1
0
Fork 0
flightgear/src/AIModel/AIAircraft.cxx
ehofman 1dfe93d550 David Culp:
Here's the newest AI stuff.

The AIManager at init() creates a new scenario.  Right now the
default_scenario is hard coded in, but eventually the AIManager should get
the scenario filename from preferences.xml.

The scenario defines which AI objects will be created.  Right now it only
creates AIAircraft, but this is easily extended.  The scenario also defines
which flightplan will be assigned to the airplane.  Scenario config files go
in data/Data/AI.

The Airplane gets a pointer to a FlightPlan object.  Each airplane should get
its own flightplan object, even if two airplanes have the same flight plan.
This is because  the flightplan maintains the iterator pointing to the
current waypoint, and two airplanes might be at different locations (for
instance if they were created at different times).  The flight plan files go
in data/Data/AI/FlightPlans.

When the airplane gets to the waypoint named "END" it vanishes.  The
AIAircraft destructor deletes its flight plan (if it has one).

The last waypoint is a place holder only.  I called mine
<WPT><NAME>"EOF"</NAME></WPT>.
2004-05-15 09:07:55 +00:00

429 lines
13 KiB
C++

// FGAIAircraft - FGAIBase-derived class creates an AI airplane
//
// Written by David Culp, started October 2003.
//
// Copyright (C) 2003 David P. Culp - davidculp2@comcast.net
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <simgear/math/point3d.hxx>
#include <Main/fg_props.hxx>
#include <Main/globals.hxx>
#include <Scenery/scenery.hxx>
#include <string>
#include <math.h>
SG_USING_STD(string);
#include "AIAircraft.hxx"
//
// accel, decel, climb_rate, descent_rate, takeoff_speed, climb_speed,
// cruise_speed, descent_speed, land_speed
//
const FGAIAircraft::PERF_STRUCT FGAIAircraft::settings[] = {
// light aircraft
{2.0, 2.0, 450.0, 1000.0, 70.0, 80.0, 100.0, 80.0, 60.0},
// ww2_fighter
{4.0, 2.0, 3000.0, 1500.0, 110.0, 180.0, 250.0, 200.0, 100.0},
// jet_transport
{5.0, 2.0, 3000.0, 1500.0, 140.0, 300.0, 430.0, 300.0, 130.0},
// jet_fighter
{7.0, 3.0, 4000.0, 2000.0, 150.0, 350.0, 500.0, 350.0, 150.0}
};
FGAIAircraft *FGAIAircraft::_self = NULL;
FGAIAircraft::FGAIAircraft(FGAIManager* mgr) {
manager = mgr;
_self = this;
_type_str = "aircraft";
_otype = otAircraft;
fp = 0;
fp_count = 0;
use_perf_vs = true;
// set heading and altitude locks
hdg_lock = false;
alt_lock = false;
}
FGAIAircraft::~FGAIAircraft() {
if (fp) delete fp;
_self = NULL;
}
bool FGAIAircraft::init() {
return FGAIBase::init();
}
void FGAIAircraft::bind() {
FGAIBase::bind();
props->tie("controls/gear/gear-down",
SGRawValueFunctions<bool>(FGAIAircraft::_getGearDown));
/*
props->getNode("controls/lighting/landing-lights", true)
->alias("controls/gear/gear-down");
*/
}
void FGAIAircraft::unbind() {
FGAIBase::unbind();
props->untie("controls/gear/gear-down");
// props->getNode("controls/lighting/landing-lights")->unalias();
}
void FGAIAircraft::update(double dt) {
Run(dt);
Transform();
FGAIBase::update(dt);
}
void FGAIAircraft::SetPerformance(const PERF_STRUCT *ps) {
performance = ps;
}
void FGAIAircraft::Run(double dt) {
FGAIAircraft::dt = dt;
if (fp) ProcessFlightPlan();
double turn_radius_ft;
double turn_circum_ft;
double speed_north_deg_sec;
double speed_east_deg_sec;
double ft_per_deg_lon;
double ft_per_deg_lat;
double dist_covered_ft;
double alpha;
// get size of a degree at this latitude
ft_per_deg_lat = 366468.96 - 3717.12 * cos(pos.lat()/SG_RADIANS_TO_DEGREES);
ft_per_deg_lon = 365228.16 * cos(pos.lat() / SG_RADIANS_TO_DEGREES);
// adjust speed
double speed_diff = tgt_speed - speed;
if (fabs(speed_diff) > 0.2) {
if (speed_diff > 0.0) speed += performance->accel * dt;
if (speed_diff < 0.0) speed -= performance->decel * dt;
}
// convert speed to degrees per second
speed_north_deg_sec = cos( hdg / SG_RADIANS_TO_DEGREES )
* speed * 1.686 / ft_per_deg_lat;
speed_east_deg_sec = sin( hdg / SG_RADIANS_TO_DEGREES )
* speed * 1.686 / ft_per_deg_lon;
// set new position
pos.setlat( pos.lat() + speed_north_deg_sec * dt);
pos.setlon( pos.lon() + speed_east_deg_sec * dt);
// adjust heading based on current bank angle
if (roll != 0.0) {
turn_radius_ft = 0.088362 * speed * speed
/ tan( fabs(roll) / SG_RADIANS_TO_DEGREES );
turn_circum_ft = SGD_2PI * turn_radius_ft;
dist_covered_ft = speed * 1.686 * dt;
alpha = dist_covered_ft / turn_circum_ft * 360.0;
hdg += alpha * sign( roll );
if ( hdg > 360.0 ) hdg -= 360.0;
if ( hdg < 0.0) hdg += 360.0;
}
// adjust target bank angle if heading lock engaged
if (hdg_lock) {
double bank_sense = 0.0;
double diff = fabs(hdg - tgt_heading);
if (diff > 180) diff = fabs(diff - 360);
double sum = hdg + diff;
if (sum > 360.0) sum -= 360.0;
if (fabs(sum - tgt_heading) < 1.0) {
bank_sense = 1.0; // right turn
} else {
bank_sense = -1.0; // left turn
}
if (diff < 30) {
tgt_roll = diff * bank_sense;
} else {
tgt_roll = 30.0 * bank_sense;
}
}
// adjust bank angle, use 9 degrees per second
double bank_diff = tgt_roll - roll;
if (fabs(bank_diff) > 0.2) {
if (bank_diff > 0.0) roll += 9.0 * dt;
if (bank_diff < 0.0) roll -= 9.0 * dt;
}
// adjust altitude (meters) based on current vertical speed (fpm)
altitude += vs / 60.0 * dt;
pos.setelev(altitude * SG_FEET_TO_METER);
double altitude_ft = altitude;
// find target vertical speed if altitude lock engaged
if (alt_lock && use_perf_vs) {
if (altitude_ft < tgt_altitude) {
tgt_vs = tgt_altitude - altitude_ft;
if (tgt_vs > performance->climb_rate)
tgt_vs = performance->climb_rate;
} else {
tgt_vs = tgt_altitude - altitude_ft;
if (tgt_vs < (-performance->descent_rate))
tgt_vs = -performance->descent_rate;
}
}
if (alt_lock && !use_perf_vs) {
double max_vs = 2*(tgt_altitude - altitude);
if ((fabs(tgt_altitude - altitude) < 1500.0) &&
(fabs(max_vs) < fabs(tgt_vs))) tgt_vs = max_vs;
}
// adjust vertical speed
double vs_diff = tgt_vs - vs;
if (fabs(vs_diff) > 10.0) {
if (vs_diff > 0.0) {
vs += 400.0 * dt;
if (vs > tgt_vs) vs = tgt_vs;
} else {
vs -= 300.0 * dt;
if (vs < tgt_vs) vs = tgt_vs;
}
}
// match pitch angle to vertical speed
pitch = vs * 0.005;
//###########################//
// do calculations for radar //
//###########################//
// copy values from the AIManager
double user_latitude = manager->get_user_latitude();
double user_longitude = manager->get_user_longitude();
double user_altitude = manager->get_user_altitude();
double user_heading = manager->get_user_heading();
double user_pitch = manager->get_user_pitch();
double user_yaw = manager->get_user_yaw();
double user_speed = manager->get_user_speed();
// calculate range to target in feet and nautical miles
double lat_range = fabs(pos.lat() - user_latitude) * ft_per_deg_lat;
double lon_range = fabs(pos.lon() - user_longitude) * ft_per_deg_lon;
double range_ft = sqrt( lat_range*lat_range + lon_range*lon_range );
range = range_ft / 6076.11549;
// calculate bearing to target
if (pos.lat() >= user_latitude) {
bearing = atan2(lat_range, lon_range) * SG_RADIANS_TO_DEGREES;
if (pos.lon() >= user_longitude) {
bearing = 90.0 - bearing;
} else {
bearing = 270.0 + bearing;
}
} else {
bearing = atan2(lon_range, lat_range) * SG_RADIANS_TO_DEGREES;
if (pos.lon() >= user_longitude) {
bearing = 180.0 - bearing;
} else {
bearing = 180.0 + bearing;
}
}
// calculate look left/right to target, without yaw correction
horiz_offset = bearing - user_heading;
if (horiz_offset > 180.0) horiz_offset -= 360.0;
if (horiz_offset < -180.0) horiz_offset += 360.0;
// calculate elevation to target
elevation = atan2( altitude_ft - user_altitude, range_ft )
* SG_RADIANS_TO_DEGREES;
// calculate look up/down to target
vert_offset = elevation + user_pitch;
/* this calculation needs to be fixed, but it isn't important anyway
// calculate range rate
double recip_bearing = bearing + 180.0;
if (recip_bearing > 360.0) recip_bearing -= 360.0;
double my_horiz_offset = recip_bearing - hdg;
if (my_horiz_offset > 180.0) my_horiz_offset -= 360.0;
if (my_horiz_offset < -180.0) my_horiz_offset += 360.0;
rdot = (-user_speed * cos( horiz_offset * SG_DEGREES_TO_RADIANS ))
+ (-speed * 1.686 * cos( my_horiz_offset * SG_DEGREES_TO_RADIANS ));
*/
// now correct look left/right for yaw
horiz_offset += user_yaw;
// calculate values for radar display
y_shift = range * cos( horiz_offset * SG_DEGREES_TO_RADIANS);
x_shift = range * sin( horiz_offset * SG_DEGREES_TO_RADIANS);
rotation = hdg - user_heading;
if (rotation < 0.0) rotation += 360.0;
}
void FGAIAircraft::AccelTo(double speed) {
tgt_speed = speed;
}
void FGAIAircraft::PitchTo(double angle) {
tgt_pitch = angle;
alt_lock = false;
}
void FGAIAircraft::RollTo(double angle) {
tgt_roll = angle;
hdg_lock = false;
}
void FGAIAircraft::YawTo(double angle) {
tgt_yaw = angle;
}
void FGAIAircraft::ClimbTo(double altitude) {
tgt_altitude = altitude;
alt_lock = true;
}
void FGAIAircraft::TurnTo(double heading) {
tgt_heading = heading;
hdg_lock = true;
}
double FGAIAircraft::sign(double x) {
if ( x < 0.0 ) { return -1.0; }
else { return 1.0; }
}
void FGAIAircraft::SetFlightPlan(FGAIFlightPlan *f) {
fp = f;
}
void FGAIAircraft::ProcessFlightPlan( void ) {
FGAIFlightPlan::waypoint* prev = 0; // the one behind you
FGAIFlightPlan::waypoint* curr = 0; // the one ahead
FGAIFlightPlan::waypoint* next = 0; // the next plus 1
prev = fp->getPreviousWaypoint();
curr = fp->getCurrentWaypoint();
next = fp->getNextWaypoint();
++fp_count;
if (!prev) { //beginning of flightplan, do this initialization once
fp->IncrementWaypoint();
prev = fp->getPreviousWaypoint(); //first waypoint
curr = fp->getCurrentWaypoint(); //second waypoint
next = fp->getNextWaypoint(); //third waypoint (might not exist!)
setLatitude(prev->latitude);
setLongitude(prev->longitude);
setSpeed(prev->speed);
setAltitude(prev->altitude);
setHeading(fp->getBearing(prev->latitude, prev->longitude, curr));
if (next) fp->setLeadDistance(speed, hdg, curr, next);
if (curr->crossat > -1000.0) { //start descent/climb now
use_perf_vs = false;
tgt_vs = (curr->crossat - prev->altitude)/
(fp->getDistanceToGo(pos.lat(), pos.lon(), curr)/
6076.0/prev->speed*60.0);
tgt_altitude = curr->crossat;
} else {
use_perf_vs = true;
tgt_altitude = prev->altitude;
}
alt_lock = hdg_lock = true;
//cout << "First waypoint: " << prev->name << endl;
//cout << " Target speed: " << tgt_speed << endl;
//cout << " Target altitude: " << tgt_altitude << endl;
//cout << " Target heading: " << tgt_heading << endl << endl;
return;
} // end of initialization
// let's only process the flight plan every 11 time steps
if (fp_count < 11) {
return;
} else {
fp_count = 0;
// check to see if we've reached the lead point for our next turn
double dist_to_go = fp->getDistanceToGo(pos.lat(), pos.lon(), curr);
double lead_dist = fp->getLeadDistance();
if (lead_dist < (2*speed)) lead_dist = 2*speed; //don't skip over the waypoint
//cout << "dist_to_go: " << dist_to_go << ", lead_dist: " << lead_dist << endl;
if ( dist_to_go < lead_dist ) {
if (curr->name == "END") { //end of the flight plan, so terminate
setDie(true);
return;
}
// we've reached the lead-point for the waypoint ahead
if (next) tgt_heading = fp->getBearing(curr, next);
fp->IncrementWaypoint();
prev = fp->getPreviousWaypoint();
curr = fp->getCurrentWaypoint();
next = fp->getNextWaypoint();
if (next) fp->setLeadDistance(speed, tgt_heading, curr, next);
if (curr->crossat > -1000.0) {
use_perf_vs = false;
tgt_vs = (curr->crossat - altitude)/
(fp->getDistanceToGo(pos.lat(), pos.lon(), curr)/6076.0/speed*60.0);
tgt_altitude = curr->crossat;
} else {
use_perf_vs = true;
tgt_altitude = prev->altitude;
}
tgt_speed = prev->speed;
hdg_lock = alt_lock = true;
//cout << "Crossing waypoint: " << prev->name << endl;
//cout << " Target speed: " << tgt_speed << endl;
//cout << " Target altitude: " << tgt_altitude << endl;
//cout << " Target heading: " << tgt_heading << endl << endl;
} else {
double calc_bearing = fp->getBearing(pos.lat(), pos.lon(), curr);
double hdg_error = calc_bearing - tgt_heading;
if (fabs(hdg_error) > 1.0) {
TurnTo( calc_bearing );
}
}
}
}