1dc35581f5
MSVC compiler.
459 lines
13 KiB
C++
459 lines
13 KiB
C++
// Module: 10520c.c
|
|
// Author: Phil Schubert
|
|
// Date started: 12/03/99
|
|
// Purpose: Models a Continental IO-520-M Engine
|
|
// Called by: FGSimExec
|
|
//
|
|
// Copyright (C) 1999 Philip L. Schubert (philings@ozemail.com.au)
|
|
//
|
|
// This program is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of the
|
|
// License, or (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful, but
|
|
// WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
|
|
// 02111-1307, USA.
|
|
//
|
|
// Further information about the GNU General Public License can also
|
|
// be found on the world wide web at http://www.gnu.org.
|
|
//
|
|
// FUNCTIONAL DESCRIPTION
|
|
// ------------------------------------------------------------------------
|
|
// Models a Continental IO-520-M engine. This engine is used in Cessna
|
|
// 210, 310, Beechcraft Bonaza and Baron C55. The equations used below
|
|
// were determined by a first and second order curve fits using Excel.
|
|
// The data is from the Cessna Aircraft Corporations Engine and Flight
|
|
// Computer for C310. Part Number D3500-13
|
|
//
|
|
// ARGUMENTS
|
|
// ------------------------------------------------------------------------
|
|
//
|
|
//
|
|
// HISTORY
|
|
// ------------------------------------------------------------------------
|
|
// 12/03/99 PLS Created
|
|
// 07/03/99 PLS Added Calculation of Density, and Prop_Torque
|
|
// 07/03/99 PLS Restructered Variables to allow easier implementation
|
|
// of Classes
|
|
// 15/03/99 PLS Added Oil Pressure, Oil Temperature and CH Temp
|
|
// ------------------------------------------------------------------------
|
|
// INCLUDES
|
|
// ------------------------------------------------------------------------
|
|
|
|
#include <simgear/compiler.h>
|
|
|
|
#include <iostream>
|
|
#include <math.h>
|
|
|
|
#include "10520d.hxx"
|
|
|
|
FG_USING_STD(cout);
|
|
FG_USING_STD(endl);
|
|
|
|
// ------------------------------------------------------------------------
|
|
// CODE
|
|
// ------------------------------------------------------------------------
|
|
|
|
|
|
// Calculate Engine RPM based on Propellor Lever Position
|
|
float FGEngine::Calc_Engine_RPM (float LeverPosition)
|
|
{
|
|
// Calculate RPM as set by Prop Lever Position. Assumes engine
|
|
// will run at 1000 RPM at full course
|
|
|
|
float RPM = LeverPosition * (Max_RPM - Min_RPM) /100 + Min_RPM ;
|
|
|
|
if ( RPM >= Max_RPM ) {
|
|
RPM = Max_RPM;
|
|
}
|
|
|
|
return RPM;
|
|
}
|
|
|
|
|
|
// Calculate Manifold Pressure based on Throttle lever Position
|
|
static float Calc_Manifold_Pressure ( float LeverPosn, float MaxMan)
|
|
{
|
|
float Inches;
|
|
// if ( x < = 0 ) {
|
|
// x = 0.00001;
|
|
// }
|
|
Inches = LeverPosn * MaxMan / 100;
|
|
return Inches;
|
|
}
|
|
|
|
|
|
// set initial default values
|
|
void FGEngine::init() {
|
|
// Control and environment inputs
|
|
IAS = 0;
|
|
Throttle_Lever_Pos = 75;
|
|
Propeller_Lever_Pos = 75;
|
|
Mixture_Lever_Pos = 100;
|
|
|
|
// Engine Specific Variables used by this program that have limits.
|
|
// Will be set in a parameter file to be read in to create
|
|
// and instance for each engine.
|
|
Max_Manifold_Pressure = 29.50;
|
|
Max_RPM = 2700;
|
|
Min_RPM = 1000;
|
|
Max_Fuel_Flow = 130;
|
|
Mag_Derate_Percent = 5;
|
|
MaxHP = 285;
|
|
Gear_Ratio = 1;
|
|
|
|
// Initialise Engine Variables used by this instance
|
|
Percentage_Power = 0;
|
|
Manifold_Pressure = 29.00; // Inches
|
|
RPM = 500;
|
|
Fuel_Flow = 0; // lbs/hour
|
|
Torque = 0;
|
|
CHT = 370;
|
|
Mixture = 14;
|
|
Oil_Pressure = 0; // PSI
|
|
Oil_Temp = 85; // Deg C
|
|
HP = 0;
|
|
RPS = 0;
|
|
Torque_Imbalance = 0;
|
|
Desired_RPM = 0;
|
|
|
|
// Initialise Propellor Variables used by this instance
|
|
FGProp1_Angular_V = 0;
|
|
FGProp1_Coef_Drag = 0.6;
|
|
FGProp1_Torque = 0;
|
|
FGProp1_Thrust = 0;
|
|
FGProp1_RPS = 0;
|
|
FGProp1_Coef_Lift = 0.1;
|
|
Alpha1 = 13.5;
|
|
FGProp1_Blade_Angle = 13.5;
|
|
FGProp_Fine_Pitch_Stop = 13.5;
|
|
FGProp_Course_Pitch_Stop = 55;
|
|
|
|
// Other internal values
|
|
Rho = 0.002378;
|
|
}
|
|
|
|
|
|
// Calculate Oil Pressure
|
|
static float Oil_Press (float Oil_Temp, float Engine_RPM)
|
|
{
|
|
float Oil_Pressure = 0; //PSI
|
|
float Oil_Press_Relief_Valve = 60; //PSI
|
|
float Oil_Press_RPM_Max = 1800;
|
|
float Design_Oil_Temp = 85; //Celsius
|
|
float Oil_Viscosity_Index = 0.25; // PSI/Deg C
|
|
float Temp_Deviation = 0; // Deg C
|
|
|
|
Oil_Pressure = (Oil_Press_Relief_Valve / Oil_Press_RPM_Max) * Engine_RPM;
|
|
|
|
// Pressure relief valve opens at Oil_Press_Relief_Valve PSI setting
|
|
if (Oil_Pressure >= Oil_Press_Relief_Valve)
|
|
{
|
|
Oil_Pressure = Oil_Press_Relief_Valve;
|
|
}
|
|
|
|
// Now adjust pressure according to Temp which affects the viscosity
|
|
|
|
Oil_Pressure += (Design_Oil_Temp - Oil_Temp) * Oil_Viscosity_Index;
|
|
|
|
return Oil_Pressure;
|
|
}
|
|
|
|
|
|
// Calculate Cylinder Head Temperature
|
|
static float Calc_CHT (float Fuel_Flow, float Mixture, float IAS)
|
|
{
|
|
float CHT = 350;
|
|
|
|
return CHT;
|
|
}
|
|
|
|
|
|
// Calculate Density Ratio
|
|
static float Density_Ratio ( float x )
|
|
{
|
|
float y = ((3E-10 * x * x) - (3E-05 * x) + 0.9998);
|
|
return y;
|
|
}
|
|
|
|
|
|
// Calculate Air Density - Rho
|
|
static float Density ( float x )
|
|
{
|
|
float y = ((9E-08 * x * x) - (7E-08 * x) + 0.0024);
|
|
return y;
|
|
}
|
|
|
|
|
|
// Calculate Speed in FPS given Knots CAS
|
|
static float IAS_to_FPS (float ias)
|
|
{
|
|
return ias * 1.68888888;
|
|
}
|
|
|
|
|
|
// update the engine model based on current control positions
|
|
void FGEngine::update() {
|
|
// Declare local variables
|
|
int num = 0; // Not used. Counting variables
|
|
int num2 = 100; // Not used.
|
|
float ManXRPM = 0;
|
|
float Vo = 0;
|
|
float V1 = 0;
|
|
|
|
// Set up the new variables
|
|
float Blade_Station = 30;
|
|
float Rho = 0.002378;
|
|
float FGProp_Area = 1.405/3;
|
|
float PI = 3.1428571;
|
|
|
|
// Input Variables
|
|
// float IAS = 0;
|
|
|
|
// 0 = Closed, 100 = Fully Open
|
|
// float Throttle_Lever_Pos = 75;
|
|
// 0 = Full Course 100 = Full Fine
|
|
// float Propeller_Lever_Pos = 75;
|
|
// 0 = Idle Cut Off 100 = Full Rich
|
|
// float Mixture_Lever_Pos = 100;
|
|
|
|
// Environmental Variables
|
|
|
|
// Temp Variation from ISA (Deg F)
|
|
float FG_ISA_VAR = 0;
|
|
// Pressure Altitude 1000's of Feet
|
|
float FG_Pressure_Ht = 0;
|
|
|
|
// Parameters that alter the operation of the engine.
|
|
// Yes = 1. Is there Fuel Available. Calculated elsewhere
|
|
int Fuel_Available = 1;
|
|
// Off = 0. Reduces power by 3 % for same throttle setting
|
|
int Alternate_Air_Pos =0;
|
|
// 1 = On. Reduces power by 5 % for same power lever settings
|
|
int Magneto_Left = 1;
|
|
// 1 = On. Ditto, Both of the above though do not alter fuel flow
|
|
int Magneto_Right = 1;
|
|
|
|
// There needs to be a section in here to trap silly values, like
|
|
// 0, otherwise they will crash the calculations
|
|
|
|
// cout << " Number of Iterations ";
|
|
// cin >> num2;
|
|
// cout << endl;
|
|
|
|
// cout << " Throttle % ";
|
|
// cin >> Throttle_Lever_Pos;
|
|
// cout << endl;
|
|
|
|
// cout << " Prop % ";
|
|
// cin >> Propeller_Lever_Pos;
|
|
// cout << endl;
|
|
|
|
//==================================================================
|
|
// Engine & Environmental Inputs from elsewhere
|
|
|
|
// Calculate Air Density (Rho) - In FG this is calculated in
|
|
// FG_Atomoshere.cxx
|
|
|
|
Rho = Density(FG_Pressure_Ht); // In FG FG_Pressure_Ht is "h"
|
|
// cout << "Rho = " << Rho << endl;
|
|
|
|
// Calculate Manifold Pressure (Engine 1) as set by throttle opening
|
|
|
|
Manifold_Pressure =
|
|
Calc_Manifold_Pressure( Throttle_Lever_Pos, Max_Manifold_Pressure );
|
|
cout << "manifold pressure = " << Manifold_Pressure << endl;
|
|
|
|
|
|
RPM = Calc_Engine_RPM(Propeller_Lever_Pos);
|
|
// cout << "Engine RPM = " << RPM << endl;
|
|
|
|
Desired_RPM = RPM;
|
|
cout << "Desired RPM = " << Desired_RPM << endl;
|
|
|
|
//==================================================================
|
|
// Engine Power & Torque Calculations
|
|
|
|
// Loop until stable - required for testing only
|
|
for (num = 0; num < num2; num++) {
|
|
// cout << endl << "====================" << endl;
|
|
// cout << "MP Inches = " << Manifold_Pressure << "\t";
|
|
// cout << " RPM = " << RPM << "\t";
|
|
|
|
// For a given Manifold Pressure and RPM calculate the % Power
|
|
// Multiply Manifold Pressure by RPM
|
|
ManXRPM = Manifold_Pressure * RPM;
|
|
// cout << ManXRPM << endl;
|
|
|
|
// Calculate % Power
|
|
Percentage_Power = (+ 7E-09 * ManXRPM * ManXRPM)
|
|
+ ( + 7E-04 * ManXRPM) - 0.1218;
|
|
// cout << "percent power = " << Percentage_Power << "%" << "\t";
|
|
|
|
// Adjust for Temperature - Temperature above Standard decrease
|
|
// power % by 7/120 per degree F increase, and incease power for
|
|
// temps below at the same ratio
|
|
Percentage_Power = Percentage_Power - (FG_ISA_VAR * 7 /120);
|
|
// cout << " adjusted T = " << Percentage_Power << "%" << "\t";
|
|
|
|
// Adjust for Altitude. In this version a linear variation is
|
|
// used. Decrease 1% for each 1000' increase in Altitde
|
|
Percentage_Power = Percentage_Power + (FG_Pressure_Ht * 12/10000);
|
|
// cout << " adjusted A = " << Percentage_Power << "%" << "\t";
|
|
|
|
// Now Calculate Fuel Flow based on % Power Best Power Mixture
|
|
Fuel_Flow = Percentage_Power * Max_Fuel_Flow / 100.0;
|
|
// cout << Fuel_Flow << " lbs/hr"<< endl;
|
|
|
|
// Now Derate engine for the effects of Bad/Switched off magnetos
|
|
if (Magneto_Left == 0 && Magneto_Right == 0) {
|
|
// cout << "Both OFF\n";
|
|
Percentage_Power = 0;
|
|
} else if (Magneto_Left && Magneto_Right) {
|
|
// cout << "Both On ";
|
|
} else if (Magneto_Left == 0 || Magneto_Right== 0) {
|
|
// cout << "1 Magneto Failed ";
|
|
|
|
Percentage_Power = Percentage_Power *
|
|
((100.0 - Mag_Derate_Percent)/100.0);
|
|
}
|
|
// cout << "Final engine % power = " << Percentage_Power << "%" << endl;
|
|
|
|
// Calculate Engine Horsepower
|
|
|
|
HP = Percentage_Power * MaxHP / 100.0;
|
|
|
|
// Calculate Engine Torque
|
|
|
|
Torque = HP * 5252 / RPM;
|
|
// cout << Torque << "Ft/lbs" << "\t";
|
|
|
|
// Calculate Cylinder Head Temperature
|
|
CHT = Calc_CHT( Fuel_Flow, Mixture, IAS);
|
|
// cout << "Cylinder Head Temp (F) = " << CHT << endl;
|
|
|
|
// Calculate Oil Pressure
|
|
Oil_Pressure = Oil_Press( Oil_Temp, RPM );
|
|
// cout << "Oil Pressure (PSI) = " << Oil_Pressure << endl;
|
|
|
|
//==============================================================
|
|
|
|
// Now do the Propellor Calculations
|
|
|
|
// Revs per second
|
|
FGProp1_RPS = RPM * Gear_Ratio / 60.0;
|
|
// cout << FGProp1_RPS << " RPS" << endl;
|
|
|
|
//Radial Flow Vector (V2) Ft/sec at Ref Blade Station (usually 30")
|
|
FGProp1_Angular_V = FGProp1_RPS * 2 * PI * (Blade_Station / 12);
|
|
// cout << "Angular Velocity " << FGProp1_Angular_V << endl;
|
|
|
|
// Axial Flow Vector (Vo) Ft/sec
|
|
// Some further work required here to allow for inflow at low speeds
|
|
// Vo = (IAS + 20) * 1.688888;
|
|
Vo = IAS_to_FPS(IAS + 20);
|
|
// cout << "Feet/sec = " << Vo << endl;
|
|
|
|
// cout << Vo << "Axial Velocity" << endl;
|
|
|
|
// Relative Velocity (V1)
|
|
V1 = sqrt((FGProp1_Angular_V * FGProp1_Angular_V) +
|
|
(Vo * Vo));
|
|
// cout << "Relative Velocity " << V1 << endl;
|
|
|
|
if ( FGProp1_Blade_Angle >= FGProp_Course_Pitch_Stop ) {
|
|
FGProp1_Blade_Angle = FGProp_Course_Pitch_Stop;
|
|
}
|
|
|
|
// cout << FGProp1_Blade_Angle << " Prop Blade Angle" << endl;
|
|
|
|
// Blade Angle of Attack (Alpha1)
|
|
|
|
Alpha1 = FGProp1_Blade_Angle -(atan(Vo / FGProp1_Angular_V) * (180/PI));
|
|
// cout << Alpha1 << " Alpha1" << endl;
|
|
|
|
// cout << " Alpha1 = " << Alpha1
|
|
// << " Blade angle = " << FGProp1_Blade_Angle
|
|
// << " Vo = " << Vo
|
|
// << " FGProp1_Angular_V = " << FGProp1_Angular_V << endl;
|
|
|
|
// Calculate Coefficient of Drag at Alpha1
|
|
FGProp1_Coef_Drag = (0.0005 * (Alpha1 * Alpha1)) + (0.0003 * Alpha1)
|
|
+ 0.0094;
|
|
// cout << FGProp1_Coef_Drag << " Coef Drag" << endl;
|
|
|
|
// Calculate Coefficient of Lift at Alpha1
|
|
FGProp1_Coef_Lift = -(0.0026 * (Alpha1 * Alpha1)) + (0.1027 * Alpha1)
|
|
+ 0.2295;
|
|
// cout << FGProp1_Coef_Lift << " Coef Lift " << endl;
|
|
|
|
// Covert Alplha1 to Radians
|
|
// Alpha1 = Alpha1 * PI / 180;
|
|
|
|
// Calculate Prop Torque
|
|
FGProp1_Torque = (0.5 * Rho * (V1 * V1) * FGProp_Area
|
|
* ((FGProp1_Coef_Lift * sin(Alpha1 * PI / 180))
|
|
+ (FGProp1_Coef_Drag * cos(Alpha1 * PI / 180))))
|
|
* (Blade_Station/12);
|
|
// cout << "Prop Torque = " << FGProp1_Torque << endl;
|
|
|
|
// Calculate Prop Thrust
|
|
// cout << " V1 = " << V1 << " Alpha1 = " << Alpha1 << endl;
|
|
FGProp1_Thrust = 0.5 * Rho * (V1 * V1) * FGProp_Area
|
|
* ((FGProp1_Coef_Lift * cos(Alpha1 * PI / 180))
|
|
- (FGProp1_Coef_Drag * sin(Alpha1 * PI / 180)));
|
|
// cout << " Prop Thrust = " << FGProp1_Thrust << endl;
|
|
|
|
// End of Propeller Calculations
|
|
//==============================================================
|
|
|
|
|
|
|
|
Torque_Imbalance = FGProp1_Torque - Torque;
|
|
// cout << Torque_Imbalance << endl;
|
|
|
|
if (Torque_Imbalance > 20) {
|
|
RPM -= 14.5;
|
|
// FGProp1_RPM -= 25;
|
|
FGProp1_Blade_Angle -= 0.75;
|
|
}
|
|
|
|
if (FGProp1_Blade_Angle < FGProp_Fine_Pitch_Stop) {
|
|
FGProp1_Blade_Angle = FGProp_Fine_Pitch_Stop;
|
|
}
|
|
if (Torque_Imbalance < -20) {
|
|
RPM += 14.5;
|
|
// FGProp1_RPM += 25;
|
|
FGProp1_Blade_Angle += 0.75;
|
|
}
|
|
|
|
if (RPM >= 2700) {
|
|
RPM = 2700;
|
|
}
|
|
|
|
|
|
// cout << FGEng1_RPM << " Blade_Angle " << FGProp1_Blade_Angle << endl << endl;
|
|
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
// Functions
|
|
|
|
// Calculate Oil Temperature
|
|
|
|
static float Oil_Temp (float Fuel_Flow, float Mixture, float IAS)
|
|
{
|
|
float Oil_Temp = 85;
|
|
|
|
return (Oil_Temp);
|
|
}
|