8d903eac1c
Allow model_hz to be defined from the command line.
663 lines
20 KiB
C++
663 lines
20 KiB
C++
// views.cxx -- data structures and routines for managing and view
|
|
// parameters.
|
|
//
|
|
// Written by Curtis Olson, started August 1997.
|
|
//
|
|
// Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com
|
|
//
|
|
// This program is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of the
|
|
// License, or (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful, but
|
|
// WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
//
|
|
// $Id$
|
|
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
# include <config.h>
|
|
#endif
|
|
|
|
#include <ssg.h> // plib include
|
|
|
|
#include <Aircraft/aircraft.hxx>
|
|
#include <Cockpit/panel.hxx>
|
|
#include <Debug/logstream.hxx>
|
|
#include <Include/fg_constants.h>
|
|
#include <Math/mat3.h>
|
|
#include <Math/point3d.hxx>
|
|
#include <Math/polar3d.hxx>
|
|
#include <Math/vector.hxx>
|
|
#include <Scenery/scenery.hxx>
|
|
#include <Time/fg_time.hxx>
|
|
|
|
#include "options.hxx"
|
|
#include "views.hxx"
|
|
|
|
|
|
// Define following to extract various vectors directly
|
|
// from matrices we have allready computed
|
|
// rather then performing 'textbook algebra' to rederive them
|
|
// Norman Vine -- nhv@yahoo.com
|
|
// #define FG_VIEW_INLINE_OPTIMIZATIONS
|
|
|
|
// temporary (hopefully) hack
|
|
static int panel_hist = 0;
|
|
|
|
|
|
// specify code paths ... these are done as variable rather than
|
|
// #define's because down the road we may want to choose between them
|
|
// on the fly for different flight models ... this way magic carpet
|
|
// and external modes wouldn't need to recreate the LaRCsim matrices
|
|
// themselves.
|
|
|
|
static const bool use_larcsim_local_to_body = false;
|
|
|
|
|
|
// This is a record containing current view parameters
|
|
FGView current_view;
|
|
|
|
|
|
// Constructor
|
|
FGView::FGView( void ) {
|
|
}
|
|
|
|
|
|
// Initialize a view structure
|
|
void FGView::Init( void ) {
|
|
FG_LOG( FG_VIEW, FG_INFO, "Initializing View parameters" );
|
|
|
|
view_mode = FG_VIEW_FIRST_PERSON;
|
|
view_offset = 0.0;
|
|
goal_view_offset = 0.0;
|
|
|
|
winWidth = current_options.get_xsize();
|
|
winHeight = current_options.get_ysize();
|
|
|
|
if ( ! current_options.get_panel_status() ) {
|
|
current_view.set_win_ratio( (GLfloat) winWidth / (GLfloat) winHeight );
|
|
} else {
|
|
current_view.set_win_ratio( (GLfloat) winWidth /
|
|
((GLfloat) (winHeight)*0.4232) );
|
|
}
|
|
|
|
force_update_fov_math();
|
|
}
|
|
|
|
|
|
// Update the field of view coefficients
|
|
void FGView::UpdateFOV( const fgOPTIONS& o ) {
|
|
ssgSetFOV( o.get_fov(), 0.0 );
|
|
|
|
double fov, theta_x, theta_y;
|
|
|
|
fov = o.get_fov();
|
|
|
|
// printf("win_ratio = %.2f\n", win_ratio);
|
|
// calculate sin() and cos() of fov / 2 in X direction;
|
|
theta_x = (fov * win_ratio * DEG_TO_RAD) / 2.0;
|
|
// printf("theta_x = %.2f\n", theta_x);
|
|
sin_fov_x = sin(theta_x);
|
|
cos_fov_x = cos(theta_x);
|
|
slope_x = -cos_fov_x / sin_fov_x;
|
|
// printf("slope_x = %.2f\n", slope_x);
|
|
|
|
// fov_x_clip and fov_y_clip convoluted algebraic simplification
|
|
// see code executed in tilemgr.cxx when USE_FAST_FOV_CLIP not
|
|
// defined Norman Vine -- nhv@yahoo.com
|
|
#if defined( USE_FAST_FOV_CLIP )
|
|
fov_x_clip = slope_x*cos_fov_x - sin_fov_x;
|
|
#endif // defined( USE_FAST_FOV_CLIP )
|
|
|
|
// calculate sin() and cos() of fov / 2 in Y direction;
|
|
theta_y = (fov * DEG_TO_RAD) / 2.0;
|
|
// printf("theta_y = %.2f\n", theta_y);
|
|
sin_fov_y = sin(theta_y);
|
|
cos_fov_y = cos(theta_y);
|
|
slope_y = cos_fov_y / sin_fov_y;
|
|
// printf("slope_y = %.2f\n", slope_y);
|
|
|
|
#if defined( USE_FAST_FOV_CLIP )
|
|
fov_y_clip = -(slope_y*cos_fov_y + sin_fov_y);
|
|
#endif // defined( USE_FAST_FOV_CLIP )
|
|
}
|
|
|
|
|
|
// Cycle view mode
|
|
void FGView::cycle_view_mode() {
|
|
if ( view_mode == FG_VIEW_FIRST_PERSON ) {
|
|
view_mode = FG_VIEW_FOLLOW;
|
|
} else if ( view_mode == FG_VIEW_FOLLOW ) {
|
|
view_mode = FG_VIEW_FIRST_PERSON;
|
|
}
|
|
}
|
|
|
|
|
|
// Update the view volume, position, and orientation
|
|
void FGView::UpdateViewParams( void ) {
|
|
FGInterface *f = current_aircraft.fdm_state;
|
|
|
|
UpdateViewMath(f);
|
|
|
|
if ((current_options.get_panel_status() != panel_hist) && (current_options.get_panel_status()))
|
|
{
|
|
FGPanel::OurPanel->ReInit( 0, 0, 1024, 768);
|
|
}
|
|
|
|
if ( ! current_options.get_panel_status() ) {
|
|
xglViewport(0, 0 , (GLint)(winWidth), (GLint)(winHeight) );
|
|
} else {
|
|
xglViewport(0, (GLint)((winHeight)*0.5768), (GLint)(winWidth),
|
|
(GLint)((winHeight)*0.4232) );
|
|
}
|
|
|
|
panel_hist = current_options.get_panel_status();
|
|
}
|
|
|
|
|
|
void getRotMatrix(double* out, MAT3vec vec, double radians)
|
|
{
|
|
/* This function contributed by Erich Boleyn (erich@uruk.org) */
|
|
/* This function used from the Mesa OpenGL code (matrix.c) */
|
|
double s, c; // mag,
|
|
double vx, vy, vz, xy, yz, zx, xs, ys, zs, one_c; //, xx, yy, zz
|
|
|
|
MAT3identity(out);
|
|
s = sin(radians);
|
|
c = cos(radians);
|
|
|
|
// mag = getMagnitude();
|
|
|
|
vx = vec[0];
|
|
vy = vec[1];
|
|
vz = vec[2];
|
|
|
|
#define M(row,col) out[row*4 + col]
|
|
|
|
/*
|
|
* Arbitrary axis rotation matrix.
|
|
*
|
|
* This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
|
|
* like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation
|
|
* (which is about the X-axis), and the two composite transforms
|
|
* Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
|
|
* from the arbitrary axis to the X-axis then back. They are
|
|
* all elementary rotations.
|
|
*
|
|
* Rz' is a rotation about the Z-axis, to bring the axis vector
|
|
* into the x-z plane. Then Ry' is applied, rotating about the
|
|
* Y-axis to bring the axis vector parallel with the X-axis. The
|
|
* rotation about the X-axis is then performed. Ry and Rz are
|
|
* simply the respective inverse transforms to bring the arbitrary
|
|
* axis back to it's original orientation. The first transforms
|
|
* Rz' and Ry' are considered inverses, since the data from the
|
|
* arbitrary axis gives you info on how to get to it, not how
|
|
* to get away from it, and an inverse must be applied.
|
|
*
|
|
* The basic calculation used is to recognize that the arbitrary
|
|
* axis vector (x, y, z), since it is of unit length, actually
|
|
* represents the sines and cosines of the angles to rotate the
|
|
* X-axis to the same orientation, with theta being the angle about
|
|
* Z and phi the angle about Y (in the order described above)
|
|
* as follows:
|
|
*
|
|
* cos ( theta ) = x / sqrt ( 1 - z^2 )
|
|
* sin ( theta ) = y / sqrt ( 1 - z^2 )
|
|
*
|
|
* cos ( phi ) = sqrt ( 1 - z^2 )
|
|
* sin ( phi ) = z
|
|
*
|
|
* Note that cos ( phi ) can further be inserted to the above
|
|
* formulas:
|
|
*
|
|
* cos ( theta ) = x / cos ( phi )
|
|
* sin ( theta ) = y / cos ( phi )
|
|
*
|
|
* ...etc. Because of those relations and the standard trigonometric
|
|
* relations, it is pssible to reduce the transforms down to what
|
|
* is used below. It may be that any primary axis chosen will give the
|
|
* same results (modulo a sign convention) using thie method.
|
|
*
|
|
* Particularly nice is to notice that all divisions that might
|
|
* have caused trouble when parallel to certain planes or
|
|
* axis go away with care paid to reducing the expressions.
|
|
* After checking, it does perform correctly under all cases, since
|
|
* in all the cases of division where the denominator would have
|
|
* been zero, the numerator would have been zero as well, giving
|
|
* the expected result.
|
|
*/
|
|
|
|
one_c = 1.0F - c;
|
|
|
|
// xx = vx * vx;
|
|
// yy = vy * vy;
|
|
// zz = vz * vz;
|
|
|
|
// xy = vx * vy;
|
|
// yz = vy * vz;
|
|
// zx = vz * vx;
|
|
|
|
|
|
M(0,0) = (one_c * vx * vx) + c;
|
|
xs = vx * s;
|
|
yz = vy * vz * one_c;
|
|
M(1,2) = yz + xs;
|
|
M(2,1) = yz - xs;
|
|
|
|
M(1,1) = (one_c * vy * vy) + c;
|
|
ys = vy * s;
|
|
zx = vz * vx * one_c;
|
|
M(0,2) = zx - ys;
|
|
M(2,0) = zx + ys;
|
|
|
|
M(2,2) = (one_c * vz *vz) + c;
|
|
zs = vz * s;
|
|
xy = vx * vy * one_c;
|
|
M(0,1) = xy + zs;
|
|
M(1,0) = xy - zs;
|
|
|
|
// M(0,0) = (one_c * xx) + c;
|
|
// M(1,0) = (one_c * xy) - zs;
|
|
// M(2,0) = (one_c * zx) + ys;
|
|
|
|
// M(0,1) = (one_c * xy) + zs;
|
|
// M(1,1) = (one_c * yy) + c;
|
|
// M(2,1) = (one_c * yz) - xs;
|
|
|
|
// M(0,2) = (one_c * zx) - ys;
|
|
// M(1,2) = (one_c * yz) + xs;
|
|
// M(2,2) = (one_c * zz) + c;
|
|
|
|
#undef M
|
|
}
|
|
|
|
|
|
// Update the view parameters
|
|
void FGView::UpdateViewMath( FGInterface *f ) {
|
|
Point3D p;
|
|
MAT3vec vec, forward, v0, minus_z;
|
|
MAT3mat R, TMP, UP, LOCAL, VIEW;
|
|
double ntmp;
|
|
|
|
if ( update_fov ) {
|
|
// printf("Updating fov\n");
|
|
UpdateFOV( current_options );
|
|
update_fov = false;
|
|
}
|
|
|
|
scenery.center = scenery.next_center;
|
|
|
|
#if !defined(FG_VIEW_INLINE_OPTIMIZATIONS)
|
|
// printf("scenery center = %.2f %.2f %.2f\n", scenery.center.x,
|
|
// scenery.center.y, scenery.center.z);
|
|
|
|
// calculate the cartesion coords of the current lat/lon/0 elev
|
|
p = Point3D( f->get_Longitude(),
|
|
f->get_Lat_geocentric(),
|
|
f->get_Sea_level_radius() * FEET_TO_METER );
|
|
|
|
cur_zero_elev = fgPolarToCart3d(p) - scenery.center;
|
|
|
|
// calculate view position in current FG view coordinate system
|
|
// p.lon & p.lat are already defined earlier, p.radius was set to
|
|
// the sea level radius, so now we add in our altitude.
|
|
if ( f->get_Altitude() * FEET_TO_METER >
|
|
(scenery.cur_elev + 0.5 * METER_TO_FEET) ) {
|
|
p.setz( p.radius() + f->get_Altitude() * FEET_TO_METER );
|
|
} else {
|
|
p.setz( p.radius() + scenery.cur_elev + 0.5 * METER_TO_FEET );
|
|
}
|
|
|
|
abs_view_pos = fgPolarToCart3d(p);
|
|
|
|
#else // FG_VIEW_INLINE_OPTIMIZATIONS
|
|
|
|
double tmp_radius = f->get_Sea_level_radius() * FEET_TO_METER;
|
|
double tmp = f->get_cos_lat_geocentric() * tmp_radius;
|
|
|
|
cur_zero_elev.setx(f->get_cos_longitude()*tmp - scenery.center.x());
|
|
cur_zero_elev.sety(f->get_sin_longitude()*tmp - scenery.center.y());
|
|
cur_zero_elev.setz(f->get_sin_lat_geocentric()*tmp_radius - scenery.center.z());
|
|
|
|
// calculate view position in current FG view coordinate system
|
|
// p.lon & p.lat are already defined earlier, p.radius was set to
|
|
// the sea level radius, so now we add in our altitude.
|
|
if ( f->get_Altitude() * FEET_TO_METER >
|
|
(scenery.cur_elev + 0.5 * METER_TO_FEET) ) {
|
|
tmp_radius += f->get_Altitude() * FEET_TO_METER;
|
|
} else {
|
|
tmp_radius += scenery.cur_elev + 0.5 * METER_TO_FEET ;
|
|
}
|
|
tmp = f->get_cos_lat_geocentric() * tmp_radius;
|
|
abs_view_pos.setx(f->get_cos_longitude()*tmp);
|
|
abs_view_pos.sety(f->get_sin_longitude()*tmp);
|
|
abs_view_pos.setz(f->get_sin_lat_geocentric()*tmp_radius);
|
|
|
|
#endif // FG_VIEW_INLINE_OPTIMIZATIONS
|
|
|
|
view_pos = abs_view_pos - scenery.center;
|
|
|
|
FG_LOG( FG_VIEW, FG_DEBUG, "Polar view pos = " << p );
|
|
FG_LOG( FG_VIEW, FG_DEBUG, "Absolute view pos = " << abs_view_pos );
|
|
FG_LOG( FG_VIEW, FG_DEBUG, "Relative view pos = " << view_pos );
|
|
|
|
// Derive the LOCAL aircraft rotation matrix (roll, pitch, yaw)
|
|
// from FG_T_local_to_body[3][3]
|
|
|
|
if ( use_larcsim_local_to_body ) {
|
|
|
|
// Question: Why is the LaRCsim matrix arranged so differently
|
|
// than the one we need???
|
|
|
|
// Answer (I think): The LaRCsim matrix is generated in a
|
|
// different reference frame than we've set up for our world
|
|
|
|
LOCAL[0][0] = f->get_T_local_to_body_33();
|
|
LOCAL[0][1] = -f->get_T_local_to_body_32();
|
|
LOCAL[0][2] = -f->get_T_local_to_body_31();
|
|
LOCAL[0][3] = 0.0;
|
|
LOCAL[1][0] = -f->get_T_local_to_body_23();
|
|
LOCAL[1][1] = f->get_T_local_to_body_22();
|
|
LOCAL[1][2] = f->get_T_local_to_body_21();
|
|
LOCAL[1][3] = 0.0;
|
|
LOCAL[2][0] = -f->get_T_local_to_body_13();
|
|
LOCAL[2][1] = f->get_T_local_to_body_12();
|
|
LOCAL[2][2] = f->get_T_local_to_body_11();
|
|
LOCAL[2][3] = 0.0;
|
|
LOCAL[3][0] = LOCAL[3][1] = LOCAL[3][2] = LOCAL[3][3] = 0.0;
|
|
LOCAL[3][3] = 1.0;
|
|
|
|
// printf("LaRCsim LOCAL matrix\n");
|
|
// MAT3print(LOCAL, stdout);
|
|
|
|
} else {
|
|
|
|
// calculate the transformation matrix to go from LaRCsim to ssg
|
|
sgVec3 vec1;
|
|
sgSetVec3( vec1, 0.0, 1.0, 0.0 );
|
|
sgMat4 mat1;
|
|
sgMakeRotMat4( mat1, 90, vec1 );
|
|
|
|
sgVec3 vec2;
|
|
sgSetVec3( vec2, 1.0, 0.0, 0.0 );
|
|
sgMat4 mat2;
|
|
sgMakeRotMat4( mat2, 90, vec2 );
|
|
|
|
sgMultMat4( sgLARC_TO_SSG, mat1, mat2 );
|
|
|
|
/*
|
|
cout << "LaRCsim to SSG:" << endl;
|
|
MAT3mat print;
|
|
int i;
|
|
int j;
|
|
for ( i = 0; i < 4; i++ ) {
|
|
for ( j = 0; j < 4; j++ ) {
|
|
print[i][j] = sgLARC_TO_SSG[i][j];
|
|
}
|
|
}
|
|
MAT3print( print, stdout);
|
|
*/
|
|
|
|
// code to calculate LOCAL matrix calculated from Phi, Theta, and
|
|
// Psi (roll, pitch, yaw) in case we aren't running LaRCsim as our
|
|
// flight model
|
|
|
|
MAT3_SET_VEC(vec, 0.0, 0.0, 1.0);
|
|
MAT3rotate(R, vec, f->get_Phi());
|
|
// cout << "Roll matrix" << endl;
|
|
// MAT3print(R, stdout);
|
|
|
|
sgVec3 sgrollvec;
|
|
sgSetVec3( sgrollvec, 0.0, 0.0, 1.0 );
|
|
sgMat4 sgPHI; // roll
|
|
sgMakeRotMat4( sgPHI, f->get_Phi() * RAD_TO_DEG, sgrollvec );
|
|
|
|
|
|
MAT3_SET_VEC(vec, 0.0, 1.0, 0.0);
|
|
MAT3rotate(TMP, vec, f->get_Theta());
|
|
// cout << "Pitch matrix" << endl;;
|
|
// MAT3print(TMP, stdout);
|
|
MAT3mult(R, R, TMP);
|
|
// cout << "tmp rotation matrix, R:" << endl;;
|
|
// MAT3print(R, stdout);
|
|
|
|
sgVec3 sgpitchvec;
|
|
sgSetVec3( sgpitchvec, 0.0, 1.0, 0.0 );
|
|
sgMat4 sgTHETA; // pitch
|
|
sgMakeRotMat4( sgTHETA, f->get_Theta() * RAD_TO_DEG,
|
|
sgpitchvec );
|
|
|
|
sgMat4 sgROT;
|
|
sgMultMat4( sgROT, sgPHI, sgTHETA );
|
|
|
|
|
|
MAT3_SET_VEC(vec, 1.0, 0.0, 0.0);
|
|
MAT3rotate(TMP, vec, -f->get_Psi());
|
|
// cout << "Yaw matrix" << endl;
|
|
// MAT3print(TMP, stdout);
|
|
MAT3mult(LOCAL, R, TMP);
|
|
// cout << "LOCAL matrix:" << endl;
|
|
// MAT3print(LOCAL, stdout);
|
|
|
|
sgVec3 sgyawvec;
|
|
sgSetVec3( sgyawvec, 1.0, 0.0, 0.0 );
|
|
sgMat4 sgPSI; // pitch
|
|
sgMakeRotMat4( sgPSI, -f->get_Psi() * RAD_TO_DEG, sgyawvec );
|
|
|
|
sgMultMat4( sgLOCAL, sgROT, sgPSI );
|
|
|
|
/*
|
|
MAT3mat print;
|
|
int i;
|
|
int j;
|
|
for ( i = 0; i < 4; i++ ) {
|
|
for ( j = 0; j < 4; j++ ) {
|
|
print[i][j] = sgLOCAL[i][j];
|
|
}
|
|
}
|
|
MAT3print( print, stdout);
|
|
*/
|
|
} // if ( use_larcsim_local_to_body )
|
|
|
|
#if !defined(FG_VIEW_INLINE_OPTIMIZATIONS)
|
|
|
|
// Derive the local UP transformation matrix based on *geodetic*
|
|
// coordinates
|
|
MAT3_SET_VEC(vec, 0.0, 0.0, 1.0);
|
|
MAT3rotate(R, vec, f->get_Longitude()); // R = rotate about Z axis
|
|
// printf("Longitude matrix\n");
|
|
// MAT3print(R, stdout);
|
|
|
|
MAT3_SET_VEC(vec, 0.0, 1.0, 0.0);
|
|
MAT3mult_vec(vec, vec, R);
|
|
MAT3rotate(TMP, vec, -f->get_Latitude()); // TMP = rotate about X axis
|
|
// printf("Latitude matrix\n");
|
|
// MAT3print(TMP, stdout);
|
|
|
|
MAT3mult(UP, R, TMP);
|
|
// cout << "Local up matrix" << endl;;
|
|
// MAT3print(UP, stdout);
|
|
|
|
sgMakeRotMat4( sgUP,
|
|
f->get_Longitude() * RAD_TO_DEG,
|
|
0.0,
|
|
-f->get_Latitude() * RAD_TO_DEG );
|
|
/*
|
|
cout << "FG derived UP matrix using sg routines" << endl;
|
|
MAT3mat print;
|
|
int i;
|
|
int j;
|
|
for ( i = 0; i < 4; i++ ) {
|
|
for ( j = 0; j < 4; j++ ) {
|
|
print[i][j] = sgUP[i][j];
|
|
}
|
|
}
|
|
MAT3print( print, stdout);
|
|
*/
|
|
|
|
MAT3_SET_VEC(local_up, 1.0, 0.0, 0.0);
|
|
MAT3mult_vec(local_up, local_up, UP);
|
|
|
|
// printf( "Local Up = (%.4f, %.4f, %.4f)\n",
|
|
// local_up[0], local_up[1], local_up[2]);
|
|
|
|
// Alternative method to Derive local up vector based on
|
|
// *geodetic* coordinates
|
|
// alt_up = fgPolarToCart(FG_Longitude, FG_Latitude, 1.0);
|
|
// printf( " Alt Up = (%.4f, %.4f, %.4f)\n",
|
|
// alt_up.x, alt_up.y, alt_up.z);
|
|
|
|
// Calculate the VIEW matrix
|
|
MAT3mult(VIEW, LOCAL, UP);
|
|
// cout << "VIEW matrix" << endl;;
|
|
// MAT3print(VIEW, stdout);
|
|
|
|
sgMat4 sgTMP, sgTMP2;
|
|
sgMultMat4( sgTMP, sgLOCAL, sgUP );
|
|
|
|
// generate the sg view up vector
|
|
sgVec3 vec1;
|
|
sgSetVec3( vec1, 1.0, 0.0, 0.0 );
|
|
sgXformVec3( sgview_up, vec1, sgTMP );
|
|
|
|
// generate the view offset matrix
|
|
sgMakeRotMat4( sgVIEW_OFFSET, view_offset * RAD_TO_DEG, sgview_up );
|
|
|
|
/*
|
|
cout << "sg VIEW_OFFSET matrix" << endl;
|
|
MAT3mat print;
|
|
int i;
|
|
int j;
|
|
for ( i = 0; i < 4; i++ ) {
|
|
for ( j = 0; j < 4; j++ ) {
|
|
print[i][j] = sgVIEW_OFFSET[i][j];
|
|
}
|
|
}
|
|
MAT3print( print, stdout);
|
|
*/
|
|
|
|
sgMultMat4( sgTMP2, sgTMP, sgVIEW_OFFSET );
|
|
sgMultMat4( sgVIEW_ROT, sgLARC_TO_SSG, sgTMP2 );
|
|
|
|
sgMakeTransMat4( sgTRANS, view_pos.x(), view_pos.y(), view_pos.z() );
|
|
|
|
sgMultMat4( sgVIEW, sgVIEW_ROT, sgTRANS );
|
|
|
|
FGMat4Wrapper tmp;
|
|
sgCopyMat4( tmp.m, sgVIEW );
|
|
follow.push_back( tmp );
|
|
|
|
// generate the current up, forward, and fwrd-view vectors
|
|
MAT3_SET_VEC(vec, 1.0, 0.0, 0.0);
|
|
MAT3mult_vec(view_up, vec, VIEW);
|
|
|
|
/*
|
|
cout << "FG derived VIEW matrix using sg routines" << endl;
|
|
MAT3mat print;
|
|
int i;
|
|
int j;
|
|
for ( i = 0; i < 4; i++ ) {
|
|
for ( j = 0; j < 4; j++ ) {
|
|
print[i][j] = sgVIEW[i][j];
|
|
}
|
|
}
|
|
MAT3print( print, stdout);
|
|
*/
|
|
|
|
MAT3_SET_VEC(vec, 0.0, 0.0, 1.0);
|
|
MAT3mult_vec(forward, vec, VIEW);
|
|
// printf( "Forward vector is (%.2f,%.2f,%.2f)\n", forward[0], forward[1],
|
|
// forward[2]);
|
|
|
|
MAT3rotate(TMP, view_up, view_offset);
|
|
MAT3mult_vec(view_forward, forward, TMP);
|
|
|
|
// make a vector to the current view position
|
|
MAT3_SET_VEC(v0, view_pos.x(), view_pos.y(), view_pos.z());
|
|
|
|
// Given a vector pointing straight down (-Z), map into onto the
|
|
// local plane representing "horizontal". This should give us the
|
|
// local direction for moving "south".
|
|
MAT3_SET_VEC(minus_z, 0.0, 0.0, -1.0);
|
|
map_vec_onto_cur_surface_plane(local_up, v0, minus_z, surface_south);
|
|
MAT3_NORMALIZE_VEC(surface_south, ntmp);
|
|
// printf( "Surface direction directly south %.2f %.2f %.2f\n",
|
|
// surface_south[0], surface_south[1], surface_south[2]);
|
|
|
|
// now calculate the surface east vector
|
|
MAT3rotate(TMP, view_up, FG_PI_2);
|
|
MAT3mult_vec(surface_east, surface_south, TMP);
|
|
// printf( "Surface direction directly east %.2f %.2f %.2f\n",
|
|
// surface_east[0], surface_east[1], surface_east[2]);
|
|
// printf( "Should be close to zero = %.2f\n",
|
|
// MAT3_DOT_PRODUCT(surface_south, surface_east));
|
|
|
|
#else // FG_VIEW_INLINE_OPTIMIZATIONS
|
|
|
|
// // Build spherical to cartesian transform matrix directly
|
|
double cos_lat = f->get_cos_latitude(); // cos(-f->get_Latitude());
|
|
double sin_lat = -f->get_sin_latitude(); // sin(-f->get_Latitude());
|
|
double cos_lon = f->get_cos_longitude(); //cos(f->get_Longitude());
|
|
double sin_lon = f->get_sin_longitude(); //sin(f->get_Longitude());
|
|
|
|
double *mat = (double *)UP;
|
|
|
|
mat[0] = cos_lat*cos_lon;
|
|
mat[1] = cos_lat*sin_lon;
|
|
mat[2] = -sin_lat;
|
|
mat[3] = 0.0;
|
|
mat[4] = -sin_lon;
|
|
mat[5] = cos_lon;
|
|
mat[6] = 0.0;
|
|
mat[7] = 0.0;
|
|
mat[8] = sin_lat*cos_lon;
|
|
mat[9] = sin_lat*sin_lon;
|
|
mat[10] = cos_lat;
|
|
mat[11] = mat[12] = mat[13] = mat[14] = 0.0;
|
|
mat[15] = 1.0;
|
|
|
|
MAT3mult(VIEW, LOCAL, UP);
|
|
|
|
// THESE COULD JUST BE POINTERS !!!
|
|
MAT3_SET_VEC(local_up, mat[0], mat[1], mat[2]);
|
|
MAT3_SET_VEC(view_up, VIEW[0][0], VIEW[0][1], VIEW[0][2]);
|
|
MAT3_SET_VEC(forward, VIEW[2][0], VIEW[2][1], VIEW[2][2]);
|
|
|
|
getRotMatrix((double *)TMP, view_up, view_offset);
|
|
MAT3mult_vec(view_forward, forward, TMP);
|
|
|
|
// make a vector to the current view position
|
|
MAT3_SET_VEC(v0, view_pos.x(), view_pos.y(), view_pos.z());
|
|
|
|
// Given a vector pointing straight down (-Z), map into onto the
|
|
// local plane representing "horizontal". This should give us the
|
|
// local direction for moving "south".
|
|
MAT3_SET_VEC(minus_z, 0.0, 0.0, -1.0);
|
|
map_vec_onto_cur_surface_plane(local_up, v0, minus_z, surface_south);
|
|
|
|
MAT3_NORMALIZE_VEC(surface_south, ntmp);
|
|
// printf( "Surface direction directly south %.6f %.6f %.6f\n",
|
|
// surface_south[0], surface_south[1], surface_south[2]);
|
|
|
|
// now calculate the surface east vector
|
|
getRotMatrix((double *)TMP, view_up, FG_PI_2);
|
|
MAT3mult_vec(surface_east, surface_south, TMP);
|
|
// printf( "Surface direction directly east %.6f %.6f %.6f\n",
|
|
// surface_east[0], surface_east[1], surface_east[2]);
|
|
// printf( "Should be close to zero = %.6f\n",
|
|
// MAT3_DOT_PRODUCT(surface_south, surface_east));
|
|
#endif // !defined(FG_VIEW_INLINE_OPTIMIZATIONS)
|
|
}
|
|
|
|
|
|
// Destructor
|
|
FGView::~FGView( void ) {
|
|
}
|