1
0
Fork 0
flightgear/src/Cockpit/render_area_2d.cxx
2012-10-05 18:13:50 +01:00

426 lines
12 KiB
C++

// RenderArea2D.cxx - a class to manage 2D polygon-based drawing
// for a complex instrument (eg. GPS).
//
// Written by David Luff, started 2005.
//
// Copyright (C) 2005 - David C Luff - daveluff AT ntlworld.com
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//
// $Id$
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include "render_area_2d.hxx"
RA2DPrimitive::RA2DPrimitive() {
invert = false;
debug = false;
}
RenderArea2D::RenderArea2D(int logx, int logy, int sizex, int sizey, int posx, int posy) {
_logx = logx;
_logy = logy;
_sizex = sizex;
_sizey = sizey;
_posx = posx;
_posy = posy;
_clipx1 = 0;
_clipx2 = _logx - 1;
_clipy1 = 0;
_clipy2 = _logy - 1;
// Default to black background / white text.
_backgroundColor[0] = 0.0;
_backgroundColor[1] = 0.0;
_backgroundColor[2] = 0.0;
_backgroundColor[3] = 1.0;
_pixelColor[0] = 1.0;
_pixelColor[1] = 1.0;
_pixelColor[2] = 1.0;
_pixelColor[3] = 1.0;
_ra2d_debug = false;
}
void RenderArea2D::Draw(osg::State& state) {
static osg::ref_ptr<osg::StateSet> renderArea2DStateSet;
if(!renderArea2DStateSet.valid()) {
renderArea2DStateSet = new osg::StateSet;
renderArea2DStateSet->setTextureMode(0, GL_TEXTURE_2D, osg::StateAttribute::OFF);
renderArea2DStateSet->setMode(GL_LIGHTING, osg::StateAttribute::OFF);
}
state.pushStateSet(renderArea2DStateSet.get());
state.apply();
state.setActiveTextureUnit(0);
state.setClientActiveTextureUnit(0);
// DCL - the 2 lines below are copied verbatim from the hotspot drawing code.
// I am not sure if they are needed here or not.
glPushAttrib(GL_ENABLE_BIT);
glDisable(GL_COLOR_MATERIAL);
// FIXME - disabling all clip planes causes bleed-through through the splash screen.
glDisable(GL_CLIP_PLANE0);
glDisable(GL_CLIP_PLANE1);
glDisable(GL_CLIP_PLANE2);
glDisable(GL_CLIP_PLANE3);
DoDrawBackground();
for(unsigned int i = 0; i < drawing_list.size(); ++i) {
RA2DPrimitive prim = drawing_list[i];
switch(prim.type) {
case RA2D_LINE:
DoDrawLine(prim.x1, prim.y1, prim.x2, prim.y2);
break;
case RA2D_QUAD:
if(prim.debug) {
//cout << "Clipping = " << _clipx1 << ", " << _clipy1 << " to " << _clipx2 << ", " << _clipy2 << '\n';
//cout << "Drawing quad " << prim.x1 << ", " << prim.y1 << " to " << prim.x2 << ", " << prim.y2 << '\n';
}
DoDrawQuad(prim.x1, prim.y1, prim.x2, prim.y2, prim.invert);
break;
case RA2D_PIXEL:
DoDrawPixel(prim.x1, prim.y1, prim.invert);
break;
}
}
drawing_list.clear();
glPopAttrib();
state.popStateSet();
state.apply();
state.setActiveTextureUnit(0);
state.setClientActiveTextureUnit(0);
}
void RenderArea2D::Flush() {
drawing_list.clear();
}
void RenderArea2D::SetPixelColor(const float* rgba) {
_pixelColor[0] = rgba[0];
_pixelColor[1] = rgba[1];
_pixelColor[2] = rgba[2];
_pixelColor[3] = rgba[3];
}
// Set clipping region in logical units
void RenderArea2D::SetClipRegion(int x1, int y1, int x2, int y2) {
_clipx1 = x1;
_clipx2 = x2;
_clipy1 = y1;
_clipy2 = y2;
//cout << "Set clip region, clip region = " << _clipx1 << ", " << _clipy1 << " to " << _clipx2 << ", " << _clipy2 << '\n';
}
// Set clip region to be the same as the rendered area (default)
void RenderArea2D::ResetClipRegion() {
_clipx1 = 0;
_clipx2 = _logx - 1;
_clipy1 = 0;
_clipy2 = _logy - 1;
//cout << "Reset clip region, clip region = " << _clipx1 << ", " << _clipy1 << " to " << _clipx2 << ", " << _clipy2 << '\n';
}
void RenderArea2D::SetPosition(int posx, int posy) {
_posx = posx;
_posy = posy;
}
void RenderArea2D::SetLogicalSize(int logx, int logy) {
_logx = logx;
_logy = logy;
}
void RenderArea2D::SetActualSize(int sizex, int sizey) {
_sizex = sizex;
_sizey = sizey;
}
void RenderArea2D::DrawPixel(int x, int y, bool invert) {
// Clip
if(x < _clipx1 || x > _clipx2 || y < _clipy1 || y > _clipy2) return;
RA2DPrimitive prim;
prim.x1 = x;
prim.y1 = y;
prim.x2 = 0;
prim.y2 = 0;
prim.type = RA2D_PIXEL;
prim.invert = invert;
drawing_list.push_back(prim);
}
void RenderArea2D::DoDrawPixel(int x, int y, bool invert) {
// Clip. In theory this shouldn't be necessary, since all input is clipped before adding
// to the drawing list, but it ensures that any errors in clipping lines etc will only
// spill over the clip area within the instrument, and still be clipped from straying
// outside the instrument.
if(x < _clipx1 || x > _clipx2 || y < _clipy1 || y > _clipy2) return;
// Scale to position within background
float fx1 = (float)x, fy1 = (float)y;
float rx = (float)_sizex / (float)_logx;
float ry = (float)_sizey / (float)_logy;
fx1 *= rx;
fy1 *= ry;
float fx2 = fx1 + rx;
float fy2 = fy1 + ry;
// Translate to final position
fx1 += (float)_posx;
fx2 += (float)_posx;
fy1 += (float)_posy;
fy2 += (float)_posy;
//cout << "DP: " << fx1 << ", " << fy1 << " ... " << fx2 << ", " << fy2 << '\n';
SetRenderColor(invert ? _backgroundColor : _pixelColor);
SGVec2f corners[4] = {
SGVec2f(fx1, fy1),
SGVec2f(fx2, fy1),
SGVec2f(fx2, fy2),
SGVec2f(fx1, fy2)
};
RenderQuad(corners);
}
void RenderArea2D::DrawLine(int x1, int y1, int x2, int y2) {
// We need to clip the line to the current region before storing it in the drawing
// list, since when we come to actually draw it the clip region may have changed.
// Liang-Barsky clipping algorithm
int p[4], q[4];
float u1 = 0.0f, u2 = 1.0f;
p[0] = -(x2 - x1); q[0] = (x1 - _clipx1);
p[1] = (x2 - x1); q[1] = (_clipx2 - x1);
p[2] = -(y2 - y1); q[2] = (y1 - _clipy1);
p[3] = (y2 - y1); q[3] = (_clipy2 - y1);
for(int i=0; i<4; ++i) {
if(p[i] == 0) {
if(q[i] < 0) {
// Then we have a trivial rejection of a line parallel to a clip plane
// completely outside the clip region.
return;
}
} else if(p[i] < 0) {
float r = (float)q[i]/(float)p[i];
u1 = (u1 > r ? u1 : r);
} else { // p[i] > 0
float r = (float)q[i]/(float)p[i];
u2 = (u2 < r ? u2 : r);
}
if(u1 > u2) {
// Then the line is completely outside the clip area.
return;
}
}
float fx1 = x1 + u1 * (float)(x2 - x1);
float fy1 = y1 + u1 * (float)(y2 - y1);
float fx2 = x1 + u2 * (float)(x2 - x1);
float fy2 = y1 + u2 * (float)(y2 - y1);
x1 = (int)(fx1 + 0.5);
y1 = (int)(fy1 + 0.5);
x2 = (int)(fx2 + 0.5);
y2 = (int)(fy2 + 0.5);
RA2DPrimitive prim;
prim.x1 = x1;
prim.y1 = y1;
prim.x2 = x2;
prim.y2 = y2;
prim.type = RA2D_LINE;
prim.invert = false;
drawing_list.push_back(prim);
}
void RenderArea2D::DoDrawLine(int x1, int y1, int x2, int y2) {
// Crude implementation of Bresenham line drawing algorithm.
// Our lines are non directional, so first order the points x-direction-wise to leave only 4 octants to consider.
if(x2 < x1) {
int tmp_x = x1;
int tmp_y = y1;
x1 = x2;
y1 = y2;
x2 = tmp_x;
y2 = tmp_y;
}
bool flip_y = (y1 > y2 ? true : false);
int dx = x2 - x1;
int dy = (flip_y ? y1 - y2 : y2 - y1);
if(dx > dy) {
// push the x dir
int y = y1;
int yn = dx/2;
for(int x=x1; x<=x2; ++x) {
DoDrawPixel(x, y);
yn += dy;
if(yn >= dx) {
yn -= dx;
y = (flip_y ? y - 1 : y + 1);
}
}
} else {
// push the y dir
int x = x1;
int xn = dy/2;
// Must be a more elegant way to roll the next two cases into one!
if(flip_y) {
for(int y=y1; y>=y2; --y) {
DoDrawPixel(x, y);
xn += dx;
if(xn >= dy) {
xn -= dy;
x++;
}
}
} else {
for(int y=y1; y<=y2; ++y) {
DoDrawPixel(x, y);
xn += dx;
if(xn >= dy) {
xn -= dy;
x++;
}
}
}
}
}
void RenderArea2D::DrawQuad(int x1, int y1, int x2, int y2, bool invert) {
// Force the input to be ordered with x1 < x2 and y1 < y2.
if(x1 > x2) {
int x = x2;
x2 = x1;
x1 = x;
}
if(y1 > y2) {
int y = y2;
y2 = y1;
y1 = y;
}
// Clip the input to the current drawing region.
x1 = x1 < _clipx1 ? _clipx1 : x1;
if(x1 > _clipx2) { return; }
x2 = x2 > _clipx2 ? _clipx2 : x2;
if(x2 < _clipx1) { return; }
y1 = y1 < _clipy1 ? _clipy1 : y1;
if(y1 > _clipy2) { return; }
y2 = y2 > _clipy2 ? _clipy2 : y2;
if(y2 < _clipy1) { return; }
RA2DPrimitive prim;
prim.x1 = x1;
prim.y1 = y1;
prim.x2 = x2;
prim.y2 = y2;
prim.type = RA2D_QUAD;
prim.invert = invert;
if(_ra2d_debug) prim.debug = true;
drawing_list.push_back(prim);
}
void RenderArea2D::DoDrawQuad(int x1, int y1, int x2, int y2, bool invert) {
// Scale to position within background
float fx1 = (float)x1, fy1 = (float)y1;
float fx2 = (float)x2, fy2 = (float)y2;
float rx = (float)_sizex / (float)_logx;
float ry = (float)_sizey / (float)_logy;
fx1 *= rx;
fy1 *= ry;
fx2 *= rx;
fy2 *= ry;
fx2 += rx;
fy2 += ry;
// Translate to final position
fx1 += (float)_posx;
fx2 += (float)_posx;
fy1 += (float)_posy;
fy2 += (float)_posy;
//cout << "DP: " << fx1 << ", " << fy1 << " ... " << fx2 << ", " << fy2 << '\n';
SetRenderColor(invert ? _backgroundColor : _pixelColor);
SGVec2f corners[4] = {
SGVec2f(fx1, fy1),
SGVec2f(fx2, fy1),
SGVec2f(fx2, fy2),
SGVec2f(fx1, fy2)
};
RenderQuad(corners);
}
void RenderArea2D::DrawBackground() {
// Currently a NO-OP
}
void RenderArea2D::DoDrawBackground() {
SetRenderColor(_backgroundColor);
SGVec2f corners[4] = {
SGVec2f(_posx, _posy),
SGVec2f(_posx + _sizex, _posy),
SGVec2f(_posx + _sizex, _posy + _sizey),
SGVec2f(_posx, _posy + _sizey)
};
RenderQuad(corners);
}
// -----------------------------------------
//
// Actual drawing routines copied from Atlas
//
// -----------------------------------------
void RenderArea2D::SetRenderColor( const float *rgba ) {
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, rgba);
glColor4fv( rgba );
}
void RenderArea2D::RenderQuad( const SGVec2f *p) {
glBegin(GL_QUADS);
glNormal3f(0.0f, 0.0f, 0.0f);
glVertex2fv( p[0].data() );
glVertex2fv( p[1].data() );
glVertex2fv( p[2].data() );
glVertex2fv( p[3].data() );
glEnd();
}
void RenderArea2D::RenderQuad( const SGVec2f *p, const SGVec4f *color ) {
glBegin(GL_QUADS);
glNormal3f(0.0f, 0.0f, 0.0f);
glColor4fv( color[0].data() ); glVertex2fv( p[0].data() );
glColor4fv( color[1].data() ); glVertex2fv( p[1].data() );
glColor4fv( color[2].data() ); glVertex2fv( p[2].data() );
glColor4fv( color[3].data() ); glVertex2fv( p[3].data() );
glEnd();
}