1
0
Fork 0
flightgear/FixObj/obj.cxx
1999-02-01 21:09:40 +00:00

647 lines
17 KiB
C++

// obj.cxx -- routines to handle WaveFront .obj format files.
//
// Written by Curtis Olson, started October 1997.
//
// Copyright (C) 1997 - 1998 Curtis L. Olson - curt@me.umn.edu
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
// (Log is kept at end of this file)
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <vector>
#include "Include/compiler.h"
#ifdef NEEDNAMESPACESTD
using namespace std;
#endif
#include "obj.hxx"
#include <Math/mat3.h>
#include <Math/point3d.hxx>
typedef vector < Point3D > container3;
typedef container3::iterator iterator3;
typedef container3::const_iterator const_iterator3;
// what do ya' know, here's some global variables
container3 nodes;
container3 normals;
static int faces[MAXNODES][3];
int vncount, fcount;
static int ccw_list[MAXNODES];
int ccw_list_ptr;
static int cw_list[MAXNODES];
int cw_list_ptr;
FILE *in, *out;
Point3D ref;
// some simple list routines
// reset the list
void list_init(int *list_ptr) {
*list_ptr = 0;
}
// add to list
void list_add(int *list, int *list_ptr, int node) {
if ( *list_ptr >= MAXNODES ) {
printf("ERROR: list overflow in list_add()\n");
exit(-1);
}
list[*list_ptr] = node;
*list_ptr += 1;
// printf("list pointer = %d adding %d\n", *list_ptr, node);
}
// fix the cw list and append to ccw_list
void fix_cw_list(int *list, int list_ptr) {
int i, j, len;
if ( list_ptr < 3 ) {
printf("List is empty ... skipping\n");
return;
}
printf("Fixing cw list, size = %d\n", list_ptr);
i = 0;
while ( i < list_ptr ) {
// do next strip
// find length
len = 0;
// scan rest of strip (until -1)
while ( ((i+len) < list_ptr) && (list[i+len] != -1) ) {
// printf("len = %d item = %d\n", len, list[i+len] );
len++;
}
// printf(" Final length = %d\n", len);
if ( (len % 2) != 0 ) {
// if length is odd, just reverse order of nodes to
// reverse winding
if ( ccw_list_ptr ) {
list_add(ccw_list, &ccw_list_ptr, -1);
}
for ( j = i + len - 1; j >= i; j-- ) {
// printf(" odd -> item = %d\n", list[j] );
list_add(ccw_list, &ccw_list_ptr, list[j]);
}
} else {
// if length is even, reverse order of (n-1) nodes to
// reverse winding, and create an orphan triangle for the
// last "nth" node
if ( ccw_list_ptr ) {
list_add(ccw_list, &ccw_list_ptr, -1);
}
for ( j = i + len - 2; j >= i; j-- ) {
// printf(" even -> item = %d\n", list[j] );
list_add(ccw_list, &ccw_list_ptr, list[j]);
}
// printf(" even bonus -> item = %d\n", list[i + len - 1] );
// printf(" even bonus -> item = %d\n", list[i + len - 2] );
// printf(" even bonus -> item = %d\n", list[i + len - 3] );
list_add(ccw_list, &ccw_list_ptr, -1);
list_add(ccw_list, &ccw_list_ptr, list[i + len - 3]);
list_add(ccw_list, &ccw_list_ptr, list[i + len - 2]);
list_add(ccw_list, &ccw_list_ptr, list[i + len - 1]);
}
i += len + 1;
}
}
void dump_global_bounds( void ) {
double dist_squared, radius, radius_squared;
radius = 0.0;
fprintf(out, "\n");
iterator3 current = nodes.begin();
iterator3 last = nodes.end();
// skip first dummy node
++current;
for ( ; current != last; ++current ) {
dist_squared = ref.distance3Dsquared(*current);
// cout << "node = " << *current << " dist = " << dist_squared << endl;
if ( dist_squared > radius_squared ) {
radius_squared = dist_squared;
}
}
radius = sqrt(radius_squared);
fprintf( out,
"gbs %.5f %.5f %.5f %.2f\n",
ref.x(), ref.y(), ref.z(), radius);
}
// dump nodes
void dump_nodes( void ) {
Point3D p;
fprintf(out, "\n");
iterator3 current = nodes.begin();
iterator3 last = nodes.end();
// skip first dummy node
++current;
for ( ; current != last; ++current ) {
p = *current - ref;
fprintf( out, "v %.5f %.5f %.5f\n", p.x(), p.y(), p.z() );
}
}
// dump normals
void dump_normals( void ) {
Point3D p;
fprintf(out, "\n");
iterator3 current = normals.begin();
iterator3 last = normals.end();
// skip first dummy normal
++current;
for ( ; current != last; ++current ) {
p = *current;
fprintf(out, "vn %.5f %.5f %.5f\n", p.x(), p.y(), p.z() );
}
}
// dump faces
void dump_faces( void ) {
Point3D p;
int i, n1, n2, n3;
double xmax, xmin, ymax, ymin, zmax, zmin, dist, radius;
fprintf(out, "\n");
for ( i = 1; i < fcount; i++ ) {
n1 = faces[i][0];
n2 = faces[i][1];
n3 = faces[i][2];
// calc center of face
xmin = xmax = nodes[n1].x();
ymin = ymax = nodes[n1].y();
zmin = zmax = nodes[n1].z();
if ( nodes[n2].x() < xmin ) { xmin = nodes[n2].x(); }
if ( nodes[n2].x() > xmax ) { xmax = nodes[n2].x(); }
if ( nodes[n2].y() < ymin ) { ymin = nodes[n2].y(); }
if ( nodes[n2].y() > ymax ) { ymax = nodes[n2].y(); }
if ( nodes[n2].z() < zmin ) { zmin = nodes[n2].z(); }
if ( nodes[n2].z() > zmax ) { zmax = nodes[n2].z(); }
if ( nodes[n3].x() < xmin ) { xmin = nodes[n3].x(); }
if ( nodes[n3].x() > xmax ) { xmax = nodes[n3].x(); }
if ( nodes[n3].y() < ymin ) { ymin = nodes[n3].y(); }
if ( nodes[n3].y() > ymax ) { ymax = nodes[n3].y(); }
if ( nodes[n3].z() < zmin ) { zmin = nodes[n3].z(); }
if ( nodes[n3].z() > zmax ) { zmax = nodes[n3].z(); }
p = Point3D( (xmin + xmax) / 2.0,
(ymin + ymax) / 2.0,
(zmin + zmax) / 2.0 );
// calc bounding radius
radius = p.distance3D(nodes[n1]);
dist = p.distance3D(nodes[n2]);
if ( dist > radius ) { radius = dist; }
dist = p.distance3D(nodes[n3]);
if ( dist > radius ) { radius = dist; }
// output data
fprintf(out, "bs %.2f %.2f %.2f %.2f\n", p.x(), p.y(), p.z(), radius);
fprintf(out, "f %d %d %d\n", n1, n2, n3);
}
}
// dump list
void dump_list(int *list, int list_ptr) {
Point3D p;
double xmax, xmin, ymax, ymin, zmax, zmin, dist_squared, radius_squared;
double radius;
int i, j, len, n;
if ( list_ptr < 3 ) {
printf("List is empty ... skipping\n");
return;
}
printf("Dumping list, size = %d\n", list_ptr);
i = 0;
while ( i < list_ptr ) {
// do next strip
if ( (i % 2) == 0 ) {
fprintf(out, "\nusemtl desert1\n");
} else {
fprintf(out, "\nusemtl desert2\n");
}
// find length of next tri strip
len = 0;
// scan rest of strip (until -1)
while ( ((i+len) < list_ptr) && (list[i+len] != -1) ) {
// printf("len = %d item = %d\n", len, list[i+len] );
len++;
}
// printf("strip length = %d\n", len);
// calc center of face
n = list[i];
xmin = xmax = nodes[n].x();
ymin = ymax = nodes[n].y();
zmin = zmax = nodes[n].z();
// printf("%.2f %.2f %.2f\n", nodes[n].x(), nodes[n].y(), nodes[n].z());
for ( j = i + 1; j < i + len; j++ ) {
// printf("j = %d\n", j);
n = list[j];
if ( nodes[n].x() < xmin ) { xmin = nodes[n].x(); }
if ( nodes[n].x() > xmax ) { xmax = nodes[n].x(); }
if ( nodes[n].y() < ymin ) { ymin = nodes[n].y(); }
if ( nodes[n].y() > ymax ) { ymax = nodes[n].y(); }
if ( nodes[n].z() < zmin ) { zmin = nodes[n].z(); }
if ( nodes[n].z() > zmax ) { zmax = nodes[n].z(); }
// printf("%.2f %.2f %.2f\n", nodes[n].x(), nodes[n].y(), nodes[n].z());
}
p = Point3D( (xmin + xmax) / 2.0,
(ymin + ymax) / 2.0,
(zmin + zmax) / 2.0 );
// printf("center = %.2f %.2f %.2f\n", p.x(), p.y(), p.z());
// calc bounding radius
n = list[i];
radius_squared = p.distance3Dsquared(nodes[n]);
for ( j = i + 1; j < i + len; j++ ) {
n = list[j];
dist_squared = p.distance3Dsquared(nodes[n]);
if ( dist_squared > radius_squared ) {
radius_squared = dist_squared;
}
}
radius = sqrt(radius_squared);
// printf("radius = %.2f\n", radius);
// dump bounding sphere and header
fprintf(out, "bs %.2f %.2f %.2f %.2f\n", p.x(), p.y(), p.z(), radius);
fprintf(out, "t %d %d %d\n", list[i], list[i+1], list[i+2]);
// printf("t %d %d %d\n", list[i], list[i+1], list[i+2]);
i += 3;
// dump rest of strip (until -1)
while ( (i < list_ptr) && (list[i] != -1) ) {
fprintf(out, "q %d", list[i]);
i++;
if ( (i < list_ptr) && (list[i] != -1) ) {
fprintf(out, " %d", list[i]);
i++;
}
fprintf(out, "\n");
}
i++;
}
}
// Check the direction the current triangle faces, compared to it's
// pregenerated normal. Returns the dot product between the target
// normal and actual normal. If the dot product is close to 1.0, they
// nearly match. If the are close to -1.0, the are nearly opposite.
double check_cur_face(int n1, int n2, int n3) {
double v1[3], v2[3], approx_normal[3], dot_prod, temp;
// check for the proper rotation by calculating an approximate
// normal and seeing if it is close to the precalculated normal
v1[0] = nodes[n2].x() - nodes[n1].x();
v1[1] = nodes[n2].y() - nodes[n1].y();
v1[2] = nodes[n2].z() - nodes[n1].z();
v2[0] = nodes[n3].x() - nodes[n1].x();
v2[1] = nodes[n3].y() - nodes[n1].y();
v2[2] = nodes[n3].z() - nodes[n1].z();
MAT3cross_product(approx_normal, v1, v2);
MAT3_NORMALIZE_VEC(approx_normal,temp);
dot_prod = MAT3_DOT_PRODUCT(normals[n1], approx_normal);
// not first triangle
// if ( ((dot_prod < -0.5) && !is_backwards) ||
// ((dot_prod > 0.5) && is_backwards) ) {
// printf(" Approx normal = %.2f %.2f %.2f\n", approx_normal[0],
// approx_normal[1], approx_normal[2]);
// printf(" Dot product = %.4f\n", dot_prod);
// }
// angle = acos(dot_prod);
// printf("Normal ANGLE = %.3f rads.\n", angle);
return(dot_prod);
}
// Load a .obj file
void obj_fix(char *infile, char *outfile) {
Point3D node, normal;
char line[256];
double dot_prod;
int first, n1, n2, n3, n4;
double x, y, z, xmax, xmin, ymax, ymin, zmax, zmin;
int is_ccw;
if ( (in = fopen(infile, "r")) == NULL ) {
printf("Cannot open file: %s\n", infile);
exit(-1);
}
if ( (out = fopen(outfile, "w")) == NULL ) {
printf("Cannot open file: %s\n", outfile);
exit(-1);
}
// push dummy records onto the lists since we start counting with "1"
node = Point3D(0.0, 0.0, 0.0);
nodes.push_back(node);
normal = Point3D(0.0, 0.0, 0.0);
normals.push_back(normal);
// initialize other lists
list_init(&ccw_list_ptr);
list_init(&cw_list_ptr);
// I start counting at one because that is how the triangle
// program refers to nodes and normals
first = 1;
vncount = 1;
fcount = 1;
printf("Reading file: %s\n", infile);
while ( fgets(line, 250, in) != NULL ) {
if ( line[0] == '#' ) {
// pass along the comments verbatim
fprintf(out, "%s", line);
} else if ( strlen(line) <= 1 ) {
// don't pass along empty lines
// fprintf(out, "%s", line);
} else if ( strncmp(line, "v ", 2) == 0 ) {
// save vertex to memory and output to file
// printf("vertex = %s", line);
sscanf(line, "v %lf %lf %lf\n", &x, &y, &z);
if ( nodes.size() == 1 ) {
// first time through set min's and max'es
xmin = x;
xmax = x;
ymin = y;
ymax = y;
zmin = z;
zmax = z;
} else {
// update min/max vertex values
if ( x < xmin ) xmin = x;
if ( x > xmax ) xmax = x;
if ( y < ymin ) ymin = y;
if ( y > ymax ) ymax = y;
if ( z < zmin ) zmin = z;
if ( z > zmax ) zmax = z;
}
node = Point3D(x, y, z);
nodes.push_back(node);
// fprintf(out, "v %.2f %.2f %.2f\n",
// node.x(), node.y(), node.z());
} else if ( strncmp(line, "vn ", 3) == 0 ) {
// save vertex normals to memory and output to file
// printf("vertex normal = %s", line);
sscanf(line, "vn %lf %lf %lf\n", &x, &y, &z);
normal = Point3D(x, y, z);
normals.push_back(normal);
} else if ( line[0] == 't' ) {
// starting a new triangle strip
printf("Starting a new triangle strip\n");
n1 = n2 = n3 = n4 = 0;
printf("new tri strip = %s", line);
sscanf(line, "t %d %d %d %d\n", &n1, &n2, &n3, &n4);
// special cases to handle bugs in our beloved tri striper
if ( (n1 == 4) && (n2 == 2) && (n3 == 2) && (n4 == 1) ) {
n2 = 3;
}
if ( (n1 == 3) && (n2 == 1) && (n3 == 1) && (n4 == 0) ) {
n3 = 4;
}
dot_prod = check_cur_face(n1, n2, n3);
if ( dot_prod < 0.0 ) {
// this stripe is backwards (CW)
is_ccw = 0;
printf(" -> Starting a backwards stripe\n");
} else {
// this stripe is normal (CCW)
is_ccw = 1;
}
if ( is_ccw ) {
if ( ccw_list_ptr ) {
list_add(ccw_list, &ccw_list_ptr, -1);
}
list_add(ccw_list, &ccw_list_ptr, n1);
list_add(ccw_list, &ccw_list_ptr, n2);
list_add(ccw_list, &ccw_list_ptr, n3);
} else {
if ( cw_list_ptr ) {
list_add(cw_list, &cw_list_ptr, -1);
}
list_add(cw_list, &cw_list_ptr, n1);
list_add(cw_list, &cw_list_ptr, n2);
list_add(cw_list, &cw_list_ptr, n3);
}
if ( n4 > 0 ) {
if ( is_ccw ) {
list_add(ccw_list, &ccw_list_ptr, n4);
} else {
list_add(cw_list, &cw_list_ptr, n4);
}
}
} else if ( line[0] == 'f' ) {
if ( fcount < MAXNODES ) {
// pass along the unoptimized faces verbatim
sscanf(line, "f %d %d %d\n", &n1, &n2, &n3);
faces[fcount][0] = n1;
faces[fcount][1] = n2;
faces[fcount][2] = n3;
fcount++;
} else {
printf("Read too many unoptimized faces ... dying :-(\n");
exit(-1);
}
// fprintf(out, "%s", line);
} else if ( line[0] == 'q' ) {
// continue a triangle strip
n1 = n2 = 0;
// printf("continued tri strip = %s ", line);
sscanf(line, "q %d %d\n", &n1, &n2);
if ( is_ccw ) {
list_add(ccw_list, &ccw_list_ptr, n1);
} else {
list_add(cw_list, &cw_list_ptr, n1);
}
if ( n2 > 0 ) {
if ( is_ccw ) {
list_add(ccw_list, &ccw_list_ptr, n2);
} else {
list_add(cw_list, &cw_list_ptr, n2);
}
}
} else {
printf("Unknown line in %s = %s\n", infile, line);
}
}
// reference point is the "center"
ref = Point3D( (xmin + xmax) / 2.0,
(ymin + ymax) / 2.0,
(zmin + zmax) / 2.0 );
// convert the cw_list to ccw add append to ccw_list
fix_cw_list(cw_list, cw_list_ptr);
dump_global_bounds();
dump_nodes();
dump_normals();
if ( fcount > 1 ) {
dump_faces();
}
dump_list(ccw_list, ccw_list_ptr);
fclose(in);
fclose(out);
}
// $Log$
// Revision 1.3 1999/02/01 21:09:40 curt
// Optimizations from Norman Vine.
//
// Revision 1.2 1998/10/21 14:55:55 curt
// Converted to Point3D class.
//
// Revision 1.1 1998/06/08 17:11:46 curt
// Renamed *.[ch] to *.[ch]xx
//
// Revision 1.16 1998/05/27 02:27:22 curt
// Commented out a couple of debugging messages.
//
// Revision 1.15 1998/05/24 02:47:47 curt
// For each strip, specify a default material property and calculate a center
// and bounding sphere.
//
// Revision 1.14 1998/05/23 15:19:49 curt
// Output more digits after the decimal place.
//
// Revision 1.13 1998/05/20 20:55:19 curt
// Fixed arbitrary polygon winding problem here so all tristrips are passed
// to runtime simulator with a consistant counter clockwise winding.
//
// Revision 1.12 1998/05/16 13:11:26 curt
// Fixed an off by one error in node, normal, and face counters.
//
// Revision 1.11 1998/04/27 15:59:24 curt
// Fixed an off by one error.
//
// Revision 1.10 1998/04/27 03:33:11 curt
// Code now calculates a center reference points and outputs everything
// relative to that. This is useful in the rendering engine to keep everything
// close to (0, 0, 0) where we can avoid many GLfloat precision problems.
//
// Revision 1.9 1998/04/18 04:01:03 curt
// Now use libMath rather than having local copies of math routines.
//
// Revision 1.8 1998/04/08 23:19:37 curt
// Adopted Gnu automake/autoconf system.
//
// Revision 1.7 1998/03/19 02:51:41 curt
// Added special case handling to compensate for bugs in our beloved tri striper
//
// Revision 1.6 1998/03/03 15:36:12 curt
// Tweaks for compiling with g++
//
// Revision 1.5 1998/03/03 03:37:03 curt
// Cumulative tweaks.
//
// Revision 1.4 1998/01/31 00:41:25 curt
// Made a few changes converting floats to doubles.
//
// Revision 1.3 1998/01/19 19:51:07 curt
// A couple final pre-release tweaks.
//
// Revision 1.2 1998/01/09 23:03:12 curt
// Restructured to split 1deg x 1deg dem's into 64 subsections.
//
// Revision 1.1 1997/12/08 19:28:54 curt
// Initial revision.
//