1
0
Fork 0
flightgear/Tools/Construct/Main/main.cxx

545 lines
15 KiB
C++

// main.cxx -- top level construction routines
//
// Written by Curtis Olson, started March 1999.
//
// Copyright (C) 1999 Curtis L. Olson - curt@flightgear.org
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
#include <sys/types.h> // for directory reading
#include <dirent.h> // for directory reading
#include <Bucket/newbucket.hxx>
#include <Include/fg_constants.h>
#include <Math/mat3.h>
#include <Debug/logstream.hxx>
#include <Array/array.hxx>
#include <Clipper/clipper.hxx>
#include <GenOutput/genobj.hxx>
#include <Match/match.hxx>
#include <Triangulate/triangle.hxx>
#include "construct.hxx"
// do actual scan of directory and loading of files
int actual_load_polys( const string& dir, FGConstruct& c, FGClipper& clipper ) {
int counter = 0;
string base = c.get_bucket().gen_base_path();
string tile_str = c.get_bucket().gen_index_str();
string ext;
DIR *d;
struct dirent *de;
if ( (d = opendir( dir.c_str() )) == NULL ) {
cout << "cannot open directory " << dir << "\n";
return 0;
}
// load all matching polygon files
string file, f_index, full_path;
int pos;
while ( (de = readdir(d)) != NULL ) {
file = de->d_name;
pos = file.find(".");
f_index = file.substr(0, pos);
if ( tile_str == f_index ) {
ext = file.substr(pos + 1);
cout << file << " " << f_index << " '" << ext << "'" << endl;
full_path = dir + "/" + file;
if ( (ext == "dem") || (ext == "dem.gz") ) {
// skip
} else {
cout << "ext = '" << ext << "'" << endl;
clipper.load_polys( full_path );
++counter;
}
}
}
return counter;
}
// load all 2d polygons matching the specified base path and clip
// against each other to resolve any overlaps
int load_polys( FGConstruct& c ) {
FGClipper clipper;
string base = c.get_bucket().gen_base_path();
int result;
// initialize clipper
clipper.init();
// load airports
string poly_path = c.get_work_base() + ".apt" + "/Scenery/" + base;
cout << "poly_path = " << poly_path << endl;
result = actual_load_polys( poly_path, c, clipper );
cout << " loaded " << result << " polys" << endl;
// load hydro
poly_path = c.get_work_base() + ".hydro" + "/Scenery/" + base;
cout << "poly_path = " << poly_path << endl;
result = actual_load_polys( poly_path, c, clipper );
cout << " loaded " << result << " polys" << endl;
point2d min, max;
min.x = c.get_bucket().get_center_lon() - 0.5 * c.get_bucket().get_width();
min.y = c.get_bucket().get_center_lat() - 0.5 * c.get_bucket().get_height();
max.x = c.get_bucket().get_center_lon() + 0.5 * c.get_bucket().get_width();
max.y = c.get_bucket().get_center_lat() + 0.5 * c.get_bucket().get_height();
// do clipping
cout << "clipping polygons" << endl;
clipper.clip_all(min, max);
// update main data repository
c.set_clipped_polys( clipper.get_polys_clipped() );
return 1;
}
// load regular grid of elevation data (dem based), return list of
// fitted nodes
int load_dem( FGConstruct& c, FGArray& array) {
point_list result;
string base = c.get_bucket().gen_base_path();
string dem_path = c.get_work_base() + ".dem" + "/Scenery/" + base
+ "/" + c.get_bucket().gen_index_str() + ".dem";
cout << "dem_path = " << dem_path << endl;
if ( ! array.open(dem_path) ) {
cout << "ERROR: cannot open " << dem_path << endl;
}
FGBucket b = c.get_bucket();
array.parse( b );
return 1;
}
// fit dem nodes, return number of fitted nodes
int fit_dem(FGArray& array, int error) {
return array.fit( error );
}
// triangulate the data for each polygon ( first time before splitting )
void first_triangulate( FGConstruct& c, const FGArray& array,
FGTriangle& t ) {
// first we need to consolidate the points of the DEM fit list and
// all the polygons into a more "Triangle" friendly format
point_list corner_list = array.get_corner_node_list();
point_list fit_list = array.get_fit_node_list();
FGgpcPolyList gpc_polys = c.get_clipped_polys();
cout << "ready to build node list and polygons" << endl;
t.build( corner_list, fit_list, gpc_polys );
cout << "done building node list and polygons" << endl;
cout << "ready to do triangulation" << endl;
t.run_triangulate( 1 );
cout << "finished triangulation" << endl;
}
// triangulate the data for each polygon ( second time after splitting
// and reassembling )
void second_triangulate( FGConstruct& c, FGTriangle& t ) {
t.rebuild( c );
cout << "done re building node list and polygons" << endl;
cout << "ready to do second triangulation" << endl;
t.run_triangulate( 2 );
cout << "finished second triangulation" << endl;
}
// build the wgs-84 point list (and fix the elevations of the geodetic
// nodes)
static void fix_point_heights( FGConstruct& c, const FGArray& array ) {
point_list geod_nodes;
point_list wgs84_nodes;
cout << "fixing node heights and generating wgs84 list" << endl;
Point3D geod, radians, cart;
point_list raw_nodes = c.get_tri_nodes().get_node_list();
point_list_iterator current = raw_nodes.begin();
point_list_iterator last = raw_nodes.end();
for ( ; current != last; ++current ) {
geod = *current;
geod.setz( array.interpolate_altitude( geod.x() * 3600.0,
geod.y() * 3600.0 ) );
// convert to radians
radians = Point3D( geod.x() * DEG_TO_RAD,
geod.y() * DEG_TO_RAD,
geod.z() );
cart = fgGeodToCart(radians);
// cout << cart << endl;
geod_nodes.push_back(geod);
wgs84_nodes.push_back(cart);
}
c.set_geod_nodes( geod_nodes );
c.set_wgs84_nodes( wgs84_nodes );
}
// build the node -> element (triangle) reverse lookup table. there
// is an entry for each point containing a list of all the triangles
// that share that point.
static belongs_to_list gen_node_ele_lookup_table( FGConstruct& c ) {
belongs_to_list reverse_ele_lookup;
reverse_ele_lookup.clear();
int_list ele_list;
ele_list.clear();
// initialize reverse_ele_lookup structure by creating an empty
// list for each point
point_list wgs84_nodes = c.get_wgs84_nodes();
const_point_list_iterator w_current = wgs84_nodes.begin();
const_point_list_iterator w_last = wgs84_nodes.end();
for ( ; w_current != w_last; ++w_current ) {
reverse_ele_lookup.push_back( ele_list );
}
// traverse triangle structure building reverse lookup table
triele_list tri_elements = c.get_tri_elements();
const_triele_list_iterator current = tri_elements.begin();
const_triele_list_iterator last = tri_elements.end();
int counter = 0;
for ( ; current != last; ++current ) {
reverse_ele_lookup[ current->get_n1() ].push_back( counter );
reverse_ele_lookup[ current->get_n2() ].push_back( counter );
reverse_ele_lookup[ current->get_n3() ].push_back( counter );
++counter;
}
return reverse_ele_lookup;
}
// caclulate the normal for the specified triangle face
static Point3D calc_normal( FGConstruct& c, int i ) {
double v1[3], v2[3], normal[3];
double temp;
point_list wgs84_nodes = c.get_wgs84_nodes();
triele_list tri_elements = c.get_tri_elements();
Point3D p1 = wgs84_nodes[ tri_elements[i].get_n1() ];
Point3D p2 = wgs84_nodes[ tri_elements[i].get_n2() ];
Point3D p3 = wgs84_nodes[ tri_elements[i].get_n3() ];
v1[0] = p2.x() - p1.x(); v1[1] = p2.y() - p1.y(); v1[2] = p2.z() - p1.z();
v2[0] = p3.x() - p1.x(); v2[1] = p3.y() - p1.y(); v2[2] = p3.z() - p1.z();
MAT3cross_product(normal, v1, v2);
MAT3_NORMALIZE_VEC(normal,temp);
return Point3D( normal[0], normal[1], normal[2] );
}
// build the face normal list
static point_list gen_face_normals( FGConstruct& c ) {
point_list face_normals;
// traverse triangle structure building the face normal table
cout << "calculating face normals" << endl;
triele_list tri_elements = c.get_tri_elements();
for ( int i = 0; i < (int)tri_elements.size(); i++ ) {
// cout << calc_normal( i ) << endl;
face_normals.push_back( calc_normal( c, i ) );
}
return face_normals;
}
// calculate the normals for each point in wgs84_nodes
static point_list gen_point_normals( FGConstruct& c ) {
point_list point_normals;
Point3D normal;
cout << "caculating node normals" << endl;
point_list wgs84_nodes = c.get_wgs84_nodes();
belongs_to_list reverse_ele_lookup = c.get_reverse_ele_lookup();
point_list face_normals = c.get_face_normals();
// for each node
for ( int i = 0; i < (int)wgs84_nodes.size(); ++i ) {
int_list tri_list = reverse_ele_lookup[i];
int_list_iterator current = tri_list.begin();
int_list_iterator last = tri_list.end();
Point3D average( 0.0 );
// for each triangle that shares this node
for ( ; current != last; ++current ) {
normal = face_normals[ *current ];
average += normal;
// cout << normal << endl;
}
average /= tri_list.size();
// cout << "average = " << average << endl;
point_normals.push_back( average );
}
return point_normals;
}
// generate the flight gear scenery file
void do_output( FGConstruct& c, FGGenOutput& output ) {
output.build( c );
output.write( c );
}
// master construction routine
void construct_tile( FGConstruct& c ) {
cout << "Construct tile, bucket = " << c.get_bucket() << endl;
// fit with ever increasing error tolerance until we produce <=
// 80% of max nodes. We should really have the sim end handle
// arbitrarily complex tiles.
bool acceptable = false;
double error = 200.0;
int count = 0;
// load and clip 2d polygon data
load_polys( c );
// load grid of elevation data (dem)
FGArray array;
load_dem( c, array );
FGTriangle t;
while ( ! acceptable ) {
// do a least squares fit of the (dem) data with the given
// error tolerance
array.fit( error );
// triangulate the data for each polygon
first_triangulate( c, array, t );
acceptable = true;
count = t.get_out_nodes_size();
if ( (count < c.get_min_nodes()) && (error >= 25.0) ) {
// reduce error tolerance until number of points exceeds the
// minimum threshold
cout << "produced too few nodes ..." << endl;
acceptable = false;
error /= 1.5;
cout << "Setting error to " << error << " and retrying fit."
<< endl;
}
if ( (count > c.get_max_nodes()) && (error <= 1000.0) ) {
// increase error tolerance until number of points drops below
// the maximum threshold
cout << "produced too many nodes ..." << endl;
acceptable = false;
error *= 1.5;
cout << "Setting error to " << error << " and retrying fit."
<< endl;
}
}
cout << "finished fit with error = " << error << " node count = "
<< count << endl;
// save the results of the triangulation
c.set_tri_nodes( t.get_out_nodes() );
c.set_tri_elements( t.get_elelist() );
c.set_tri_segs( t.get_out_segs() );
// calculate wgs84 (cartesian) form of node list
fix_point_heights( c, array );
// build the node -> element (triangle) reverse lookup table
c.set_reverse_ele_lookup( gen_node_ele_lookup_table( c ) );
// build the face normal list
c.set_face_normals( gen_face_normals( c ) );
// calculate the normals for each point in wgs84_nodes
c.set_point_normals( gen_point_normals( c ) );
// match tile edges with any neighbor tiles that have already been
// generated
FGMatch m;
m.load_neighbor_shared( c );
m.split_tile( c );
m.write_shared( c );
m.assemble_tile( c );
// now we must retriangulate the pasted together tile points
second_triangulate( c, t );
// save the results of the triangulation
c.set_tri_nodes( t.get_out_nodes() );
c.set_tri_elements( t.get_elelist() );
c.set_tri_segs( t.get_out_segs() );
// calculate wgs84 (cartesian) form of node list
fix_point_heights( c, array );
// generate the output
FGGenOutput output;
do_output( c, output );
}
// display usage and exit
void usage( const string name ) {
cout << "Usage: " << name
<< " <work_base> <output_base> tile_id" << endl;
cout << "Usage: " << name
<< " <work_base> <output_base> center_lon center_lat xdist ydist"
<< endl;
exit(-1);
}
main(int argc, char **argv) {
double lon, lat;
fglog().setLogLevels( FG_ALL, FG_DEBUG );
if ( argc < 3 ) {
usage( argv[0] );
}
// main construction data management class
FGConstruct c;
c.set_work_base( argv[1] );
c.set_output_base( argv[2] );
c.set_min_nodes( 50 );
c.set_max_nodes( (int)(FG_MAX_NODES * 0.8) );
// lon = -146.248360; lat = 61.133950; // PAVD (Valdez, AK)
// lon = -110.664244; lat = 33.352890; // P13
// lon = -93.211389; lat = 45.145000; // KANE
// lon = -92.486188; lat = 44.590190; // KRGK
// lon = -89.7446823; lat= 29.314495;
// lon = -122.488090; lat = 42.743183; // 64S
// lon = -114.861097; lat = 35.947480; // 61B
// lon = -112.012175; lat = 41.195944; // KOGD
// lon = -90.757128; lat = 46.790212; // WI32
// lon = -122.220717; lat = 37.721291; // KOAK
// lon = -111.721477; lat = 40.215641; // KPVU
lon = -122.309313; lat = 47.448982; // KSEA
// lon = -148.798131; lat = 63.645099; // AK06 (Danali, AK)
// lon = -92.5; lat = 47.5; // Marsh test (northern MN)
// lon = -111.977773; lat = 40.788388; // KSLC
// lon = -121.914; lat = 42.5655; // TEST (Oregon SW of Crater)
// lon = -76.201239; lat = 36.894606; // KORF (Norfolk, Virginia)
// lon = -147.166; lat = 60.9925; // Hale-bop test
if ( argc == 4 ) {
// construct a specific tile and exit
long index = atoi( argv[3] );
FGBucket b( index );
c.set_bucket( b );
construct_tile( c );
} else if ( argc == 7 ) {
// build all the tiles in an area
lon = atof( argv[3] );
lat = atof( argv[4] );
double xdist = atof( argv[5] );
double ydist = atof( argv[6] );
double min_x = lon - xdist;
double min_y = lat - ydist;
FGBucket b_min( min_x, min_y );
FGBucket b_max( lon + xdist, lat + ydist );
FGBucket b_start(550401L);
bool do_tile = true;
if ( b_min == b_max ) {
c.set_bucket( b_min );
construct_tile( c );
} else {
FGBucket b_cur;
int dx, dy, i, j;
fgBucketDiff(b_min, b_max, &dx, &dy);
cout << " construction area spans tile boundaries" << endl;
cout << " dx = " << dx << " dy = " << dy << endl;
for ( j = 0; j <= dy; j++ ) {
for ( i = 0; i <= dx; i++ ) {
b_cur = fgBucketOffset(min_x, min_y, i, j);
if ( b_cur == b_start ) {
do_tile = true;
}
if ( do_tile ) {
c.set_bucket( b_cur );
construct_tile( c );
} else {
cout << "skipping " << b_cur << endl;
}
}
}
// string answer; cin >> answer;
}
} else {
usage( argv[0] );
}
cout << "[Finished successfully]" << endl;
}