvironmentCtrl::update_env_config ()
{
double dir_from;
double dir_to;
double speed;
double gust;
double vis;
double pressure;
double temp;
double dewpoint;
if (metar_loaded) {
// Generate interpolated values between the METAR and the current
// configuration.
// Pick up the METAR wind values and convert them into a vector.
double metar[2];
double metar_speed = fgGetDouble("/environment/metar/base-wind-speed-kt");
double metar_heading = fgGetDouble("/environment/metar/base-wind-range-from");
metar[0] = metar_speed * sin((metar_heading / 180.0) * M_PI);
metar[1] = metar_speed * cos((metar_heading / 180.0) * M_PI);
// Convert the current wind values and convert them into a vector
double current[2];
double current_speed =
fgGetDouble("/environment/config/boundary/entry/wind-speed-kt");
double current_heading = fgGetDouble(
"/environment/config/boundary/entry/wind-from-heading-deg");
current[0] = current_speed * sin((current_heading / 180.0) * M_PI);
current[1] = current_speed * cos((current_heading / 180.0) * M_PI);
// Determine the maximum component-wise value that the wind can change.
// First we determine the fraction in the X and Y component, then
// factor by the maximum wind change.
double x = fabs(current[0] - metar[0]);
double y = fabs(current[1] - metar[1]);
double dx = x / (x + y);
double dy = 1 - dx;
double maxdx = dx * MaxWindChangeKtsSec;
double maxdy = dy * MaxWindChangeKtsSec;
// Interpolate each component separately.
current[0] = interpolate_val(current[0], metar[0], maxdx);
current[1] = interpolate_val(current[1], metar[1], maxdy);
// Now convert back to polar coordinates.
if ((current[0] == 0.0) && (current[1] == 0.0)) {
// Special case where there is no wind (otherwise atan2 barfs)
speed = 0.0;
dir_from = current_heading;
} else {
// Some real wind to convert back from. Work out the speed
// and direction value in degrees.
speed = sqrt((current[0] * current[0]) + (current[1] * current[1]));
dir_from = (atan2(current[0], current[1]) * 180.0 / M_PI);
// Normalize the direction.
if (dir_from < 0.0)
dir_from += 360.0;
SG_LOG( SG_GENERAL, SG_DEBUG, "Wind : " << dir_from << "@" << speed);
}
// Now handle the visibility. We convert both visibility values
// to X-values, then interpolate from there, then back to real values.
// The length_scale is fixed to 1000m, so the visibility changes by
// by MaxVisChangePercentSec or 1000m X MaxVisChangePercentSec,
// whichever is more.
double currentvis =
fgGetDouble("/environment/config/boundary/entry/visibility-m");
double metarvis = fgGetDouble("/environment/metar/min-visibility-m");
double currentxval = log(1000.0 + currentvis);
double metarxval = log(1000.0 + metarvis);
currentxval = interpolate_val(currentxval, metarxval, MaxVisChangePercentSec);
// Now convert back from an X-value to a straightforward visibility.
vis = exp(currentxval) - 1000.0;
pressure = interpolate_prop(
"/environment/config/boundary/entry/pressure-sea-level-inhg",
"/environment/metar/pressure-inhg",
MaxPressureChangeInHgSec);
dir_to = fgGetDouble("/environment/metar/base-wind-range-to");
gust = fgGetDouble("/environment/metar/gust-wind-speed-kt");
temp = fgGetDouble("/environment/metar/temperature-degc");
dewpoint = fgGetDouble("/environment/metar/dewpoint-degc");
// Set the cloud layers by interpolating over the METAR versions.
SGPropertyNode * clouds = fgGetNode("/environment/metar/clouds");
vector<SGPropertyNode_ptr> layers = clouds->getChildren("layer");
vector<SGPropertyNode_ptr>::const_iterator layer;
vector<SGPropertyNode_ptr>::const_iterator layers_end = layers.end();
const char *cl = "/environment/clouds/layer[%i]";
double aircraft_alt = fgGetDouble("/position/altitude-ft");
char s[128];
int i;
for (i = 0, layer = layers.begin(); layer != layers_end; ++layer, i++) {
double currentval;
double requiredval;
// In the case of clouds, we want to avoid writing if nothing has
// changed, as these properties are tied to the renderer and will
// cause the clouds to be updated, reseting the texture locations.
// We don't interpolate the coverage values as no-matter how we
// do it, it will be quite a sudden change of texture. Better to
// have a single change than four or five.
snprintf(s, 128, cl, i);
strncat(s, "/coverage", 128);
const char* coverage = (*layer)->getStringValue("coverage", "clear");
if (strncmp(fgGetString(s), coverage, 128) != 0)
fgSetString(s, coverage);
snprintf(s, 128, cl, i);
strncat(s, "/elevation-ft", 128);
double current_alt = fgGetDouble(s);
double required_alt = (*layer)->getDoubleValue("elevation-ft");
if (current_alt < -9000 || required_alt < -9000
|| fabs(aircraft_alt - required_alt) > MaxCloudInterpolationHeightFt) {
// We don't interpolate any values that are too high above us,
// or too far below us to be visible. Nor do we interpolate
// values to or from -9999, which is used as a placeholder
// when there isn't actually a cloud layer present.
snprintf(s, 128, cl, i);
strncat(s, "/elevation-ft", 128);
if (current_alt != required_alt)
fgSetDouble(s, required_alt);
snprintf(s, 128, cl, i);
strncat(s, "/thickness-ft", 128);
if (fgGetDouble(s) != (*layer)->getDoubleValue("thickness-ft"))
fgSetDouble(s, (*layer)->getDoubleValue("thickness-ft"));
} else {
// Interpolate the other values in the usual way
if (current_alt != required_alt) {
current_alt = interpolate_val(current_alt,
required_alt,
MaxCloudAltitudeChangeFtSec);
fgSetDouble(s, current_alt);
}
snprintf(s, 128, cl, i);
strncat(s, "/thickness-ft", 128);
currentval = fgGetDouble(s);
requiredval = (*layer)->getDoubleValue("thickness-ft");
if (currentval != requiredval) {
currentval = interpolate_val(currentval,
requiredval,
MaxCloudThicknessChangeFtSec);
fgSetDouble(s, currentval);
}
}
}
} else {
// We haven't already loaded a METAR, so apply it immediately.
dir_from = fgGetDouble("/environment/metar/base-wind-range-from");
dir_to = fgGetDouble("/environment/metar/base-wind-range-to");
speed = fgGetDouble("/environment/metar/base-wind-speed-kt");
gust = fgGetDouble("/environment/metar/gust-wind-speed-kt");
vis = fgGetDouble("/environment/metar/min-visibility-m");
pressure = fgGetDouble("/environment/metar/pressure-inhg");
temp = fgGetDouble("/environment/metar/temperature-degc");
dewpoint = fgGetDouble("/environment/metar/dewpoint-degc");
// Set the cloud layers by copying over the METAR versions.
SGPropertyNode * clouds = fgGetNode("/environment/metar/clouds");
vector<SGPropertyNode_ptr> layers = clouds->getChildren("layer");
vector<SGPropertyNode_ptr>::const_iterator layer;
vector<SGPropertyNode_ptr>::const_iterator layers_end = layers.end();
const char *cl = "/environment/clouds/layer[%i]";
char s[128];
int i;
for (i = 0, layer = layers.begin(); layer != layers_end; ++layer, i++) {
snprintf(s, 128, cl, i);
strncat(s, "/coverage", 128);
fgSetString(s, (*layer)->getStringValue("coverage", "clear"));
snprintf(s, 128, cl, i);
strncat(s, "/elevation-ft", 128);
fgSetDouble(s, (*layer)->getDoubleValue("elevation-ft"));
snprintf(s, 128, cl, i);
strncat(s, "/thickness-ft", 128);
fgSetDouble(s, (*layer)->getDoubleValue("thickness-ft"));
snprintf(s, 128, cl, i);
strncat(s, "/span-m", 128);
fgSetDouble(s, 40000.0);
}
}
fgSetupWind(dir_from, dir_to, speed, gust);
fgDefaultWeatherValue("visibility-m", vis);
set_temp_at_altitude(temp, station_elevation_ft);
set_dewpoint_at_altitude(dewpoint, station_elevation_ft);
fgDefaultWeatherValue("pressure-sea-level-inhg", pressure);
// We've now successfully loaded a METAR into the configuration
metar_loaded = true;
}
double FGMetarEnvironmentCtrl::interpolate_prop(const char * currentname,
const char * requiredname,
double dt)
{
double currentval = fgGetDouble(currentname);
double requiredval = fgGetDouble(requiredname);
return interpolate_val(currentval, requiredval, dt);
}
double FGMetarEnvironmentCtrl::interpolate_val(double currentval,
double requiredval,
double dt)
{
double dval = EnvironmentUpdatePeriodSec * dt;
if (fabs(currentval - requiredval) < dval) return requiredval;
if (currentval < requiredval) return (currentval + dval);
if (currentval > requiredval) return (currentval - dval);
return requiredval;
}
void
FGMetarEnvironmentCtrl::init ()
{
const SGPropertyNode *longitude
= fgGetNode( "/position/longitude-deg", true );
const SGPropertyNode *latitude
= fgGetNode( "/position/latitude-deg", true );
metar_loaded = false;
bool found_metar = false;
long max_age = metar_max_age->getLongValue();
// Don't check max age during init so that we don't loop over a lot
// of airports metar if there is a problem.
// The update() calls will find a correct metar if things went wrong here
metar_max_age->setLongValue(0);
while ( !found_metar && (_error_count < 3) ) {
const FGAirport* a = globals->get_airports()
->search( longitude->getDoubleValue(),
latitude->getDoubleValue(),
metar_only );
if ( a ) {
FGMetarResult result = fetch_data( a->getId() );
if ( result.m != NULL ) {
SG_LOG( SG_GENERAL, SG_INFO, "closest station w/ metar = "
<< a->getId());
last_apt = a;
_icao = a->getId();
search_elapsed = 0.0;
fetch_elapsed = 0.0;
update_metar_properties( result.m );
update_env_config();
env->init();
found_metar = true;
} else {
// mark as no metar so it doesn't show up in subsequent
// searches.
SG_LOG( SG_GENERAL, SG_INFO, "no metar at metar = "
<< a->getId() );
globals->get_airports()->no_metar( a->getId() );
}
}
}
metar_max_age->setLongValue(max_age);
}
void
FGMetarEnvironmentCtrl::reinit ()
{
_error_count = 0;
_error_dt = 0.0;
#if 0
update_env_config();
#endif
env->reinit();
}
void
FGMetarEnvironmentCtrl::update(double delta_time_sec)
{
_dt += delta_time_sec;
if (_error_count >= 3)
return;
FGMetarResult result;
static const SGPropertyNode *longitude
= fgGetNode( "/position/longitude-deg", true );
static const SGPropertyNode *latitude
= fgGetNode( "/position/latitude-deg", true );
search_elapsed += delta_time_sec;
fetch_elapsed += delta_time_sec;
interpolate_elapsed += delta_time_sec;
// if time for a new search request, push it onto the request
// queue
if ( search_elapsed > search_interval_sec ) {
const FGAirport* a = globals->get_airports()
->search( longitude->getDoubleValue(),
latitude->getDoubleValue(),
metar_only );
if ( a ) {
if ( !last_apt || last_apt->getId() != a->getId()
|| fetch_elapsed > same_station_interval_sec )
{
SG_LOG( SG_GENERAL, SG_INFO, "closest station w/ metar = "
<< a->getId());
request_queue.push( a->getId() );
last_apt = a;
_icao = a->getId();
search_elapsed = 0.0;
fetch_elapsed = 0.0;
} else {
search_elapsed = 0.0;
SG_LOG( SG_GENERAL, SG_INFO, "same station, waiting = "
<< same_station_interval_sec - fetch_elapsed );
}
} else {
SG_LOG( SG_GENERAL, SG_WARN,
"Unable to find any airports with metar" );
}
} else if ( interpolate_elapsed > EnvironmentUpdatePeriodSec ) {
// Interpolate the current configuration closer to the actual METAR
update_env_config();
env->reinit();
interpolate_elapsed = 0.0;
}
#if !defined(ENABLE_THREADS)
// No loader thread running so manually fetch the data
string id = "";
while ( !request_queue.empty() ) {
id = request_queue.front();
request_queue.pop();
}
if ( !id.empty() ) {
SG_LOG( SG_GENERAL, SG_INFO, "inline fetching = " << id );
result = fetch_data( id );
result_queue.push( result );
}
#endif // ENABLE_THREADS
// process any results from the loader.
while ( !result_queue.empty() ) {
result = result_queue.front();
result_queue.pop();
if ( result.m != NULL ) {
update_metar_properties( result.m );
delete result.m;
update_env_config();
env->reinit();
} else {
// mark as no metar so it doesn't show up in subsequent
// searches, and signal an immediate re-search.
SG_LOG( SG_GENERAL, SG_WARN,
"no metar at station = " << result.icao );
globals->get_airports()->no_metar( result.icao );
search_elapsed = 9999.0;
}
}
env->update(delta_time_sec);
}
void
FGMetarEnvironmentCtrl::setEnvironment (FGEnvironment * environment)
{
env->setEnvironment(environment);
}
FGMetarResult
FGMetarEnvironmentCtrl::fetch_data( const string &icao )
{
FGMetarResult result;
result.icao = icao;
// if the last error was more than three seconds ago,
// then pretent nothing happened.
if (_error_dt < 3) {
_error_dt += _dt;
} else {
_error_dt = 0.0;
_error_count = 0;
}
// fetch station elevation if exists
const FGAirport* a = globals->get_airports()->search( icao );
if ( a ) {
station_elevation_ft = a->getElevation();
}
// fetch current metar data
try {
string host = proxy_host->getStringValue();
string auth = proxy_auth->getStringValue();
string port = proxy_port->getStringValue();
result.m = new FGMetar( icao, host, port, auth);
long max_age = metar_max_age->getLongValue();
long age = result.m->getAge_min();
if (max_age && age > max_age) {
SG_LOG( SG_GENERAL, SG_WARN, "METAR data too old (" << age << " min).");
delete result.m;
result.m = NULL;
if (++_stale_count > 10) {
_error_count = 1000;
throw sg_io_exception("More than 10 stale METAR messages in a row."
" Check your system time!");
}
} else
_stale_count = 0;
} catch (const sg_io_exception& e) {
SG_LOG( SG_GENERAL, SG_WARN, "Error fetching live weather data: "
<< e.getFormattedMessage().c_str() );
#if defined(ENABLE_THREADS)
if (_error_count++ >= 3) {
SG_LOG( SG_GENERAL, SG_WARN, "Stop fetching data permanently.");
thread_stop();
}
#endif
result.m = NULL;
}
_dt = 0;
return result;
}
void
FGMetarEnvironmentCtrl::update_metar_properties( const FGMetar *m )
{
int i;
double d;
char s[128];
fgSetString("/environment/metar/real-metar", m->getData());
// don't update with real weather when we use a custom weather scenario
const char *current_scenario = fgGetString("/environment/weather-scenario", "METAR");
if( strcmp(current_scenario, "METAR") && strcmp(current_scenario, "none"))
return;
fgSetString("/environment/metar/last-metar", m->getData());
fgSetString("/environment/metar/station-id", m->getId());
fgSetDouble("/environment/metar/min-visibility-m",
m->getMinVisibility().getVisibility_m() );
fgSetDouble("/environment/metar/max-visibility-m",
m->getMaxVisibility().getVisibility_m() );
const SGMetarVisibility *dirvis = m->getDirVisibility();
for (i = 0; i < 8; i++, dirvis++) {
const char *min = "/environment/metar/visibility[%d]/min-m";
const char *max = "/environment/metar/visibility[%d]/max-m";
d = dirvis->getVisibility_m();
snprintf(s, 128, min, i);
fgSetDouble(s, d);
snprintf(s, 128, max, i);
fgSetDouble(s, d);
}
fgSetInt("/environment/metar/base-wind-range-from",
m->getWindRangeFrom() );
fgSetInt("/environment/metar/base-wind-range-to",
m->getWindRangeTo() );
fgSetDouble("/environment/metar/base-wind-speed-kt",
m->getWindSpeed_kt() );
fgSetDouble("/environment/metar/gust-wind-speed-kt",
m->getGustSpeed_kt() );
fgSetDouble("/environment/metar/temperature-degc",
m->getTemperature_C() );
fgSetDouble("/environment/metar/dewpoint-degc",
m->getDewpoint_C() );
fgSetDouble("/environment/metar/rel-humidity-norm",
m->getRelHumidity() );
fgSetDouble("/environment/metar/pressure-inhg",
m->getPressure_inHg() );
vector<SGMetarCloud> cv = m->getClouds();
vector<SGMetarCloud>::const_iterator cloud;
const char *cl = "/environment/metar/clouds/layer[%i]";
for (i = 0, cloud = cv.begin(); cloud != cv.end(); cloud++, i++) {
const char *coverage_string[5] =
{ "clear", "few", "scattered", "broken", "overcast" };
const double thickness[5] = { 0, 65, 600,750, 1000};
int q;
snprintf(s, 128, cl, i);
strncat(s, "/coverage", 128);
q = cloud->getCoverage();
fgSetString(s, coverage_string[q] );
snprintf(s, 128, cl, i);
strncat(s, "/elevation-ft", 128);
fgSetDouble(s, cloud->getAltitude_ft() + station_elevation_ft);
snprintf(s, 128, cl, i);
strncat(s, "/thickness-ft", 128);
fgSetDouble(s, thickness[q]);
snprintf(s, 128, cl, i);
strncat(s, "/span-m", 128);
fgSetDouble(s, 40000.0);
}
for (; i < FGEnvironmentMgr::MAX_CLOUD_LAYERS; i++) {
snprintf(s, 128, cl, i);
strncat(s, "/coverage", 128);
fgSetString(s, "clear");
snprintf(s, 128, cl, i);
strncat(s, "/elevation-ft", 128);
fgSetDouble(s, -9999);
snprintf(s, 128, cl, i);
strncat(s, "/thickness-ft", 128);
fgSetDouble(s, 0);
snprintf(s, 128, cl, i);
strncat(s, "/span-m", 128);
fgSetDouble(s, 40000.0);
}
fgSetDouble("/environment/metar/rain-norm", m->getRain());
fgSetDouble("/environment/metar/hail-norm", m->getHail());
fgSetDouble("/environment/metar/snow-norm", m->getSnow());
fgSetBool("/environment/metar/snow-cover", m->getSnowCover());
}
#if defined(ENABLE_THREADS)
void
FGMetarEnvironmentCtrl::thread_stop()
{
request_queue.push( string() ); // ask thread to terminate
thread->join();
}
void
FGMetarEnvironmentCtrl::MetarThread::run()
{
while ( true )
{
string icao = fetcher->request_queue.pop();
if (icao.empty())
return;
SG_LOG( SG_GENERAL, SG_INFO, "Thread: fetch metar data = " << icao );
FGMetarResult result = fetcher->fetch_data( icao );
fetcher->result_queue.push( result );
}
}
#endif // ENABLE_THREADS
// end of environment_ctrl.cxx