fc6eee819b
Began adding support for tri-fanning (or maybe other arrangments too.)
189 lines
5.2 KiB
C++
189 lines
5.2 KiB
C++
// tripoly.cxx -- "Triangle" polygon management class
|
|
//
|
|
// Written by Curtis Olson, started March 1999.
|
|
//
|
|
// Copyright (C) 1999 Curtis L. Olson - curt@flightgear.org
|
|
//
|
|
// This program is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of the
|
|
// License, or (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful, but
|
|
// WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
//
|
|
// $Id$
|
|
// (Log is kept at end of this file)
|
|
|
|
|
|
#include <Include/fg_constants.h>
|
|
#include <Math/point3d.hxx>
|
|
|
|
#include "tripoly.hxx"
|
|
|
|
|
|
// Constructor
|
|
FGTriPoly::FGTriPoly( void ) {
|
|
}
|
|
|
|
|
|
// Destructor
|
|
FGTriPoly::~FGTriPoly( void ) {
|
|
}
|
|
|
|
|
|
// Given a line segment specified by two endpoints p1 and p2, return
|
|
// the slope of the line.
|
|
static double slope( const Point3D& p0, const Point3D& p1 ) {
|
|
if ( fabs(p0.x() - p1.x()) > FG_EPSILON ) {
|
|
return (p0.y() - p1.y()) / (p0.x() - p1.x());
|
|
} else {
|
|
return 1.0e+999; // really big number
|
|
}
|
|
}
|
|
|
|
|
|
// Given a line segment specified by two endpoints p1 and p2, return
|
|
// the y value of a point on the line that intersects with the
|
|
// verticle line through x. Return true if an intersection is found,
|
|
// false otherwise.
|
|
static bool intersects( const Point3D& p0, const Point3D& p1, double x,
|
|
Point3D *result ) {
|
|
// equation of a line through (x0,y0) and (x1,y1):
|
|
//
|
|
// y = y1 + (x - x1) * (y0 - y1) / (x0 - x1)
|
|
|
|
double y;
|
|
|
|
if ( fabs(p0.x() - p1.x()) > FG_EPSILON ) {
|
|
y = p1.y() + (x - p1.x()) * (p0.y() - p1.y()) / (p0.x() - p1.x());
|
|
} else {
|
|
return false;
|
|
}
|
|
result->setx(x);
|
|
result->sety(y);
|
|
|
|
if ( p0.y() <= p1.y() ) {
|
|
if ( (p0.y() <= y) && (y <= p1.y()) ) {
|
|
return true;
|
|
}
|
|
} else {
|
|
if ( (p0.y() >= y) && (y >= p1.y()) ) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
// calculate an "arbitrary" point inside this polygon for assigning
|
|
// attribute areas
|
|
void FGTriPoly::calc_point_inside( const FGTriNodes& trinodes ) {
|
|
Point3D tmp, min, ln, p1, p2, p3, m, result;
|
|
|
|
// 1. find point, min, with smallest y
|
|
|
|
// min.y() starts greater than the biggest possible lat (degrees)
|
|
min.sety( 100.0 );
|
|
// int min_index;
|
|
int min_node_index = 0;
|
|
|
|
int_list_iterator current, last;
|
|
current = poly.begin();
|
|
last = poly.end();
|
|
|
|
int counter = 0;
|
|
for ( ; current != last; ++current ) {
|
|
tmp = trinodes.get_node( *current );
|
|
if ( tmp.y() < min.y() ) {
|
|
min = tmp;
|
|
// min_index = *current;
|
|
min_node_index = counter;
|
|
|
|
// cout << "min index = " << *current
|
|
// << " value = " << min_y << endl;
|
|
} else {
|
|
// cout << " index = " << *current << endl;
|
|
}
|
|
++counter;
|
|
}
|
|
cout << "min node index = " << min_node_index << endl;
|
|
cout << "min index = " << poly[min_node_index]
|
|
<< " value = " << trinodes.get_node( poly[min_node_index] )
|
|
<< " == " << min << endl;
|
|
|
|
// 2. take midpoint, m, of min with neighbor having lowest
|
|
// fabs(slope)
|
|
|
|
if ( min_node_index == 0 ) {
|
|
p1 = trinodes.get_node( poly[1] );
|
|
p2 = trinodes.get_node( poly[poly.size() - 1] );
|
|
} else if ( min_node_index == (int)(poly.size()) - 1 ) {
|
|
p1 = trinodes.get_node( poly[0] );
|
|
p2 = trinodes.get_node( poly[poly.size() - 1] );
|
|
} else {
|
|
p1 = trinodes.get_node( poly[min_node_index - 1] );
|
|
p2 = trinodes.get_node( poly[min_node_index + 1] );
|
|
}
|
|
double s1 = fabs( slope(min, p1) );
|
|
double s2 = fabs( slope(min, p2) );
|
|
if ( s1 < s2 ) {
|
|
ln = p1;
|
|
} else {
|
|
ln = p2;
|
|
}
|
|
|
|
m.setx( (min.x() + ln.x()) / 2.0 );
|
|
m.sety( (min.y() + ln.y()) / 2.0 );
|
|
cout << "low mid point = " << m << endl;
|
|
|
|
// 3. intersect vertical line through m and all other segments.
|
|
// save point, p3, with smallest y > m.y
|
|
|
|
p3.sety(100);
|
|
for ( int i = 0; i < (int)(poly.size()) - 1; ++i ) {
|
|
p1 = trinodes.get_node( poly[i] );
|
|
p2 = trinodes.get_node( poly[i+1] );
|
|
|
|
if ( intersects(p1, p2, m.x(), &result) ) {
|
|
// cout << "intersection = " << result << endl;
|
|
if ( ( result.y() < p3.y() ) &&
|
|
( fabs(result.y() - m.y()) > FG_EPSILON ) ) {
|
|
p3 = result;
|
|
}
|
|
}
|
|
}
|
|
p1 = trinodes.get_node( poly[0] );
|
|
p2 = trinodes.get_node( poly[poly.size() - 1] );
|
|
if ( intersects(p1, p2, m.x(), &result) ) {
|
|
// cout << "intersection = " << result << endl;
|
|
if ( ( result.y() < p3.y() ) &&
|
|
( fabs(result.y() - m.y()) > FG_EPSILON ) ) {
|
|
p3 = result;
|
|
}
|
|
}
|
|
cout << "low intersection of other segment = " << p3 << endl;
|
|
|
|
// 4. take midpoint of p2 && m as an arbitrary point inside polygon
|
|
|
|
inside.setx( (m.x() + p3.x()) / 2.0 );
|
|
inside.sety( (m.y() + p3.y()) / 2.0 );
|
|
cout << "inside point = " << inside << endl;
|
|
}
|
|
|
|
|
|
// $Log$
|
|
// Revision 1.2 1999/03/29 13:11:11 curt
|
|
// Shuffled stl type names a bit.
|
|
// Began adding support for tri-fanning (or maybe other arrangments too.)
|
|
//
|
|
// Revision 1.1 1999/03/20 13:21:36 curt
|
|
// Initial revision.
|
|
//
|