1
0
Fork 0
flightgear/src/FDM/10520d.cxx

459 lines
13 KiB
C++

// Module: 10520c.c
// Author: Phil Schubert
// Date started: 12/03/99
// Purpose: Models a Continental IO-520-M Engine
// Called by: FGSimExec
//
// Copyright (C) 1999 Philip L. Schubert (philings@ozemail.com.au)
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
//
// Further information about the GNU General Public License can also
// be found on the world wide web at http://www.gnu.org.
//
// FUNCTIONAL DESCRIPTION
// ------------------------------------------------------------------------
// Models a Continental IO-520-M engine. This engine is used in Cessna
// 210, 310, Beechcraft Bonaza and Baron C55. The equations used below
// were determined by a first and second order curve fits using Excel.
// The data is from the Cessna Aircraft Corporations Engine and Flight
// Computer for C310. Part Number D3500-13
//
// ARGUMENTS
// ------------------------------------------------------------------------
//
//
// HISTORY
// ------------------------------------------------------------------------
// 12/03/99 PLS Created
// 07/03/99 PLS Added Calculation of Density, and Prop_Torque
// 07/03/99 PLS Restructered Variables to allow easier implementation
// of Classes
// 15/03/99 PLS Added Oil Pressure, Oil Temperature and CH Temp
// ------------------------------------------------------------------------
// INCLUDES
// ------------------------------------------------------------------------
#include <simgear/compiler.h>
#include <iostream>
#include <math.h>
#include "10520d.hxx"
FG_USING_STD(cout);
FG_USING_STD(endl);
// ------------------------------------------------------------------------
// CODE
// ------------------------------------------------------------------------
// Calculate Engine RPM based on Propellor Lever Position
float FGEngine::Calc_Engine_RPM (float LeverPosition)
{
// Calculate RPM as set by Prop Lever Position. Assumes engine
// will run at 1000 RPM at full course
float RPM = LeverPosition * (Max_RPM - Min_RPM) /100 + Min_RPM ;
if ( RPM >= Max_RPM ) {
RPM = Max_RPM;
}
return RPM;
}
// Calculate Manifold Pressure based on Throttle lever Position
static float Calc_Manifold_Pressure ( float LeverPosn, float MaxMan)
{
float Inches;
// if ( x < = 0 ) {
// x = 0.00001;
// }
Inches = LeverPosn * MaxMan / 100;
return Inches;
}
// set initial default values
void FGEngine::init() {
// Control and environment inputs
IAS = 0;
Throttle_Lever_Pos = 75;
Propeller_Lever_Pos = 75;
Mixture_Lever_Pos = 100;
// Engine Specific Variables used by this program that have limits.
// Will be set in a parameter file to be read in to create
// and instance for each engine.
Max_Manifold_Pressure = 29.50;
Max_RPM = 2700;
Min_RPM = 1000;
Max_Fuel_Flow = 130;
Mag_Derate_Percent = 5;
MaxHP = 285;
Gear_Ratio = 1;
// Initialise Engine Variables used by this instance
Percentage_Power = 0;
Manifold_Pressure = 29.00; // Inches
RPM = 500;
Fuel_Flow = 0; // lbs/hour
Torque = 0;
CHT = 370;
Mixture = 14;
Oil_Pressure = 0; // PSI
Oil_Temp = 85; // Deg C
HP = 0;
RPS = 0;
Torque_Imbalance = 0;
Desired_RPM = 0;
// Initialise Propellor Variables used by this instance
FGProp1_Angular_V = 0;
FGProp1_Coef_Drag = 0.6;
FGProp1_Torque = 0;
FGProp1_Thrust = 0;
FGProp1_RPS = 0;
FGProp1_Coef_Lift = 0.1;
Alpha1 = 13.5;
FGProp1_Blade_Angle = 13.5;
FGProp_Fine_Pitch_Stop = 13.5;
FGProp_Course_Pitch_Stop = 55;
// Other internal values
Rho = 0.002378;
}
// Calculate Oil Pressure
static float Oil_Press (float Oil_Temp, float Engine_RPM)
{
float Oil_Pressure = 0; //PSI
float Oil_Press_Relief_Valve = 60; //PSI
float Oil_Press_RPM_Max = 1800;
float Design_Oil_Temp = 85; //Celsius
float Oil_Viscosity_Index = 0.25; // PSI/Deg C
float Temp_Deviation = 0; // Deg C
Oil_Pressure = (Oil_Press_Relief_Valve / Oil_Press_RPM_Max) * Engine_RPM;
// Pressure relief valve opens at Oil_Press_Relief_Valve PSI setting
if (Oil_Pressure >= Oil_Press_Relief_Valve)
{
Oil_Pressure = Oil_Press_Relief_Valve;
}
// Now adjust pressure according to Temp which affects the viscosity
Oil_Pressure += (Design_Oil_Temp - Oil_Temp) * Oil_Viscosity_Index;
return Oil_Pressure;
}
// Calculate Cylinder Head Temperature
static float Calc_CHT (float Fuel_Flow, float Mixture, float IAS)
{
float CHT = 350;
return CHT;
}
// Calculate Density Ratio
static float Density_Ratio ( float x )
{
float y = ((3E-10 * x * x) - (3E-05 * x) + 0.9998);
return y;
}
// Calculate Air Density - Rho
static float Density ( float x )
{
float y = ((9E-08 * x * x) - (7E-08 * x) + 0.0024);
return y;
}
// Calculate Speed in FPS given Knots CAS
static float IAS_to_FPS (float ias)
{
return ias * 1.68888888;
}
// update the engine model based on current control positions
void FGEngine::update() {
// Declare local variables
int num = 0; // Not used. Counting variables
int num2 = 100; // Not used.
float ManXRPM = 0;
float Vo = 0;
float V1 = 0;
// Set up the new variables
float Blade_Station = 30;
float Rho = 0.002378;
float FGProp_Area = 1.405/3;
float PI = 3.1428571;
// Input Variables
// float IAS = 0;
// 0 = Closed, 100 = Fully Open
// float Throttle_Lever_Pos = 75;
// 0 = Full Course 100 = Full Fine
// float Propeller_Lever_Pos = 75;
// 0 = Idle Cut Off 100 = Full Rich
// float Mixture_Lever_Pos = 100;
// Environmental Variables
// Temp Variation from ISA (Deg F)
float FG_ISA_VAR = 0;
// Pressure Altitude 1000's of Feet
float FG_Pressure_Ht = 0;
// Parameters that alter the operation of the engine.
// Yes = 1. Is there Fuel Available. Calculated elsewhere
int Fuel_Available = 1;
// Off = 0. Reduces power by 3 % for same throttle setting
int Alternate_Air_Pos =0;
// 1 = On. Reduces power by 5 % for same power lever settings
int Magneto_Left = 1;
// 1 = On. Ditto, Both of the above though do not alter fuel flow
int Magneto_Right = 1;
// There needs to be a section in here to trap silly values, like
// 0, otherwise they will crash the calculations
// cout << " Number of Iterations ";
// cin >> num2;
// cout << endl;
// cout << " Throttle % ";
// cin >> Throttle_Lever_Pos;
// cout << endl;
// cout << " Prop % ";
// cin >> Propeller_Lever_Pos;
// cout << endl;
//==================================================================
// Engine & Environmental Inputs from elsewhere
// Calculate Air Density (Rho) - In FG this is calculated in
// FG_Atomoshere.cxx
Rho = Density(FG_Pressure_Ht); // In FG FG_Pressure_Ht is "h"
// cout << "Rho = " << Rho << endl;
// Calculate Manifold Pressure (Engine 1) as set by throttle opening
Manifold_Pressure =
Calc_Manifold_Pressure( Throttle_Lever_Pos, Max_Manifold_Pressure );
cout << "manifold pressure = " << Manifold_Pressure << endl;
RPM = Calc_Engine_RPM(Propeller_Lever_Pos);
// cout << "Engine RPM = " << RPM << endl;
Desired_RPM = RPM;
cout << "Desired RPM = " << Desired_RPM << endl;
//==================================================================
// Engine Power & Torque Calculations
// Loop until stable - required for testing only
for (num = 0; num < num2; num++) {
// cout << endl << "====================" << endl;
// cout << "MP Inches = " << Manifold_Pressure << "\t";
// cout << " RPM = " << RPM << "\t";
// For a given Manifold Pressure and RPM calculate the % Power
// Multiply Manifold Pressure by RPM
ManXRPM = Manifold_Pressure * RPM;
// cout << ManXRPM << endl;
// Calculate % Power
Percentage_Power = (+ 7E-09 * ManXRPM * ManXRPM)
+ ( + 7E-04 * ManXRPM) - 0.1218;
// cout << "percent power = " << Percentage_Power << "%" << "\t";
// Adjust for Temperature - Temperature above Standard decrease
// power % by 7/120 per degree F increase, and incease power for
// temps below at the same ratio
Percentage_Power = Percentage_Power - (FG_ISA_VAR * 7 /120);
// cout << " adjusted T = " << Percentage_Power << "%" << "\t";
// Adjust for Altitude. In this version a linear variation is
// used. Decrease 1% for each 1000' increase in Altitde
Percentage_Power = Percentage_Power + (FG_Pressure_Ht * 12/10000);
// cout << " adjusted A = " << Percentage_Power << "%" << "\t";
// Now Calculate Fuel Flow based on % Power Best Power Mixture
Fuel_Flow = Percentage_Power * Max_Fuel_Flow / 100.0;
// cout << Fuel_Flow << " lbs/hr"<< endl;
// Now Derate engine for the effects of Bad/Switched off magnetos
if (Magneto_Left == 0 && Magneto_Right == 0) {
// cout << "Both OFF\n";
Percentage_Power = 0;
} else if (Magneto_Left && Magneto_Right) {
// cout << "Both On ";
} else if (Magneto_Left == 0 || Magneto_Right== 0) {
// cout << "1 Magneto Failed ";
Percentage_Power = Percentage_Power *
((100.0 - Mag_Derate_Percent)/100.0);
}
// cout << "Final engine % power = " << Percentage_Power << "%" << endl;
// Calculate Engine Horsepower
HP = Percentage_Power * MaxHP / 100.0;
// Calculate Engine Torque
Torque = HP * 5252 / RPM;
// cout << Torque << "Ft/lbs" << "\t";
// Calculate Cylinder Head Temperature
CHT = Calc_CHT( Fuel_Flow, Mixture, IAS);
// cout << "Cylinder Head Temp (F) = " << CHT << endl;
// Calculate Oil Pressure
Oil_Pressure = Oil_Press( Oil_Temp, RPM );
// cout << "Oil Pressure (PSI) = " << Oil_Pressure << endl;
//==============================================================
// Now do the Propellor Calculations
// Revs per second
FGProp1_RPS = RPM * Gear_Ratio / 60.0;
// cout << FGProp1_RPS << " RPS" << endl;
//Radial Flow Vector (V2) Ft/sec at Ref Blade Station (usually 30")
FGProp1_Angular_V = FGProp1_RPS * 2 * PI * (Blade_Station / 12);
// cout << "Angular Velocity " << FGProp1_Angular_V << endl;
// Axial Flow Vector (Vo) Ft/sec
// Some further work required here to allow for inflow at low speeds
// Vo = (IAS + 20) * 1.688888;
Vo = IAS_to_FPS(IAS + 20);
// cout << "Feet/sec = " << Vo << endl;
// cout << Vo << "Axial Velocity" << endl;
// Relative Velocity (V1)
V1 = sqrt((FGProp1_Angular_V * FGProp1_Angular_V) +
(Vo * Vo));
// cout << "Relative Velocity " << V1 << endl;
if ( FGProp1_Blade_Angle >= FGProp_Course_Pitch_Stop ) {
FGProp1_Blade_Angle = FGProp_Course_Pitch_Stop;
}
// cout << FGProp1_Blade_Angle << " Prop Blade Angle" << endl;
// Blade Angle of Attack (Alpha1)
Alpha1 = FGProp1_Blade_Angle -(atan(Vo / FGProp1_Angular_V) * (180/PI));
// cout << Alpha1 << " Alpha1" << endl;
// cout << " Alpha1 = " << Alpha1
// << " Blade angle = " << FGProp1_Blade_Angle
// << " Vo = " << Vo
// << " FGProp1_Angular_V = " << FGProp1_Angular_V << endl;
// Calculate Coefficient of Drag at Alpha1
FGProp1_Coef_Drag = (0.0005 * (Alpha1 * Alpha1)) + (0.0003 * Alpha1)
+ 0.0094;
// cout << FGProp1_Coef_Drag << " Coef Drag" << endl;
// Calculate Coefficient of Lift at Alpha1
FGProp1_Coef_Lift = -(0.0026 * (Alpha1 * Alpha1)) + (0.1027 * Alpha1)
+ 0.2295;
// cout << FGProp1_Coef_Lift << " Coef Lift " << endl;
// Covert Alplha1 to Radians
// Alpha1 = Alpha1 * PI / 180;
// Calculate Prop Torque
FGProp1_Torque = (0.5 * Rho * (V1 * V1) * FGProp_Area
* ((FGProp1_Coef_Lift * sin(Alpha1 * PI / 180))
+ (FGProp1_Coef_Drag * cos(Alpha1 * PI / 180))))
* (Blade_Station/12);
// cout << "Prop Torque = " << FGProp1_Torque << endl;
// Calculate Prop Thrust
// cout << " V1 = " << V1 << " Alpha1 = " << Alpha1 << endl;
FGProp1_Thrust = 0.5 * Rho * (V1 * V1) * FGProp_Area
* ((FGProp1_Coef_Lift * cos(Alpha1 * PI / 180))
- (FGProp1_Coef_Drag * sin(Alpha1 * PI / 180)));
// cout << " Prop Thrust = " << FGProp1_Thrust << endl;
// End of Propeller Calculations
//==============================================================
Torque_Imbalance = FGProp1_Torque - Torque;
// cout << Torque_Imbalance << endl;
if (Torque_Imbalance > 20) {
RPM -= 14.5;
// FGProp1_RPM -= 25;
FGProp1_Blade_Angle -= 0.75;
}
if (FGProp1_Blade_Angle < FGProp_Fine_Pitch_Stop) {
FGProp1_Blade_Angle = FGProp_Fine_Pitch_Stop;
}
if (Torque_Imbalance < -20) {
RPM += 14.5;
// FGProp1_RPM += 25;
FGProp1_Blade_Angle += 0.75;
}
if (RPM >= 2700) {
RPM = 2700;
}
// cout << FGEng1_RPM << " Blade_Angle " << FGProp1_Blade_Angle << endl << endl;
}
}
// Functions
// Calculate Oil Temperature
static float Oil_Temp (float Fuel_Flow, float Mixture, float IAS)
{
float Oil_Temp = 85;
return (Oil_Temp);
}