1
0
Fork 0
flightgear/Cockpit/hud.cxx

1964 lines
63 KiB
C++

/**************************************************************************
* hud.cxx -- hud defines and prototypes
*
* Written by Michele America, started September 1997.
*
* Copyright (C) 1997 Michele F. America - micheleamerica@geocities.com
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* $Id$
* (Log is kept at end of this file)
**************************************************************************/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#ifdef HAVE_WINDOWS_H
# include <windows.h>
#endif
#include <GL/glut.h>
#include <stdlib.h>
#include <string.h>
#ifdef HAVE_VALUES_H
# include <values.h> // for MAXINT
#endif
#include <Aircraft/aircraft.h>
#include <Debug/fg_debug.h>
#include <Include/fg_constants.h>
#include <Math/fg_random.h>
#include <Math/mat3.h>
#include <Math/polar3d.h>
#include <Scenery/scenery.hxx>
#include <Time/fg_timer.hxx>
#include <Weather/weather.h>
#include "hud.hxx"
// The following routines obtain information concerntin the aircraft's
// current state and return it to calling instrument display routines.
// They should eventually be member functions of the aircraft.
//
//using namespace std;
/*
class instr_ptr {
private:
instr_item *pHI;
public:
instr_ptr ( instr_item * pHudInstr = 0) : pHI( pHudInstr){}
~instr_ptr() { if( pHI ) delete pHI; }
instr_ptr & operator = (const instr_ptr & rhs);
instr_ptr( const instr_ptr & image );
}
instr_ptr &
instr_ptr ::
operator = ( const instr_ptr & rhs )
{
if( !(this == &rhs )) {
pHI = new instr_item( *(rhs.pHI));
}
return *this;
}
instr_ptr ::
instr_ptr ( const instr_ptr & image ) :
{
pHI = new instr_item( *(image.pHI));
}
*/
deque< instr_item * > HUD_deque;
class locRECT {
public:
RECT rect;
locRECT( UINT left, UINT top, UINT right, UINT bottom);
RECT get_rect(void) { return rect;}
};
locRECT :: locRECT( UINT left, UINT top, UINT right, UINT bottom)
{
rect.left = left;
rect.top = top;
rect.right = right;
rect.bottom = bottom;
}
// #define DEBUG
// #define drawOneLine(x1,y1,x2,y2) glBegin(GL_LINES);
// glVertex2f ((x1),(y1)); glVertex2f ((x2),(y2)); glEnd();
//
void drawOneLine( UINT x1, UINT y1, UINT x2, UINT y2)
{
glBegin(GL_LINES);
glVertex2f(x1, y1);
glVertex2f(x2, y2);
glEnd();
}
void drawOneLine( RECT &rect)
{
glBegin(GL_LINES);
glVertex2f(rect.left, rect.top);
glVertex2f(rect.right, rect.bottom);
glEnd();
}
//
// The following code deals with painting the "instrument" on the display
//
/* textString - Bitmap font string */
static void textString(int x, int y, char *msg, void *font)
{
glRasterPos2f(x, y);
while (*msg) {
glutBitmapCharacter(font, *msg);
msg++;
}
}
/* strokeString - Stroke font string */
/*
static void strokeString(int x, int y, char *msg, void *font)
{
glPushMatrix();
glTranslatef(x, y, 0);
glScalef(.04, .04, .04);
while (*msg) {
glutStrokeCharacter(font, *msg);
msg++;
}
glPopMatrix();
}
*/
// Abstract Base Class instr_item
//
UINT instr_item :: instances; // Initial value of zero
// constructor ( No default provided )
instr_item ::
instr_item( RECT scr_pos,
DBLFNPTR data_source,
ReadOriented orientation,
bool working) :
handle ( ++instances ),
scrn_pos ( scr_pos ),
load_value_fn ( data_source ),
oriented ( orientation ),
is_enabled ( working ),
broken ( FALSE ),
brightness ( BRT_DARK )
{
int hitemp, widetemp;
int xtemp;
// Check for inverted rect coords. We must have top/right > bottom
// left corners or derived classes will draw their boxes very oddly.
// This is the only place we can reliably validate this data. Note
// that the box may be entirely or partly located off the screen.
// This needs consideration and possibly a member function to move
// the box, a keen idea for supporting "editing" of the HUD.
if( scrn_pos.top < scrn_pos.bottom ) {
xtemp = scrn_pos.bottom;
scrn_pos.bottom = scrn_pos.top;
scrn_pos.top = xtemp;
}
if( scrn_pos.left > scrn_pos.right ) {
xtemp = scrn_pos.left;
scrn_pos.left = scrn_pos.right;
scrn_pos.right = xtemp;
}
// Insure that the midpoint marker will fall exactly at the
// middle of the bar.
if( !((scr_pos.top-scr_pos.bottom) % 2)) {
scrn_pos.top++;
}
if( !((scr_pos.right - scr_pos.left ) % 2)) {
scrn_pos.right++;
}
// Set up convenience values for centroid of the box and
// the span values according to orientation
hitemp = scr_pos.top - scr_pos.bottom;
widetemp = scr_pos.right - scr_pos.left;
if((orientation == ReadTOP) || (orientation == ReadBOTTOM)) {
scr_span = widetemp;
}
else {
scr_span = hitemp;
}
// Here we work out the centroid for the corrected box.
mid_span.x = scr_pos.left + ((scr_pos.right - scr_pos.left) >> 1);
mid_span.y = scr_pos.bottom + ((scr_pos.top - scr_pos.bottom) >> 1);
}
// copy constructor
instr_item ::
instr_item ( const instr_item & image ):
handle ( ++instances ),
scrn_pos ( image.scrn_pos ),
load_value_fn( image.load_value_fn),
oriented ( image.oriented ),
is_enabled ( image.is_enabled ),
broken ( image.broken ),
brightness ( image.brightness ),
scr_span ( image.scr_span ),
mid_span ( image.mid_span )
{
}
// assignment operator
instr_item & instr_item :: operator = ( const instr_item & rhs )
{
if( !(this == &rhs )) { // Not an identity assignment
scrn_pos = rhs.scrn_pos;
load_value_fn = rhs.load_value_fn;
oriented = rhs.oriented;
is_enabled = rhs.is_enabled;
broken = rhs.broken;
brightness = rhs.brightness;
}
return *this;
}
// destructor
instr_item :: ~instr_item ()
{
if( instances ) {
instances--;
}
}
void instr_item ::
update( void )
{
}
// break_display This is emplaced to provide hooks for making
// instruments unreliable. The default behavior is
// to simply not display, but more sophisticated behavior is available
// by over riding the function which is virtual in this class.
void instr_item ::
break_display ( bool bad )
{
broken = !!bad;
is_enabled = FALSE;
}
void instr_item ::
SetBrightness ( int level )
{
brightness = level; // This is all we will do for now. Later the
// brightness levels will be sensitive both to
// the control knob and the outside light levels
// to emulated night vision effects.
}
UINT instr_item :: get_Handle( void )
{
return handle;
}
//======================= Top of instr_label class =========================
instr_label ::
instr_label( RECT region,
DBLFNPTR data_source,
const char *label_format,
const char *pre_label_string,
const char *post_label_string,
ReadOriented orientation,
fgLabelJust justification,
int font_size,
int blinking,
bool working ):
instr_item( region, data_source,
orientation, working ),
pformat ( label_format ),
pre_str ( pre_label_string ),
post_str ( post_label_string ),
justify ( justification ),
fontSize ( font_size ),
blink ( blinking )
{
}
// I put this in to make it easy to construct a class member using the current
// C code.
instr_label :: ~instr_label()
{
}
// Copy constructor
instr_label :: instr_label( const instr_label & image) :
instr_item((const instr_item &)image),
pformat ( image.pformat ),
pre_str ( image.pre_str ),
post_str ( image.post_str ),
blink ( image.blink )
{
}
instr_label & instr_label ::operator = (const instr_label & rhs )
{
if( !(this == &rhs)) {
instr_item::operator = (rhs);
pformat = rhs.pformat;
fontSize = rhs.fontSize;
blink = rhs.blink;
justify = rhs.justify;
pre_str = rhs.pre_str;
post_str = rhs.post_str;
}
return *this;
}
//
// draw Draws a label anywhere in the HUD
//
//
void instr_label ::
draw( void ) // Required method in base class
{
char format_buffer[80];
char label_buffer[80];
int posincr;
int lenstr;
RECT scrn_rect = get_location();
if( pre_str != NULL) {
if( post_str != NULL ) {
sprintf( format_buffer, "%s%s%s", pre_str, pformat, post_str );
}
else {
sprintf( format_buffer, "%s%s", pre_str, pformat );
}
}
else {
if( post_str != NULL ) {
sprintf( format_buffer, "%s%s", pformat, post_str );
}
} // else do nothing if both pre and post strings are nulls. Interesting.
sprintf( label_buffer, format_buffer, get_value() );
#ifdef DEBUGHUD
fgPrintf( FG_COCKPIT, FG_DEBUG, format_buffer );
fgPrintf( FG_COCKPIT, FG_DEBUG, "\n" );
fgPrintf( FG_COCKPIT, FG_DEBUG, label_buffer );
fgPrintf( FG_COCKPIT, FG_DEBUG, "\n" );
#endif
lenstr = strlen( label_buffer );
posincr = 0; // default to RIGHT_JUST ... center located calc: -lenstr*8;
if( justify == CENTER_JUST ) {
posincr = - (lenstr << 2); // -lenstr*4;
}
else {
if( justify == LEFT_JUST ) {
posincr = - (lenstr << 8); // 0;
}
}
if( fontSize == SMALL ) {
textString( scrn_rect.left + posincr, scrn_rect.bottom,
label_buffer, GLUT_BITMAP_8_BY_13);
}
else {
if( fontSize == LARGE ) {
textString( scrn_rect.left + posincr, scrn_rect.bottom,
label_buffer, GLUT_BITMAP_9_BY_15);
}
}
}
//============== Top of instr_scale class memeber definitions ===============
//
// Notes:
// 1. instr_scales divide the specified location into half and then
// the half opposite the read direction in half again. A bar is
// then drawn along the second divider. Scale ticks are drawn
// between the middle and quarter section lines (minor division
// markers) or just over the middle line.
//
// 2. This class was not intended to be instanciated. See moving_scale
// and guage_instr classes.
//============================================================================
instr_scale ::
instr_scale ( RECT the_box,
DBLFNPTR load_fn,
ReadOriented orient,
int show_range,
int maxValue,
int minValue,
UINT major_divs,
UINT minor_divs,
UINT rollover,
bool working ) :
instr_item( the_box, load_fn, orient, working),
range_shown ( show_range ),
Maximum_value( maxValue ),
Minimum_value( minValue ),
Maj_div ( major_divs ),
Min_div ( minor_divs ),
Modulo ( rollover )
{
int temp;
scale_factor = (double)get_span() / range_shown;
if( show_range < 0 ) {
range_shown = -range_shown;
}
temp = (Maximum_value - Minimum_value) / 100;
if( range_shown < temp ) {
range_shown = temp;
}
}
instr_scale ::
instr_scale( const instr_scale & image ) :
instr_item( (const instr_item &) image),
range_shown ( image.range_shown ),
Maximum_value( image.Maximum_value ),
Minimum_value( image.Minimum_value ),
Maj_div ( image.Maj_div ),
Min_div ( image.Min_div ),
Modulo ( image.Modulo ),
scale_factor ( image.scale_factor )
{
}
instr_scale & instr_scale :: operator = (const instr_scale & rhs )
{
if( !(this == &rhs)) {
instr_item::operator = (rhs);
Minimum_value = rhs.Minimum_value;
Maximum_value = rhs.Maximum_value;
Maj_div = rhs.Maj_div;
Min_div = rhs.Min_div;
Modulo = rhs.Modulo;
scale_factor = rhs.scale_factor;
range_shown = rhs.range_shown;
}
return *this;
}
instr_scale :: ~ instr_scale () {}
//========== Top of moving_scale_instr class member definitions =============
moving_scale ::
moving_scale( RECT the_box,
DBLFNPTR data_source,
ReadOriented orientation,
int max_value,
int min_value,
UINT major_divs,
UINT minor_divs,
UINT modulus,
double value_span,
bool working) :
instr_scale( the_box,
data_source, orientation,
(int)value_span,
max_value, min_value,
major_divs, minor_divs, modulus,
working),
val_span ( value_span)
{
half_width_units = range_to_show() / 2.0;
}
moving_scale ::
~moving_scale() { }
moving_scale ::
moving_scale( const moving_scale & image):
instr_scale( (const instr_scale & ) image)
{
}
moving_scale & moving_scale ::
operator = (const moving_scale & rhs )
{
if( !( this == &rhs)){
instr_scale::operator = (rhs);
}
return *this;
}
void moving_scale ::
draw( void ) // (HUD_scale * pscale )
{
double vmin, vmax;
int marker_x;
int marker_y;
register i;
char TextScale[80];
int condition;
int disp_val;
POINT mid_scr = get_centroid();
POINT bias_bar; // eliminates some orientation checks
double cur_value = get_value();
RECT scrn_rect = get_location();
ReadOriented orientation = get_orientation();
vmin = cur_value - half_width_units; // width units == needle travel
vmax = cur_value + half_width_units; // or picture unit span.
if( (orientation == ReadLEFT) ||( orientation == ReadRIGHT)) // Vertical scale
{
if( orientation == ReadLEFT ) { // Calculate x marker offset
marker_x = scrn_rect.left - 6;
bias_bar.x = ((scrn_rect.right - mid_scr.x)>>1) + mid_scr.x;
}
else { // We'll default this for now.
marker_x = mid_scr.x; // scrn_rect.right;
bias_bar.x = ((mid_scr.x - scrn_rect.left)>>1) + scrn_rect.left;
}
// Draw the basic markings for the scale...
drawOneLine( bias_bar.x, // Vertical scale bar
scrn_rect.bottom,
bias_bar.x,
scrn_rect.top );
if( orientation == ReadLEFT )
{
drawOneLine( bias_bar.x, // Bottom tick bar
scrn_rect.bottom,
mid_scr.x,
scrn_rect.bottom );
drawOneLine( bias_bar.x, // Top tick bar
scrn_rect.top,
mid_scr.x,
scrn_rect.top );
drawOneLine( scrn_rect.right, // Middle tick bar /Index
mid_scr.y,
bias_bar.x,
mid_scr.y );
}
else { // ReadRight
drawOneLine( bias_bar.x,
scrn_rect.bottom,
mid_scr.x,
scrn_rect.bottom );
drawOneLine( bias_bar.x,
scrn_rect.top,
mid_scr.x,
scrn_rect.top );
drawOneLine( scrn_rect.left,
mid_scr.y,
bias_bar.x,
mid_scr.y );
}
// Work through from bottom to top of scale. Calculating where to put
// minor and major ticks.
for( i = (int)vmin; i <= (int)vmax; i++ )
{
// if( sub_type == LIMIT ) { // Don't show ticks
condition = (i >= min_val()); // below Minimum value.
// }
// else {
// if( sub_type == NOLIMIT ) {
// condition = 1;
// }
// }
if( condition ) // Show a tick if necessary
{
// Calculate the location of this tick
marker_y = scrn_rect.bottom + (int)((i - vmin) * factor());
// Block calculation artifact from drawing ticks below min coordinate.
// Calculation here accounts for text height.
if( marker_y < (scrn_rect.bottom + 4)) { // Magic number!!!
continue;
}
if( div_min()) {
if( (i%div_min()) == 0) {
// if( orientation == ReadLEFT )
// {
// drawOneLine( marker_x + 3, marker_y, marker_x + 6, marker_y );
drawOneLine( bias_bar.x, marker_y, mid_scr.x, marker_y );
// }
// else {
// if( orientation == ReadRIGHT )
// {
// drawOneLine( marker_x, marker_y, marker_x + 3, marker_y );
// drawOneLine( bias_bar.x, marker_y, mid_scr.x, marker_y );
// }
// }
}
}
if( div_max()) {
if( (i%div_max()) == 0 ) {
// drawOneLine( marker_x, marker_y,
// marker_x + 6, marker_y );
if(modulo()) {
disp_val = i % modulo();
if( disp_val < 0) {
disp_val += modulo();
}
}
else {
disp_val = i;
}
sprintf( TextScale, "%d", disp_val );
if( orientation == ReadLEFT ) {
drawOneLine( mid_scr.x - 3, marker_y, bias_bar.x, marker_y );
textString( marker_x - 8 * strlen(TextScale) - 2, marker_y - 4,
TextScale, GLUT_BITMAP_8_BY_13 );
}
else {
drawOneLine( mid_scr.x + 3, marker_y, bias_bar.x, marker_y );
textString( marker_x + 10, marker_y - 4,
TextScale, GLUT_BITMAP_8_BY_13 );
} // Else read oriented right
} // End if modulo division by major interval is zero
} // End if major interval divisor non-zero
} // End if condition
} // End for range of i from vmin to vmax
} // End if VERTICAL SCALE TYPE
else { // Horizontal scale by default
{
if( orientation == ReadTOP ) {
bias_bar.y = ((mid_scr.y - scrn_rect.bottom)>>1 ) + scrn_rect.bottom;
marker_y = bias_bar.y; // Don't use now
}
else { // We will assume no other possibility at this time.
bias_bar.y = ((scrn_rect.top - mid_scr.y)>>1 ) + mid_scr.y;
marker_y = bias_bar.y; // Don't use now
}
drawOneLine( scrn_rect.left,
bias_bar.y,
scrn_rect.right,
bias_bar.y );
if( orientation == ReadTOP )
{
drawOneLine( scrn_rect.left,
bias_bar.y,
scrn_rect.left,
mid_scr.y);
drawOneLine( scrn_rect.right,
bias_bar.y,
scrn_rect.right,
mid_scr.y );
drawOneLine( mid_scr.x,
scrn_rect.bottom,
mid_scr.x,
bias_bar.y );
}
else {
if( orientation == ReadBOTTOM )
{
drawOneLine( scrn_rect.left,
bias_bar.y,
scrn_rect.left,
mid_scr.y );
drawOneLine( scrn_rect.right,
bias_bar.y,
scrn_rect.right,
mid_scr.y );
drawOneLine( mid_scr.x,
scrn_rect.top,
mid_scr.x,
bias_bar.y );
}
}
for( i = (int)vmin; i <= (int)vmax; i++ ) // increment is faster than addition
{
// if( sub_type == LIMIT ) {
condition = (i >= min_val());
// }
// else {
// if( sub_type == NOLIMIT ) {
// condition = 1;
// }
// }
if( condition ) {
marker_x = scrn_rect.left + (int)((i - vmin) * factor());
if( div_min()){
if( (i%(int)div_min()) == 0 ) {
// if( orientation == ReadTOP )
// {
// drawOneLine( marker_x, marker_y, marker_x, marker_y + 3 );
drawOneLine( marker_x, bias_bar.y, marker_x, mid_scr.y );
// }
// else {
// drawOneLine( marker_x, marker_y + 3, marker_x, marker_y + 6 );
// drawOneLine( marker_x, bias_bar.y, marker_x, mid_scr.y );
// }
}
}
if( div_max()) {
if( (i%(int)div_max())==0 )
{
if(modulo()) {
disp_val = i % modulo();
if( disp_val < 0) {
disp_val += modulo();
}
}
else {
disp_val = i;
}
sprintf( TextScale, "%d", disp_val );
if( orientation == ReadTOP )
{
// drawOneLine( marker_x, marker_y, marker_x, marker_y+6 );
drawOneLine( marker_x, mid_scr.y + 3,marker_x, bias_bar.y );
textString ( marker_x - 4 * strlen(TextScale), marker_y + 14,
TextScale, GLUT_BITMAP_8_BY_13 );
}
else {
// drawOneLine( marker_x, marker_y, marker_x, marker_y+6 );
drawOneLine( marker_x, mid_scr.y - 3,marker_x, bias_bar.y );
textString ( marker_x - 4 * strlen(TextScale), mid_scr.y - 14,
TextScale, GLUT_BITMAP_8_BY_13 );
}
}
}
}
}
}
}
}
//============== Top of guage_instr class member definitions ==============
guage_instr ::
guage_instr( RECT the_box,
DBLFNPTR load_fn,
ReadOriented readway,
int maxValue,
int minValue,
UINT major_divs,
UINT minor_divs,
UINT modulus,
bool working) :
instr_scale( the_box,
load_fn, readway,
maxValue, maxValue, minValue,
major_divs, minor_divs,
modulus,
working)
{
}
guage_instr ::
~guage_instr()
{
}
guage_instr ::
guage_instr( const guage_instr & image):
instr_scale( (instr_scale &) image)
{
}
guage_instr & guage_instr ::
operator = (const guage_instr & rhs )
{
if( !(this == &rhs)) {
instr_scale::operator = (rhs);
}
return *this;
}
// As implemented, draw only correctly draws a horizontal or vertical
// scale. It should contain a variation that permits clock type displays.
// Now is supports "tickless" displays such as control surface indicators.
// This routine should be worked over before using. Current value would be
// fetched and not used if not commented out. Clearly that is intollerable.
void guage_instr :: draw (void)
{
int marker_x;
int marker_y;
register i;
char TextScale[80];
// int condition;
int disp_val;
double vmin = min_val();
double vmax = max_val();
POINT mid_scr = get_centroid();
// double cur_value = get_value();
RECT scrn_rect = get_location();
ReadOriented orientation = get_orientation();
if( (orientation == ReadLEFT) ||( orientation == ReadRIGHT)) // Vertical scale
{
mid_scr = get_centroid();
if( orientation == ReadLEFT ) // Calculate x marker offset
marker_x = scrn_rect.left - 6;
else // We'll default this for now.
marker_x = scrn_rect.right;
// Draw the basic markings for the scale...
if( orientation == ReadLEFT )
{
drawOneLine( scrn_rect.right - 3, // Bottom tick bar
scrn_rect.bottom,
scrn_rect.right,
scrn_rect.bottom );
drawOneLine( scrn_rect.right - 3, // Top tick bar
scrn_rect.top,
scrn_rect.right,
scrn_rect.top );
}
else {
drawOneLine( scrn_rect.right,
scrn_rect.bottom,
scrn_rect.right+3,
scrn_rect.bottom );
drawOneLine( scrn_rect.right,
scrn_rect.top,
scrn_rect.right+3,
scrn_rect.top );
}
// Work through from bottom to top of scale. Calculating where to put
// minor and major ticks.
for( i = (int)vmin; i <= (int)vmax; i++ )
{
// Calculate the location of this tick
marker_y = scrn_rect.bottom + (int)((i - vmin) * factor());
if( div_min()) {
if( (i%div_min()) == 0) {
if( orientation == ReadLEFT )
{
drawOneLine( marker_x + 3, marker_y, marker_x + 6, marker_y );
}
else {
drawOneLine( marker_x, marker_y, marker_x + 3, marker_y );
}
}
}
if( div_max()) {
if( (i%div_max()) == 0 ) {
drawOneLine( marker_x, marker_y,
marker_x + 6, marker_y );
if(modulo()) {
disp_val = i % modulo();
if( disp_val < 0) {
disp_val += modulo();
}
}
else {
disp_val = i;
}
sprintf( TextScale, "%d", disp_val );
if( orientation == ReadLEFT ) {
textString( marker_x - 8 * strlen(TextScale) - 2, marker_y - 4,
TextScale, GLUT_BITMAP_8_BY_13 );
}
else {
if( orientation == ReadRIGHT ) {
textString( marker_x + 10, marker_y - 4,
TextScale, GLUT_BITMAP_8_BY_13 );
}
}
}
} // End if condition
} // End for range of i from vmin to vmax
} // End if VERTICAL SCALE TYPE
else { // Horizontal scale by default
{
if( orientation == ReadTOP ) {
marker_y = scrn_rect.bottom;
}
else {
if( orientation == ReadBOTTOM ) {
marker_y = scrn_rect.bottom - 6;
}
}
drawOneLine( scrn_rect.left,
scrn_rect.bottom,
scrn_rect.right,
scrn_rect.bottom );
if( orientation == ReadTOP )
{
drawOneLine( scrn_rect.left,
scrn_rect.bottom,
scrn_rect.left,
scrn_rect.bottom + 3 );
drawOneLine( scrn_rect.right,
scrn_rect.bottom,
scrn_rect.right,
scrn_rect.bottom + 6 );
}
else {
if( orientation == ReadBOTTOM )
{
drawOneLine( scrn_rect.left,
scrn_rect.bottom,
scrn_rect.left,
scrn_rect.bottom - 6 );
drawOneLine( scrn_rect.right,
scrn_rect.bottom,
scrn_rect.right,
scrn_rect.bottom - 6 );
}
}
for( i = (int)vmin; i <= (int)vmax; i++ ) // increment is faster than addition
{
marker_x = scrn_rect.left + (int)((i - vmin) * factor());
if( div_min()) {
if( (i%div_min()) == 0 ) {
if( orientation == ReadTOP )
{
drawOneLine( marker_x, marker_y, marker_x, marker_y + 3 );
}
else {
if( orientation == ReadBOTTOM )
{
drawOneLine( marker_x, marker_y + 3, marker_x, marker_y + 6 );
}
}
} // End if minor tick called for.
} // End if minor ticks are of interest
if( div_max()) {
if( (i%div_max())==0 )
{
// Modulo implies a "clock" style instrument. Needs work.
if(modulo()) {
disp_val = i % modulo();
if( disp_val < 0) {
disp_val += modulo();
}
}
else { // Scale doesn't roll around.
disp_val = i;
}
sprintf( TextScale, "%d", disp_val );
if( orientation == ReadTOP )
{
drawOneLine( marker_x, marker_y, marker_x, marker_y+6 );
textString ( marker_x - 4 * strlen(TextScale), marker_y + 14,
TextScale, GLUT_BITMAP_8_BY_13 );
}
else {
if( orientation == ReadBOTTOM )
{
drawOneLine( marker_x, marker_y, marker_x, marker_y+6 );
textString ( marker_x - 4 * strlen(TextScale), marker_y - 14,
TextScale, GLUT_BITMAP_8_BY_13 );
} // End if bottom
} // End else if not ReadTOP
} // End if major division point.
} // End if major divisions of interest.
}
}
}
}
//============ Top of dual_instr_item class member definitions ============
dual_instr_item ::
dual_instr_item ( RECT the_box,
DBLFNPTR chn1_source,
DBLFNPTR chn2_source,
bool working,
ReadOriented readway ):
instr_item( the_box, chn1_source, readway, working),
alt_data_source( chn2_source )
{
}
dual_instr_item ::
dual_instr_item( const dual_instr_item & image) :
instr_item ((instr_item &) image ),
alt_data_source( image.alt_data_source)
{
}
dual_instr_item & dual_instr_item ::
operator = (const dual_instr_item & rhs )
{
if( !(this == &rhs)) {
instr_item::operator = (rhs);
alt_data_source = rhs.alt_data_source;
}
return *this;
}
//============ Top of fgTBI_instr class member definitions ==============
fgTBI_instr ::
fgTBI_instr( RECT the_box,
DBLFNPTR chn1_source,
DBLFNPTR chn2_source,
UINT maxBankAngle,
UINT maxSlipAngle,
UINT gap_width,
bool working ) :
dual_instr_item( the_box,
chn1_source,
chn2_source,
working,
ReadTOP),
BankLimit (maxBankAngle),
SlewLimit (maxSlipAngle),
scr_hole (gap_width )
{
}
fgTBI_instr :: ~fgTBI_instr() {}
fgTBI_instr :: fgTBI_instr( const fgTBI_instr & image):
dual_instr_item( (const dual_instr_item &) image),
BankLimit( image.BankLimit),
SlewLimit( image.SlewLimit),
scr_hole ( image.scr_hole )
{
}
fgTBI_instr & fgTBI_instr ::
operator = (const fgTBI_instr & rhs )
{
if( !(this == &rhs)) {
dual_instr_item::operator = (rhs);
BankLimit = rhs.BankLimit;
SlewLimit = rhs.SlewLimit;
scr_hole = rhs.scr_hole;
}
return *this;
}
//
// Draws a Turn Bank Indicator on the screen
//
void fgTBI_instr :: draw( void )
{
int x_inc1, y_inc1;
int x_inc2, y_inc2;
int x_t_inc1, y_t_inc1;
int d_bottom_x, d_bottom_y;
int d_right_x, d_right_y;
int d_top_x, d_top_y;
int d_left_x, d_left_y;
int inc_b_x, inc_b_y;
int inc_r_x, inc_r_y;
int inc_t_x, inc_t_y;
int inc_l_x, inc_l_y;
RECT My_box = get_location();
POINT centroid = get_centroid();
int tee_height = My_box.top - My_box.bottom; // Hack, hack.
// struct fgFLIGHT *f = &current_aircraft.flight;
double sin_bank, cos_bank;
double bank_angle, sideslip_angle;
double ss_const; // sideslip angle pixels per rad
bank_angle = current_ch2(); // Roll limit +/- 30 degrees
if( bank_angle < -FG_PI_2/3 ) {
bank_angle = -FG_PI_2/3;
}else if( bank_angle > FG_PI_2/3 ) {
bank_angle = FG_PI_2/3;
}
sideslip_angle = current_ch1(); // Sideslip limit +/- 20 degrees
if( sideslip_angle < -FG_PI/9 ) {
sideslip_angle = -FG_PI/9;
} else if( sideslip_angle > FG_PI/9 ) {
sideslip_angle = FG_PI/9;
}
// sin_bank = sin( FG_2PI-FG_Phi );
// cos_bank = cos( FG_2PI-FG_Phi );
sin_bank = sin(FG_2PI-bank_angle);
cos_bank = cos(FG_2PI-bank_angle);
x_inc1 = (int)(get_span() * cos_bank);
y_inc1 = (int)(get_span() * sin_bank);
x_inc2 = (int)(scr_hole * cos_bank);
y_inc2 = (int)(scr_hole * sin_bank);
x_t_inc1 = (int)(tee_height * sin_bank);
y_t_inc1 = (int)(tee_height * cos_bank);
d_bottom_x = 0;
d_bottom_y = (int)(-scr_hole);
d_right_x = (int)(scr_hole);
d_right_y = 0;
d_top_x = 0;
d_top_y = (int)(scr_hole);
d_left_x = (int)(-scr_hole);
d_left_y = 0;
ss_const = (get_span()*2)/(FG_2PI/9); // width represents 40 degrees
d_bottom_x += (int)(sideslip_angle*ss_const);
d_right_x += (int)(sideslip_angle*ss_const);
d_left_x += (int)(sideslip_angle*ss_const);
d_top_x += (int)(sideslip_angle*ss_const);
inc_b_x = (int)(d_bottom_x*cos_bank-d_bottom_y*sin_bank);
inc_b_y = (int)(d_bottom_x*sin_bank+d_bottom_y*cos_bank);
inc_r_x = (int)(d_right_x*cos_bank-d_right_y*sin_bank);
inc_r_y = (int)(d_right_x*sin_bank+d_right_y*cos_bank);
inc_t_x = (int)(d_top_x*cos_bank-d_top_y*sin_bank);
inc_t_y = (int)(d_top_x*sin_bank+d_top_y*cos_bank);
inc_l_x = (int)(d_left_x*cos_bank-d_left_y*sin_bank);
inc_l_y = (int)(d_left_x*sin_bank+d_left_y*cos_bank);
if( scr_hole == 0 )
{
drawOneLine( centroid.x - x_inc1, centroid.y - y_inc1, \
centroid.x + x_inc1, centroid.y + y_inc1 );
}
else
{
drawOneLine( centroid.x - x_inc1, centroid.y - y_inc1, \
centroid.x - x_inc2, centroid.y - y_inc2 );
drawOneLine( centroid.x + x_inc2, centroid.y + y_inc2, \
centroid.x + x_inc1, centroid.y + y_inc1 );
}
// draw teemarks
drawOneLine( centroid.x + x_inc2, \
centroid.y + y_inc2, \
centroid.x + x_inc2 + x_t_inc1, \
centroid.y + y_inc2 - y_t_inc1 );
drawOneLine( centroid.x - x_inc2, \
centroid.y - y_inc2, \
centroid.x - x_inc2 + x_t_inc1, \
centroid.y - y_inc2 - y_t_inc1 );
// draw sideslip diamond (it is not yet positioned correctly )
drawOneLine( centroid.x + inc_b_x, \
centroid.y + inc_b_y, \
centroid.x + inc_r_x, \
centroid.y + inc_r_y );
drawOneLine( centroid.x + inc_r_x, \
centroid.y + inc_r_y, \
centroid.x + inc_t_x, \
centroid.y + inc_t_y );
drawOneLine( centroid.x + inc_t_x, \
centroid.y + inc_t_y, \
centroid.x + inc_l_x, \
centroid.y + inc_l_y );
drawOneLine( centroid.x + inc_l_x, \
centroid.y + inc_l_y, \
centroid.x + inc_b_x, \
centroid.y + inc_b_y );
}
//====================== Top of HudLadder Class =======================
HudLadder ::
HudLadder( RECT the_box,
DBLFNPTR ptch_source,
DBLFNPTR roll_source,
UINT span_units,
int major_div,
UINT minor_div,
UINT screen_hole,
UINT lbl_pos,
bool working) :
dual_instr_item( the_box,
ptch_source,
roll_source,
working,
ReadRIGHT ),
width_units ( span_units ),
div_units ( major_div < 0? -major_div: major_div ),
minor_div ( minor_div ),
label_pos ( lbl_pos ),
scr_hole ( screen_hole ),
vmax ( span_units/2 ),
vmin ( -vmax )
{
if( !width_units ) {
width_units = 45;
}
factor = (double)get_span() / (double) width_units;
}
HudLadder ::
~HudLadder()
{
}
HudLadder ::
HudLadder( const HudLadder & image ) :
dual_instr_item( (dual_instr_item &) image),
width_units ( image.width_units ),
div_units ( image.div_units ),
label_pos ( image.label_pos ),
scr_hole ( image.scr_hole ),
vmax ( image.vmax ),
vmin ( image.vmin ),
factor ( image.factor )
{
}
HudLadder & HudLadder ::
operator = ( const HudLadder & rhs )
{
if( !(this == &rhs)) {
(dual_instr_item &)(*this) = (dual_instr_item &)rhs;
width_units = rhs.width_units;
div_units = rhs.div_units;
label_pos = rhs.label_pos;
scr_hole = rhs.scr_hole;
vmax = rhs.vmax;
vmin = rhs.vmin;
factor = rhs.factor;
}
return *this;
}
//
// Draws a climb ladder in the center of the HUD
//
void HudLadder :: draw( void )
{
double roll_value, pitch_value;
// int marker_x;
int marker_y;
int scr_min;
// int scr_max;
int x_ini, x_end;
int y_ini, y_end;
int new_x_ini, new_x_end;
int new_y_ini, new_y_end;
register i;
POINT centroid = get_centroid();
RECT box = get_location();
int half_span = (box.right - box.left) >> 1;
char TextLadder[80];
int condition;
roll_value = current_ch2();
pitch_value = current_ch1() * RAD_TO_DEG;
vmin = (int)pitch_value - (double)width_units/2.0;
vmax = (int)pitch_value + (double)width_units/2.0;
scr_min = box.bottom; // centroid.y - ((box.top - box.bottom) >> 1);
// scr_max = box.top; // scr_min + (box.top - box.bottom);
// marker_x = centroid.x - half_span;
// Box the target.
drawOneLine( centroid.x - 5, centroid.y, centroid.x, centroid.y + 5);
drawOneLine( centroid.x, centroid.y + 5, centroid.x + 5, centroid.y);
drawOneLine( centroid.x + 5, centroid.y, centroid.x, centroid.y - 5);
drawOneLine( centroid.x, centroid.y - 5, centroid.x - 5, centroid.y);
for( i=(int)vmin; i<=(int)vmax; i+=1 )
{
condition = 1;
if( condition )
{
marker_y = scr_min + (int)((i-vmin)*factor);
if( div_units ) {
if( i%div_units==0 )
{
sprintf( TextLadder, "%d", i );
if( scr_hole == 0 )
{
if( i ) {
x_ini = centroid.x - half_span;
}
else {
x_ini = centroid.x - half_span - 10;
}
y_ini = marker_y;
x_end = centroid.x + half_span;
y_end = marker_y;
new_x_ini = centroid.x + (int)( \
(x_ini - centroid.x) * cos(roll_value) - \
(y_ini - centroid.y) * sin(roll_value));
new_y_ini = centroid.y + (int)( \
(x_ini - centroid.x) * sin(roll_value) + \
(y_ini - centroid.y) * cos(roll_value));
new_x_end = centroid.x + (int)( \
(x_end - centroid.x) * cos(roll_value) - \
(y_end - centroid.y) * sin(roll_value));
new_y_end = centroid.y + (int)( \
(x_end - centroid.x) * sin(roll_value) + \
(y_end - centroid.y) * cos(roll_value));
if( i >= 0 )
{
drawOneLine( new_x_ini, new_y_ini, new_x_end, new_y_end );
}
else
{
glEnable(GL_LINE_STIPPLE);
glLineStipple( 1, 0x00FF );
drawOneLine( new_x_ini, new_y_ini, new_x_end, new_y_end );
glDisable(GL_LINE_STIPPLE);
}
textString( new_x_ini - 8 * strlen(TextLadder) - 8,
new_y_ini - 4,
TextLadder, GLUT_BITMAP_8_BY_13 );
textString( new_x_end + 10,
new_y_end - 4,
TextLadder, GLUT_BITMAP_8_BY_13 );
}
else
{
if( i != 0 ) {
x_ini = centroid.x - half_span;
}
else {
x_ini = centroid.x - half_span - 10;
}
y_ini = marker_y;
x_end = centroid.x - half_span + scr_hole/2;
y_end = marker_y;
new_x_ini = centroid.x+ (int)( \
(x_ini - centroid.x) * cos(roll_value) -\
(y_ini - centroid.y) * sin(roll_value));
new_y_ini = centroid.y+ (int)( \
(x_ini - centroid.x) * sin(roll_value) +\
(y_ini - centroid.y) * cos(roll_value));
new_x_end = centroid.x+ (int)( \
(x_end - centroid.x) * cos(roll_value) -\
(y_end - centroid.y) * sin(roll_value));
new_y_end = centroid.y+ (int)( \
(x_end - centroid.x) * sin(roll_value) +\
(y_end - centroid.y) * cos(roll_value));
if( i >= 0 )
{
drawOneLine( new_x_ini, new_y_ini, new_x_end, new_y_end );
}
else
{
glEnable(GL_LINE_STIPPLE);
glLineStipple( 1, 0x00FF );
drawOneLine( new_x_ini, new_y_ini, new_x_end, new_y_end );
glDisable(GL_LINE_STIPPLE);
}
textString( new_x_ini - 8 * strlen(TextLadder) - 8,
new_y_ini - 4,
TextLadder, GLUT_BITMAP_8_BY_13 );
x_ini = centroid.x + half_span - scr_hole/2;
y_ini = marker_y;
if( i != 0 ) {
x_end = centroid.x + half_span;
}
else {
x_end = centroid.x + half_span + 10;
}
y_end = marker_y;
new_x_ini = centroid.x + (int)( \
(x_ini-centroid.x)*cos(roll_value) -\
(y_ini-centroid.y)*sin(roll_value));
new_y_ini = centroid.y + (int)( \
(x_ini-centroid.x)*sin(roll_value) +\
(y_ini-centroid.y)*cos(roll_value));
new_x_end = centroid.x + (int)( \
(x_end-centroid.x)*cos(roll_value) -\
(y_end-centroid.y)*sin(roll_value));
new_y_end = centroid.y + (int)( \
(x_end-centroid.x)*sin(roll_value) +\
(y_end-centroid.y)*cos(roll_value));
if( i >= 0 )
{
drawOneLine( new_x_ini, new_y_ini, new_x_end, new_y_end );
}
else
{
glEnable(GL_LINE_STIPPLE);
glLineStipple( 1, 0x00FF );
drawOneLine( new_x_ini, new_y_ini, new_x_end, new_y_end );
glDisable(GL_LINE_STIPPLE);
}
textString( new_x_end+10, new_y_end-4,
TextLadder, GLUT_BITMAP_8_BY_13 );
}
}
}
/* if( i%div_max()==0 )
{
drawOneLine( marker_x, marker_y, marker_x+6, marker_y );
sprintf( TextScale, "%d", i );
if( orientation == LEFT )
{
textString( marker_x-8*strlen(TextScale)-2, marker_y-4,
TextScale, GLUT_BITMAP_8_BY_13 );
}
else if( orientation == RIGHT )
{
textString( marker_x+10, marker_y-4,
TextScale, GLUT_BITMAP_8_BY_13 );
}
} */
}
}
}
//========================= End of Class Implementations===================
// fgHUDInit
//
// Constructs a HUD object and then adds in instruments. At the present
// the instruments are hard coded into the routine. Ultimately these need
// to be defined by the aircraft's instrumentation records so that the
// display for a Piper Cub doesn't show the speed range of a North American
// mustange and the engine readouts of a B36!
//
#define INSTRDEFS 15
int fgHUDInit( fgAIRCRAFT * /* current_aircraft */ )
{
instr_item *HIptr;
int index;
RECT loc;
fgPrintf( FG_COCKPIT, FG_INFO, "Initializing current aircraft HUD\n" );
HUD_deque.erase( HUD_deque.begin(), HUD_deque.end()); // empty the HUD deque
// hud->code = 1;
// hud->status = 0;
// For now lets just hardcode the hud here.
// In the future, hud information has to come from the same place
// aircraft information came from.
// fgHUDSetTimeMode( hud, NIGHT );
// fgHUDSetBrightness( hud, BRT_LIGHT );
for( index = 0; index <= INSTRDEFS; index++) {
switch ( index ) {
case 0: // TBI
// fgHUDAddHorizon( hud, 330, 100, 40, 5, 10, get_roll, get_sideslip );
loc.left = 330 - 40;
loc.top = 110;
loc.right = 330 + 40;
loc.bottom = 100;
HIptr = (instr_item *) new fgTBI_instr( loc );
break;
case 1: // Artificial Horizon
// fgHUDAddLadder ( hud, 330, 285, 120, 180, 70, 10,
// NONE, 45, get_roll, get_pitch );
loc.left = 270; // 330 - 60
loc.top = 375; // 285 + 90
loc.right = 390; // 330 + 60
loc.bottom = 195; // 285 - 90
HIptr = (instr_item *) new HudLadder( loc );
break;
case 2: // KIAS
// fgHUDAddScale ( hud, VERTICAL, LIMIT, 200, 180, 380, 5, 10,
// LEFT, 0, 100, 50, 0, get_speed );
loc.left = 160;
loc.top = 380;
loc.right = 200;
loc.bottom = 180;
HIptr = (instr_item *) new moving_scale( loc,
get_speed,
ReadLEFT,
200, 0,
10, 5,
0,
50.0,
TRUE);
break;
case 3: // Angle of Attack
// fgHUDAddScale ( hud, HORIZONTAL, NOLIMIT, 180, 250, 410, 1, 5,
// BOTTOM, -40, 50, 21, 0, get_aoa );
loc.left = 250;
loc.top = 190;
loc.right = 410;
loc.bottom = 160;
HIptr = (instr_item *) new moving_scale( loc,
get_aoa,
ReadBOTTOM,
50, -40,
5, 1,
0,
21.0,
TRUE);
break;
case 4: // GYRO COMPASS
// fgHUDAddScale ( hud, HORIZONTAL, NOLIMIT, 380, 200, 460, 5, 10,
// TOP, 0, 50, 50, 360, get_heading );
loc.left = 200;
loc.top = 410;
loc.right = 460;
loc.bottom = 380;
HIptr = (instr_item *) new moving_scale( loc,
get_heading,
ReadTOP,
360, 0,
10, 5,
360,
50,
TRUE);
break;
case 5: // AMSL
// fgHUDAddScale ( hud, VERTICAL, LIMIT, 460, 180, 380, 25, 100,
// RIGHT, 0, 15000, 250, 0, get_altitude);
loc.left = 460;
loc.top = 380;
loc.right = 490;
loc.bottom = 180;
HIptr = (instr_item *) new moving_scale( loc,
get_altitude,
ReadRIGHT,
15000, 0,
100, 25,
0,
250,
TRUE);
break;
case 6: // Digital KIAS
// fgHUDAddLabel ( hud, 160, 150, SMALL, NOBLINK,
// RIGHT_JUST, NULL, " Kts", "%5.0f", get_speed );
loc.left = 160;
loc.top = 180; // Ignore
loc.right = 200; // Ignore
loc.bottom = 150;
HIptr = (instr_item *) new instr_label ( loc,
get_speed,
"%5.0f",
NULL,
" Kts",
ReadTOP,
RIGHT_JUST,
SMALL,
0,
TRUE );
break;
case 7: // Digital Altimeter
// fgHUDAddLabel ( hud, 160, 135, SMALL, NOBLINK,
// RIGHT_JUST, NULL, " m", "%5.0f", get_altitude );
loc.left = 160;
loc.top = 145; // Ignore
loc.right = 200; // Ignore
loc.bottom = 135;
HIptr = (instr_item *) new instr_label ( loc,
get_altitude,
"MSL %5.0f",
NULL,
" m",
ReadTOP,
LEFT_JUST,
SMALL,
0,
TRUE );
break;
case 8: // Roll indication diagnostic
// fgHUDAddLabel ( hud, 160, 120, SMALL, NOBLINK,
// RIGHT_JUST, NULL, " Roll", "%5.2f", get_roll );
loc.left = 160;
loc.top = 130; // Ignore
loc.right = 200; // Ignore
loc.bottom = 120;
HIptr = (instr_item *) new instr_label ( loc,
get_roll,
"%5.2f",
" Roll",
" Deg",
ReadTOP,
RIGHT_JUST,
SMALL,
0,
TRUE );
break;
case 9: // Angle of attack diagnostic
// fgHUDAddLabel ( hud, 440, 150, SMALL, NOBLINK,
// RIGHT_JUST, NULL, " AOA", "%5.2f", get_aoa );
loc.left = 440;
loc.top = 160; // Ignore
loc.right = 500; // Ignore
loc.bottom = 150;
HIptr = (instr_item *) new instr_label ( loc,
get_aoa,
" %5.2f",
" AOA",
" Deg",
ReadTOP,
RIGHT_JUST,
SMALL,
0,
TRUE );
break;
case 10:
// fgHUDAddLabel ( hud, 440, 135, SMALL, NOBLINK,
// RIGHT_JUST, NULL, " Heading", "%5.0f", get_heading );
loc.left = 440;
loc.top = 145; // Ignore
loc.right = 500; // Ignore
loc.bottom = 135;
HIptr = (instr_item *) new instr_label ( loc,
get_heading,
"%5.0f",
"Heading",
" Deg",
ReadTOP,
RIGHT_JUST,
SMALL,
0,
TRUE );
break;
case 11:
// fgHUDAddLabel ( hud, 440, 120, SMALL, NOBLINK,
// RIGHT_JUST, NULL, " Sideslip", "%5.2f", get_sideslip );
loc.left = 440;
loc.top = 130; // Ignore
loc.right = 500; // Ignore
loc.bottom = 120;
HIptr = (instr_item *) new instr_label ( loc,
get_sideslip,
"%5.2f",
"Sideslip",
NULL,
ReadTOP,
RIGHT_JUST,
SMALL,
0,
TRUE );
break;
case 12:
loc.left = 440;
loc.top = 90; // Ignore
loc.right = 440; // Ignore
loc.bottom = 100;
HIptr = (instr_item *) new instr_label( loc, get_throttleval,
"%5.2f",
"Throttle",
NULL,
ReadTOP,
RIGHT_JUST,
SMALL,
0,
TRUE );
break;
case 13:
loc.left = 440;
loc.top = 70; // Ignore
loc.right = 500; // Ignore
loc.bottom = 85;
HIptr = (instr_item *) new instr_label( loc, get_elevatorval,
"%5.2f",
"Elevator",
NULL,
ReadTOP,
RIGHT_JUST,
SMALL,
0,
TRUE );
break;
case 14:
loc.left = 440;
loc.top = 100; // Ignore
loc.right = 500; // Ignore
loc.bottom = 60;
HIptr = (instr_item *) new instr_label( loc, get_aileronval,
"%5.2f",
"Aileron",
NULL,
ReadTOP,
RIGHT_JUST,
SMALL,
0,
TRUE );
break;
case 15:
loc.left = 10;
loc.top = 100; // Ignore
loc.right = 500; // Ignore
loc.bottom = 10;
HIptr = (instr_item *) new instr_label( loc, get_frame_rate,
"%.1f",
"Frame rate = ",
NULL,
ReadTOP,
RIGHT_JUST,
SMALL,
0,
TRUE );
break;
// fgHUDAddControlSurfaces( hud, 10, 10, NULL );
// loc.left = 250;
// loc.top = 190;
// loc.right = 410;
// loc.bottom = 180;
// HIptr = (instr_item *) new
// break;
default:;
}
if( HIptr ) { // Anything to install?
HUD_deque.insert( HUD_deque.begin(), HIptr);
}
}
// fgHUDAddControl( hud, HORIZONTAL, 50, 25, get_aileronval ); // was 10, 10
// fgHUDAddControl( hud, VERTICAL, 150, 25, get_elevatorval ); // was 10, 10
// fgHUDAddControl( hud, HORIZONTAL, 250, 25, get_rudderval ); // was 10, 10
return 0; // For now. Later we may use this for an error code.
}
// fgUpdateHUD
//
// Performs a once around the list of calls to instruments installed in
// the HUD object with requests for redraw. Kinda. It will when this is
// all C++.
//
int global_day_night_switch = DAY;
void fgUpdateHUD( void ) {
int i;
int brightness;
// int day_night_sw = current_aircraft.controls->day_night_switch;
int day_night_sw = global_day_night_switch;
int hud_displays = HUD_deque.size();
instr_item *pHUDInstr;
if( !hud_displays ) { // Trust everyone, but ALWAYS cut the cards!
return;
}
pHUDInstr = HUD_deque[0];
brightness = pHUDInstr->get_brightness();
// brightness = HUD_deque.at(0)->get_brightness();
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
gluOrtho2D(0, 640, 0, 480);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
glColor3f(1.0, 1.0, 1.0);
glIndexi(7);
glDisable(GL_DEPTH_TEST);
glDisable(GL_LIGHTING);
glLineWidth(1);
for( i = hud_displays; i; --i) { // Draw everything
// if( HUD_deque.at(i)->enabled()) {
pHUDInstr = HUD_deque[i - 1];
if( pHUDInstr->enabled()) {
// We should to respond to a dial instead
// or as well to the of time of day. Of
// course, we have no dial!
if( day_night_sw == DAY) {
switch (brightness) {
case BRT_LIGHT:
glColor3f (0.1, 0.9, 0.1);
break;
case BRT_MEDIUM:
glColor3f (0.1, 0.7, 0.0);
break;
case BRT_DARK:
glColor3f (0.0, 0.5, 0.0);
}
}
else {
if( day_night_sw == NIGHT) {
switch (brightness) {
case BRT_LIGHT:
glColor3f (0.9, 0.1, 0.1);
break;
case BRT_MEDIUM:
glColor3f (0.7, 0.0, 0.1);
break;
case BRT_DARK:
default:
glColor3f (0.5, 0.0, 0.0);
}
}
else { // Just in case default
glColor3f (0.1, 0.9, 0.1);
}
}
// fgPrintf( FG_COCKPIT, FG_DEBUG, "HUD Code %d Status %d\n",
// hud->code, hud->status );
pHUDInstr->draw();
// HUD_deque.at(i)->draw(); // Responsible for broken or fixed variants.
// No broken displays honored just now.
}
}
glEnable(GL_DEPTH_TEST);
glEnable(GL_LIGHTING);
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
}
/* $Log$
/* Revision 1.7 1998/05/11 18:13:11 curt
/* Complete C++ rewrite of all cockpit code by Charlie Hotchkiss.
/*
* Revision 1.22 1998/04/18 04:14:02 curt
* Moved fg_debug.c to it's own library.
*
* Revision 1.21 1998/04/03 21:55:28 curt
* Converting to Gnu autoconf system.
* Tweaks to hud.c
*
* Revision 1.20 1998/03/09 22:48:40 curt
* Minor "formatting" tweaks.
*
* Revision 1.19 1998/02/23 20:18:28 curt
* Incorporated Michele America's hud changes.
*
* Revision 1.18 1998/02/21 14:53:10 curt
* Added Charlie's HUD changes.
*
* Revision 1.17 1998/02/20 00:16:21 curt
* Thursday's tweaks.
*
* Revision 1.16 1998/02/19 13:05:49 curt
* Incorporated some HUD tweaks from Michelle America.
* Tweaked the sky's sunset/rise colors.
* Other misc. tweaks.
*
* Revision 1.15 1998/02/16 13:38:39 curt
* Integrated changes from Charlie Hotchkiss.
*
* Revision 1.14 1998/02/12 21:59:41 curt
* Incorporated code changes contributed by Charlie Hotchkiss
* <chotchkiss@namg.us.anritsu.com>
*
* Revision 1.12 1998/02/09 15:07:48 curt
* Minor tweaks.
*
* Revision 1.11 1998/02/07 15:29:34 curt
* Incorporated HUD changes and struct/typedef changes from Charlie Hotchkiss
* <chotchkiss@namg.us.anritsu.com>
*
* Revision 1.10 1998/02/03 23:20:14 curt
* Lots of little tweaks to fix various consistency problems discovered by
* Solaris' CC. Fixed a bug in fg_debug.c with how the fgPrintf() wrapper
* passed arguments along to the real printf(). Also incorporated HUD changes
* by Michele America.
*
* Revision 1.9 1998/01/31 00:43:04 curt
* Added MetroWorks patches from Carmen Volpe.
*
* Revision 1.8 1998/01/27 00:47:51 curt
* Incorporated Paul Bleisch's <bleisch@chromatic.com> new debug message
* system and commandline/config file processing code.
*
* Revision 1.7 1998/01/19 18:40:20 curt
* Tons of little changes to clean up the code and to remove fatal errors
* when building with the c++ compiler.
*
* Revision 1.6 1997/12/15 23:54:34 curt
* Add xgl wrappers for debugging.
* Generate terrain normals on the fly.
*
* Revision 1.5 1997/12/10 22:37:39 curt
* Prepended "fg" on the name of all global structures that didn't have it yet.
* i.e. "struct WEATHER {}" became "struct fgWEATHER {}"
*
* Revision 1.4 1997/09/23 00:29:32 curt
* Tweaks to get things to compile with gcc-win32.
*
* Revision 1.3 1997/09/05 14:17:26 curt
* More tweaking with stars.
*
* Revision 1.2 1997/09/04 02:17:30 curt
* Shufflin' stuff.
*
* Revision 1.1 1997/08/29 18:03:22 curt
* Initial revision.
*
*/