1
0
Fork 0
flightgear/Lib/Math/vector.cxx
1999-04-06 23:37:07 +00:00

129 lines
3.7 KiB
C++

// vector.cxx -- additional vector routines
//
// Written by Curtis Olson, started December 1997.
//
// Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
#include <math.h>
#include <stdio.h>
// #include <Include/fg_types.h>
#include "vector.hxx"
#include "mat3.h"
#if !defined( USE_XTRA_MAT3_INLINES )
// Map a vector onto the plane specified by normal
void map_vec_onto_cur_surface_plane(MAT3vec normal, MAT3vec v0, MAT3vec vec,
MAT3vec result)
{
MAT3vec u1, v, tmp;
// calculate a vector "u1" representing the shortest distance from
// the plane specified by normal and v0 to a point specified by
// "vec". "u1" represents both the direction and magnitude of
// this desired distance.
// u1 = ( (normal <dot> vec) / (normal <dot> normal) ) * normal
MAT3_SCALE_VEC( u1,
normal,
( MAT3_DOT_PRODUCT(normal, vec) /
MAT3_DOT_PRODUCT(normal, normal)
)
);
// printf(" vec = %.2f, %.2f, %.2f\n", vec[0], vec[1], vec[2]);
// printf(" v0 = %.2f, %.2f, %.2f\n", v0[0], v0[1], v0[2]);
// printf(" u1 = %.2f, %.2f, %.2f\n", u1[0], u1[1], u1[2]);
// calculate the vector "v" which is the vector "vec" mapped onto
// the plane specified by "normal" and "v0".
// v = v0 + vec - u1
MAT3_ADD_VEC(tmp, v0, vec);
MAT3_SUB_VEC(v, tmp, u1);
// printf(" v = %.2f, %.2f, %.2f\n", v[0], v[1], v[2]);
// Calculate the vector "result" which is "v" - "v0" which is a
// directional vector pointing from v0 towards v
// result = v - v0
MAT3_SUB_VEC(result, v, v0);
// printf(" result = %.2f, %.2f, %.2f\n",
// result[0], result[1], result[2]);
}
#endif // !defined( USE_XTRA_MAT3_INLINES )
// Given a point p, and a line through p0 with direction vector d,
// find the shortest distance from the point to the line
double fgPointLine(MAT3vec p, MAT3vec p0, MAT3vec d) {
MAT3vec u, u1, v;
double ud, dd, tmp;
// u = p - p0
MAT3_SUB_VEC(u, p, p0);
// calculate the projection, u1, of u along d.
// u1 = ( dot_prod(u, d) / dot_prod(d, d) ) * d;
ud = MAT3_DOT_PRODUCT(u, d);
dd = MAT3_DOT_PRODUCT(d, d);
tmp = ud / dd;
MAT3_SCALE_VEC(u1, d, tmp);;
// v = u - u1 = vector from closest point on line, p1, to the
// original point, p.
MAT3_SUB_VEC(v, u, u1);
return sqrt(MAT3_DOT_PRODUCT(v, v));
}
// Given a point p, and a line through p0 with direction vector d,
// find the shortest distance (squared) from the point to the line
double fgPointLineSquared(MAT3vec p, MAT3vec p0, MAT3vec d) {
MAT3vec u, u1, v;
double ud, dd, tmp;
// u = p - p0
MAT3_SUB_VEC(u, p, p0);
// calculate the projection, u1, of u along d.
// u1 = ( dot_prod(u, d) / dot_prod(d, d) ) * d;
ud = MAT3_DOT_PRODUCT(u, d);
dd = MAT3_DOT_PRODUCT(d, d);
tmp = ud / dd;
MAT3_SCALE_VEC(u1, d, tmp);;
// v = u - u1 = vector from closest point on line, p1, to the
// original point, p.
MAT3_SUB_VEC(v, u, u1);
return ( MAT3_DOT_PRODUCT(v, v) );
}