1079 lines
30 KiB
C++
1079 lines
30 KiB
C++
// tilemgr.cxx -- routines to handle dynamic management of scenery tiles
|
|
//
|
|
// Written by Curtis Olson, started January 1998.
|
|
//
|
|
// Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com
|
|
//
|
|
// This program is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of the
|
|
// License, or (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful, but
|
|
// WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
//
|
|
// $Id$
|
|
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
# include <config.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_WINDOWS_H
|
|
# include <windows.h>
|
|
#endif
|
|
|
|
#include <GL/glut.h>
|
|
#include <XGL/xgl.h>
|
|
|
|
#include <Aircraft/aircraft.hxx>
|
|
|
|
#include <Debug/logstream.hxx>
|
|
// #include <Bucket/bucketutils.hxx>
|
|
#include <Include/fg_constants.h>
|
|
#include <Main/options.hxx>
|
|
#include <Main/views.hxx>
|
|
#include <Math/fg_geodesy.hxx>
|
|
#include <Math/mat3.h>
|
|
#include <Math/point3d.hxx>
|
|
#include <Math/polar3d.hxx>
|
|
#include <Math/vector.hxx>
|
|
#include <Objects/materialmgr.hxx>
|
|
#include <Objects/obj.hxx>
|
|
|
|
#ifndef FG_OLD_WEATHER
|
|
# include <WeatherCM/FGLocalWeatherDatabase.h>
|
|
#else
|
|
# include <Weather/weather.hxx>
|
|
#endif
|
|
|
|
#include "scenery.hxx"
|
|
#include "tilecache.hxx"
|
|
#include "tileentry.hxx"
|
|
#include "tilemgr.hxx"
|
|
|
|
|
|
// to test clipping speedup in fgTileMgrRender()
|
|
#if defined ( USE_FAST_FOV_CLIP )
|
|
// #define TEST_FOV_CLIP
|
|
// #define TEST_ELEV
|
|
#endif
|
|
|
|
|
|
extern ssgRoot *scene;
|
|
|
|
|
|
// the tile manager
|
|
FGTileMgr global_tile_mgr;
|
|
|
|
|
|
// Constructor
|
|
FGTileMgr::FGTileMgr ( void ):
|
|
state( Start )
|
|
{
|
|
}
|
|
|
|
|
|
// Destructor
|
|
FGTileMgr::~FGTileMgr ( void ) {
|
|
}
|
|
|
|
|
|
// Initialize the Tile Manager subsystem
|
|
int FGTileMgr::init( void ) {
|
|
FG_LOG( FG_TERRAIN, FG_INFO, "Initializing Tile Manager subsystem." );
|
|
|
|
// load default material library
|
|
if ( ! material_mgr.loaded() ) {
|
|
material_mgr.load_lib();
|
|
}
|
|
|
|
global_tile_cache.init();
|
|
|
|
state = Inited;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
// schedule a tile for loading
|
|
static void disable_tile( int cache_index ) {
|
|
// see if tile already exists in the cache
|
|
// cout << "DISABLING CACHE ENTRY = " << cache_index << endl;
|
|
FGTileEntry *t = global_tile_cache.get_tile( cache_index );
|
|
t->ssg_disable();
|
|
}
|
|
|
|
|
|
// schedule a tile for loading
|
|
int FGTileMgr::sched_tile( const FGBucket& b ) {
|
|
// see if tile already exists in the cache
|
|
int cache_index = global_tile_cache.exists( b );
|
|
|
|
if ( cache_index >= 0 ) {
|
|
// tile exists in cache, reenable it.
|
|
// cout << "REENABLING DISABLED TILE" << endl;
|
|
FGTileEntry *t = global_tile_cache.get_tile( cache_index );
|
|
t->select_ptr->select( 1 );
|
|
t->mark_loaded();
|
|
} else {
|
|
// find the next available cache entry and mark it as
|
|
// scheduled
|
|
cache_index = global_tile_cache.next_avail();
|
|
FGTileEntry *t = global_tile_cache.get_tile( cache_index );
|
|
t->mark_scheduled_for_use();
|
|
|
|
// register a load request
|
|
FGLoadRec request;
|
|
request.b = b;
|
|
request.cache_index = cache_index;
|
|
load_queue.push_back( request );
|
|
}
|
|
|
|
return cache_index;
|
|
}
|
|
|
|
|
|
// load a tile
|
|
void FGTileMgr::load_tile( const FGBucket& b, int cache_index) {
|
|
|
|
FG_LOG( FG_TERRAIN, FG_DEBUG, "Loading tile " << b );
|
|
|
|
global_tile_cache.fill_in(cache_index, b);
|
|
|
|
FG_LOG( FG_TERRAIN, FG_DEBUG, "Loaded for cache index: " << cache_index );
|
|
}
|
|
|
|
|
|
// Calculate shortest distance from point to line
|
|
static double point_line_dist_squared( const Point3D& tc, const Point3D& vp,
|
|
MAT3vec d )
|
|
{
|
|
MAT3vec p, p0;
|
|
|
|
p[0] = tc.x(); p[1] = tc.y(); p[2] = tc.z();
|
|
p0[0] = vp.x(); p0[1] = vp.y(); p0[2] = vp.z();
|
|
|
|
return fgPointLineSquared(p, p0, d);
|
|
}
|
|
|
|
|
|
// Determine scenery altitude. Normally this just happens when we
|
|
// render the scene, but we'd also like to be able to do this
|
|
// explicitely. lat & lon are in radians. abs_view_pos in meters.
|
|
// Returns result in meters.
|
|
double
|
|
FGTileMgr::current_elev_new( const FGBucket& p ) {
|
|
FGTileEntry *t;
|
|
fgFRAGMENT *frag_ptr;
|
|
Point3D abs_view_pos = current_view.get_abs_view_pos();
|
|
Point3D earth_center(0.0);
|
|
Point3D result;
|
|
MAT3vec local_up;
|
|
double dist, lat_geod, alt, sea_level_r;
|
|
int index;
|
|
|
|
local_up[0] = abs_view_pos.x();
|
|
local_up[1] = abs_view_pos.y();
|
|
local_up[2] = abs_view_pos.z();
|
|
|
|
// Find current translation offset
|
|
// fgBucketFind(lon * RAD_TO_DEG, lat * RAD_TO_DEG, &p);
|
|
index = global_tile_cache.exists(p);
|
|
if ( index < 0 ) {
|
|
FG_LOG( FG_TERRAIN, FG_WARN, "Tile not found" );
|
|
return 0.0;
|
|
}
|
|
|
|
t = global_tile_cache.get_tile(index);
|
|
|
|
scenery.next_center = t->center;
|
|
|
|
FG_LOG( FG_TERRAIN, FG_DEBUG,
|
|
"Current bucket = " << p << " Index = " << p.gen_index_str() );
|
|
FG_LOG( FG_TERRAIN, FG_DEBUG,
|
|
"abs_view_pos = " << abs_view_pos );
|
|
|
|
// calculate tile offset
|
|
// x = (t->offset.x = t->center.x - scenery.center.x);
|
|
// y = (t->offset.y = t->center.y - scenery.center.y);
|
|
// z = (t->offset.z = t->center.z - scenery.center.z);
|
|
|
|
// calc current terrain elevation calculate distance from
|
|
// vertical tangent line at current position to center of
|
|
// tile.
|
|
|
|
/* printf("distance squared = %.2f, bounding radius = %.2f\n",
|
|
point_line_dist_squared(&(t->offset), &(v->view_pos),
|
|
v->local_up), t->bounding_radius); */
|
|
|
|
dist = point_line_dist_squared( t->center, abs_view_pos, local_up );
|
|
if ( dist < FG_SQUARE(t->bounding_radius) ) {
|
|
|
|
// traverse fragment list for tile
|
|
FGTileEntry::FragmentIterator current = t->begin();
|
|
FGTileEntry::FragmentIterator last = t->end();
|
|
|
|
for ( ; current != last; ++current ) {
|
|
frag_ptr = &(*current);
|
|
/* printf("distance squared = %.2f, bounding radius = %.2f\n",
|
|
point_line_dist_squared( &(frag_ptr->center),
|
|
&abs_view_pos), local_up),
|
|
frag_ptr->bounding_radius); */
|
|
|
|
dist = point_line_dist_squared( frag_ptr->center,
|
|
abs_view_pos,
|
|
local_up);
|
|
if ( dist <= FG_SQUARE(frag_ptr->bounding_radius) ) {
|
|
if ( frag_ptr->intersect( abs_view_pos,
|
|
earth_center, 0, result ) ) {
|
|
FG_LOG( FG_TERRAIN, FG_DEBUG, "intersection point " <<
|
|
result );
|
|
// compute geocentric coordinates of tile center
|
|
Point3D pp = fgCartToPolar3d(result);
|
|
FG_LOG( FG_TERRAIN, FG_DEBUG, " polar form = " << pp );
|
|
// convert to geodetic coordinates
|
|
fgGeocToGeod(pp.lat(), pp.radius(), &lat_geod,
|
|
&alt, &sea_level_r);
|
|
|
|
// printf("alt = %.2f\n", alt);
|
|
// exit since we found an intersection
|
|
if ( alt > -9999.0 ) {
|
|
// printf("returning alt\n");
|
|
return alt;
|
|
} else {
|
|
// printf("returning 0\n");
|
|
return 0.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
FG_LOG( FG_TERRAIN, FG_INFO, "(new) no terrain intersection found" );
|
|
|
|
return 0.0;
|
|
}
|
|
|
|
|
|
// Determine scenery altitude. Normally this just happens when we
|
|
// render the scene, but we'd also like to be able to do this
|
|
// explicitely. lat & lon are in radians. abs_view_pos in meters.
|
|
// Returns result in meters.
|
|
double
|
|
FGTileMgr::current_elev( double lon, double lat, const Point3D& abs_view_pos ) {
|
|
FGTileCache *c;
|
|
FGTileEntry *t;
|
|
fgFRAGMENT *frag_ptr;
|
|
Point3D earth_center(0.0);
|
|
Point3D result;
|
|
MAT3vec local_up;
|
|
double dist, lat_geod, alt, sea_level_r;
|
|
int index;
|
|
|
|
c = &global_tile_cache;
|
|
|
|
local_up[0] = abs_view_pos.x();
|
|
local_up[1] = abs_view_pos.y();
|
|
local_up[2] = abs_view_pos.z();
|
|
|
|
FG_LOG( FG_TERRAIN, FG_DEBUG, "Absolute view pos = " << abs_view_pos );
|
|
|
|
// Find current translation offset
|
|
FGBucket p( lon * RAD_TO_DEG, lat * RAD_TO_DEG );
|
|
index = c->exists(p);
|
|
if ( index < 0 ) {
|
|
FG_LOG( FG_TERRAIN, FG_WARN, "Tile not found" );
|
|
return 0.0;
|
|
}
|
|
|
|
t = c->get_tile(index);
|
|
|
|
scenery.next_center = t->center;
|
|
|
|
FG_LOG( FG_TERRAIN, FG_DEBUG,
|
|
"Pos = (" << lon * RAD_TO_DEG << ", " << lat * RAD_TO_DEG
|
|
<< ") Current bucket = " << p
|
|
<< " Index = " << p.gen_index_str() );
|
|
|
|
FG_LOG( FG_TERRAIN, FG_DEBUG, "Tile center " << t->center
|
|
<< " bounding radius = " << t->bounding_radius );
|
|
|
|
// calculate tile offset
|
|
// x = (t->offset.x = t->center.x - scenery.center.x);
|
|
// y = (t->offset.y = t->center.y - scenery.center.y);
|
|
// z = (t->offset.z = t->center.z - scenery.center.z);
|
|
|
|
// calc current terrain elevation calculate distance from
|
|
// vertical tangent line at current position to center of
|
|
// tile.
|
|
|
|
/* printf("distance squared = %.2f, bounding radius = %.2f\n",
|
|
point_line_dist_squared(&(t->offset), &(v->view_pos),
|
|
v->local_up), t->bounding_radius); */
|
|
|
|
dist = point_line_dist_squared( t->center, abs_view_pos, local_up );
|
|
FG_LOG( FG_TERRAIN, FG_DEBUG, "(gross check) dist squared = " << dist );
|
|
|
|
if ( dist < FG_SQUARE(t->bounding_radius) ) {
|
|
|
|
// traverse fragment list for tile
|
|
FGTileEntry::FragmentIterator current = t->begin();
|
|
FGTileEntry::FragmentIterator last = t->end();
|
|
|
|
for ( ; current != last; ++current ) {
|
|
frag_ptr = &(*current);
|
|
/* printf("distance squared = %.2f, bounding radius = %.2f\n",
|
|
point_line_dist_squared( &(frag_ptr->center),
|
|
&abs_view_pos), local_up),
|
|
frag_ptr->bounding_radius); */
|
|
|
|
dist = point_line_dist_squared( frag_ptr->center,
|
|
abs_view_pos,
|
|
local_up);
|
|
if ( dist <= FG_SQUARE(frag_ptr->bounding_radius) ) {
|
|
if ( frag_ptr->intersect( abs_view_pos,
|
|
earth_center, 0, result ) ) {
|
|
FG_LOG( FG_TERRAIN, FG_DEBUG, "intersection point " <<
|
|
result );
|
|
// compute geocentric coordinates of tile center
|
|
Point3D pp = fgCartToPolar3d(result);
|
|
FG_LOG( FG_TERRAIN, FG_DEBUG, " polar form = " << pp );
|
|
// convert to geodetic coordinates
|
|
fgGeocToGeod(pp.lat(), pp.radius(), &lat_geod,
|
|
&alt, &sea_level_r);
|
|
|
|
// printf("alt = %.2f\n", alt);
|
|
// exit since we found an intersection
|
|
if ( alt > -9999.0 ) {
|
|
// printf("returning alt\n");
|
|
return alt;
|
|
} else {
|
|
// printf("returning 0\n");
|
|
return 0.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
FG_LOG( FG_TERRAIN, FG_INFO, "(old) no terrain intersection found" );
|
|
|
|
return 0.0;
|
|
}
|
|
|
|
|
|
inline int fg_sign( const double x ) {
|
|
return x < 0 ? -1 : 1;
|
|
}
|
|
|
|
inline double fg_min( const double a, const double b ) {
|
|
return b < a ? b : a;
|
|
}
|
|
|
|
inline double fg_max( const double a, const double b ) {
|
|
return a < b ? b : a;
|
|
}
|
|
|
|
// return the minimum of the three values
|
|
inline double fg_min3( const double a, const double b, const double c ) {
|
|
return a > b ? fg_min(b, c) : fg_min(a, c);
|
|
}
|
|
|
|
// return the maximum of the three values
|
|
inline double fg_max3 (const double a, const double b, const double c ) {
|
|
return a < b ? fg_max(b, c) : fg_max(a, c);
|
|
}
|
|
|
|
// check for an instersection with the individual triangles of a leaf
|
|
static bool my_ssg_instersect_leaf( string s, ssgLeaf *leaf, sgdMat4 m,
|
|
const sgdVec3 p, const sgdVec3 dir,
|
|
sgdVec3 result )
|
|
{
|
|
sgdVec3 v1, v2, n;
|
|
sgdVec3 p1, p2, p3;
|
|
double x, y, z; // temporary holding spot for result
|
|
double a, b, c, d;
|
|
double x0, y0, z0, x1, y1, z1, a1, b1, c1;
|
|
double t1, t2, t3;
|
|
double xmin, xmax, ymin, ymax, zmin, zmax;
|
|
double dx, dy, dz, min_dim, x2, y2, x3, y3, rx, ry;
|
|
sgdVec3 tmp;
|
|
float *ftmp;
|
|
int side1, side2;
|
|
short i1, i2, i3;
|
|
|
|
// cout << s << "Intersecting" << endl;
|
|
|
|
// traverse the triangle list for this leaf
|
|
for ( int i = 0; i < leaf->getNumTriangles(); ++i ) {
|
|
// cout << s << "testing triangle = " << i << endl;
|
|
|
|
leaf->getTriangle( i, &i1, &i2, &i3 );
|
|
|
|
// get triangle vertex coordinates
|
|
|
|
ftmp = leaf->getVertex( i1 );
|
|
sgdSetVec3( tmp, ftmp );
|
|
// cout << s << "orig point 1 = " << tmp[0] << " " << tmp[1]
|
|
// << " " << tmp[2] << endl;
|
|
sgdXformPnt3( p1, tmp, m ) ;
|
|
|
|
ftmp = leaf->getVertex( i2 );
|
|
sgdSetVec3( tmp, ftmp );
|
|
// cout << s << "orig point 2 = " << tmp[0] << " " << tmp[1]
|
|
// << " " << tmp[2] << endl;
|
|
sgdXformPnt3( p2, tmp, m ) ;
|
|
|
|
ftmp = leaf->getVertex( i3 );
|
|
sgdSetVec3( tmp, ftmp );
|
|
// cout << s << "orig point 3 = " << tmp[0] << " " << tmp[1]
|
|
// << " " << tmp[2] << endl;
|
|
sgdXformPnt3( p3, tmp, m ) ;
|
|
|
|
// cout << s << "point 1 = " << p1[0] << " " << p1[1] << " " << p1[2]
|
|
// << endl;
|
|
// cout << s << "point 2 = " << p2[0] << " " << p2[1] << " " << p2[2]
|
|
// << endl;
|
|
// cout << s << "point 3 = " << p3[0] << " " << p3[1] << " " << p3[2]
|
|
// << endl;
|
|
|
|
// calculate two edge vectors, and the face normal
|
|
sgdSubVec3(v1, p2, p1);
|
|
sgdSubVec3(v2, p3, p1);
|
|
sgdVectorProductVec3(n, v1, v2);
|
|
|
|
// calculate the plane coefficients for the plane defined by
|
|
// this face. If n is the normal vector, n = (a, b, c) and p1
|
|
// is a point on the plane, p1 = (x0, y0, z0), then the
|
|
// equation of the line is a(x-x0) + b(y-y0) + c(z-z0) = 0
|
|
a = n[0];
|
|
b = n[1];
|
|
c = n[2];
|
|
d = a * p1[0] + b * p1[1] + c * p1[2];
|
|
// printf("a, b, c, d = %.2f %.2f %.2f %.2f\n", a, b, c, d);
|
|
|
|
// printf("p1(d) = %.2f\n", a * p1[0] + b * p1[1] + c * p1[2]);
|
|
// printf("p2(d) = %.2f\n", a * p2[0] + b * p2[1] + c * p2[2]);
|
|
// printf("p3(d) = %.2f\n", a * p3[0] + b * p3[1] + c * p3[2]);
|
|
|
|
// calculate the line coefficients for the specified line
|
|
x0 = p[0]; x1 = p[0] + dir[0];
|
|
y0 = p[1]; y1 = p[1] + dir[1];
|
|
z0 = p[2]; z1 = p[2] + dir[2];
|
|
|
|
if ( fabs(x1 - x0) > FG_EPSILON ) {
|
|
a1 = 1.0 / (x1 - x0);
|
|
} else {
|
|
// we got a big divide by zero problem here
|
|
a1 = 0.0;
|
|
}
|
|
b1 = y1 - y0;
|
|
c1 = z1 - z0;
|
|
|
|
// intersect the specified line with this plane
|
|
t1 = b * b1 * a1;
|
|
t2 = c * c1 * a1;
|
|
|
|
// printf("a = %.2f t1 = %.2f t2 = %.2f\n", a, t1, t2);
|
|
|
|
if ( fabs(a + t1 + t2) > FG_EPSILON ) {
|
|
x = (t1*x0 - b*y0 + t2*x0 - c*z0 + d) / (a + t1 + t2);
|
|
t3 = a1 * (x - x0);
|
|
y = b1 * t3 + y0;
|
|
z = c1 * t3 + z0;
|
|
// printf("result(d) = %.2f\n", a * x + b * y + c * z);
|
|
} else {
|
|
// no intersection point
|
|
continue;
|
|
}
|
|
|
|
#if 0
|
|
if ( side_flag ) {
|
|
// check to see if end0 and end1 are on opposite sides of
|
|
// plane
|
|
if ( (x - x0) > FG_EPSILON ) {
|
|
t1 = x;
|
|
t2 = x0;
|
|
t3 = x1;
|
|
} else if ( (y - y0) > FG_EPSILON ) {
|
|
t1 = y;
|
|
t2 = y0;
|
|
t3 = y1;
|
|
} else if ( (z - z0) > FG_EPSILON ) {
|
|
t1 = z;
|
|
t2 = z0;
|
|
t3 = z1;
|
|
} else {
|
|
// everything is too close together to tell the difference
|
|
// so the current intersection point should work as good
|
|
// as any
|
|
sgdSetVec3( result, x, y, z );
|
|
return true;
|
|
}
|
|
side1 = fg_sign (t1 - t2);
|
|
side2 = fg_sign (t1 - t3);
|
|
if ( side1 == side2 ) {
|
|
// same side, punt
|
|
continue;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// check to see if intersection point is in the bounding
|
|
// cube of the face
|
|
#ifdef XTRA_DEBUG_STUFF
|
|
xmin = fg_min3 (p1[0], p2[0], p3[0]);
|
|
xmax = fg_max3 (p1[0], p2[0], p3[0]);
|
|
ymin = fg_min3 (p1[1], p2[1], p3[1]);
|
|
ymax = fg_max3 (p1[1], p2[1], p3[1]);
|
|
zmin = fg_min3 (p1[2], p2[2], p3[2]);
|
|
zmax = fg_max3 (p1[2], p2[2], p3[2]);
|
|
printf("bounding cube = %.2f,%.2f,%.2f %.2f,%.2f,%.2f\n",
|
|
xmin, ymin, zmin, xmax, ymax, zmax);
|
|
#endif
|
|
// punt if outside bouding cube
|
|
if ( x < (xmin = fg_min3 (p1[0], p2[0], p3[0])) ) {
|
|
continue;
|
|
} else if ( x > (xmax = fg_max3 (p1[0], p2[0], p3[0])) ) {
|
|
continue;
|
|
} else if ( y < (ymin = fg_min3 (p1[1], p2[1], p3[1])) ) {
|
|
continue;
|
|
} else if ( y > (ymax = fg_max3 (p1[1], p2[1], p3[1])) ) {
|
|
continue;
|
|
} else if ( z < (zmin = fg_min3 (p1[2], p2[2], p3[2])) ) {
|
|
continue;
|
|
} else if ( z > (zmax = fg_max3 (p1[2], p2[2], p3[2])) ) {
|
|
continue;
|
|
}
|
|
|
|
// (finally) check to see if the intersection point is
|
|
// actually inside this face
|
|
|
|
//first, drop the smallest dimension so we only have to work
|
|
//in 2d.
|
|
dx = xmax - xmin;
|
|
dy = ymax - ymin;
|
|
dz = zmax - zmin;
|
|
min_dim = fg_min3 (dx, dy, dz);
|
|
if ( fabs(min_dim - dx) <= FG_EPSILON ) {
|
|
// x is the smallest dimension
|
|
x1 = p1[1];
|
|
y1 = p1[2];
|
|
x2 = p2[1];
|
|
y2 = p2[2];
|
|
x3 = p3[1];
|
|
y3 = p3[2];
|
|
rx = y;
|
|
ry = z;
|
|
} else if ( fabs(min_dim - dy) <= FG_EPSILON ) {
|
|
// y is the smallest dimension
|
|
x1 = p1[0];
|
|
y1 = p1[2];
|
|
x2 = p2[0];
|
|
y2 = p2[2];
|
|
x3 = p3[0];
|
|
y3 = p3[2];
|
|
rx = x;
|
|
ry = z;
|
|
} else if ( fabs(min_dim - dz) <= FG_EPSILON ) {
|
|
// z is the smallest dimension
|
|
x1 = p1[0];
|
|
y1 = p1[1];
|
|
x2 = p2[0];
|
|
y2 = p2[1];
|
|
x3 = p3[0];
|
|
y3 = p3[1];
|
|
rx = x;
|
|
ry = y;
|
|
} else {
|
|
// all dimensions are really small so lets call it close
|
|
// enough and return a successful match
|
|
sgdSetVec3( result, x, y, z );
|
|
return true;
|
|
}
|
|
|
|
// check if intersection point is on the same side of p1 <-> p2 as p3
|
|
t1 = (y1 - y2) / (x1 - x2);
|
|
side1 = fg_sign (t1 * ((x3) - x2) + y2 - (y3));
|
|
side2 = fg_sign (t1 * ((rx) - x2) + y2 - (ry));
|
|
if ( side1 != side2 ) {
|
|
// printf("failed side 1 check\n");
|
|
continue;
|
|
}
|
|
|
|
// check if intersection point is on correct side of p2 <-> p3 as p1
|
|
t1 = (y2 - y3) / (x2 - x3);
|
|
side1 = fg_sign (t1 * ((x1) - x3) + y3 - (y1));
|
|
side2 = fg_sign (t1 * ((rx) - x3) + y3 - (ry));
|
|
if ( side1 != side2 ) {
|
|
// printf("failed side 2 check\n");
|
|
continue;
|
|
}
|
|
|
|
// check if intersection point is on correct side of p1 <-> p3 as p2
|
|
t1 = (y1 - y3) / (x1 - x3);
|
|
side1 = fg_sign (t1 * ((x2) - x3) + y3 - (y2));
|
|
side2 = fg_sign (t1 * ((rx) - x3) + y3 - (ry));
|
|
if ( side1 != side2 ) {
|
|
// printf("failed side 3 check\n");
|
|
continue;
|
|
}
|
|
|
|
// printf( "intersection point = %.2f %.2f %.2f\n", x, y, z);
|
|
sgdSetVec3( result, x, y, z );
|
|
return true;
|
|
}
|
|
|
|
// printf("\n");
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
void FGTileMgr::my_ssg_los( string s, ssgBranch *branch, sgdMat4 m,
|
|
const sgdVec3 p, const sgdVec3 dir )
|
|
{
|
|
sgSphere *bsphere;
|
|
for ( ssgEntity *kid = branch->getKid( 0 );
|
|
kid != NULL;
|
|
kid = branch->getNextKid() )
|
|
{
|
|
if ( kid->getTraversalMask() & SSGTRAV_HOT ) {
|
|
bsphere = kid->getBSphere();
|
|
sgVec3 fcenter;
|
|
sgCopyVec3( fcenter, bsphere->getCenter() );
|
|
sgdVec3 center;
|
|
center[0] = fcenter[0];
|
|
center[1] = fcenter[1];
|
|
center[2] = fcenter[2];
|
|
sgdXformPnt3( center, m ) ;
|
|
// cout << s << "entity bounding sphere:" << endl;
|
|
// cout << s << "center = " << center[0] << " "
|
|
// << center[1] << " " << center[2] << endl;
|
|
// cout << s << "radius = " << bsphere->getRadius() << endl;
|
|
double radius_sqd = bsphere->getRadius() * bsphere->getRadius();
|
|
if ( sgdPointLineDistSquared( center, p, dir ) < radius_sqd ) {
|
|
// possible intersections
|
|
if ( kid->isAKindOf ( ssgTypeBranch() ) ) {
|
|
sgdMat4 m_new;
|
|
sgdCopyMat4(m_new, m);
|
|
if ( kid->isA( ssgTypeTransform() ) ) {
|
|
sgMat4 fxform;
|
|
((ssgTransform *)kid)->getTransform( fxform );
|
|
sgdMat4 xform;
|
|
sgdSetMat4( xform, fxform );
|
|
sgdPreMultMat4( m_new, xform );
|
|
}
|
|
my_ssg_los( s + " ", (ssgBranch *)kid, m_new, p, dir );
|
|
} else if ( kid->isAKindOf ( ssgTypeLeaf() ) ) {
|
|
sgdVec3 result;
|
|
if ( my_ssg_instersect_leaf( s, (ssgLeaf *)kid, m, p, dir,
|
|
result ) )
|
|
{
|
|
// cout << "sgLOS hit: " << result[0] << ","
|
|
// << result[1] << "," << result[2] << endl;
|
|
hit_pts[hitcount] = result;
|
|
hitcount++;
|
|
}
|
|
}
|
|
} else {
|
|
// end of the line for this branch
|
|
}
|
|
} else {
|
|
// branch requested not to be traversed
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Determine scenery altitude via ssg. Normally this just happens
|
|
// when we render the scene, but we'd also like to be able to do this
|
|
// explicitely. lat & lon are in radians. view_pos in current world
|
|
// coordinate translated near (0,0,0) (in meters.) Returns result in
|
|
// meters.
|
|
double
|
|
FGTileMgr::current_elev_ssg( const Point3D& abs_view_pos,
|
|
const Point3D& view_pos )
|
|
{
|
|
hitcount = 0;
|
|
|
|
sgdMat4 m;
|
|
sgdMakeIdentMat4 ( m ) ;
|
|
|
|
sgdVec3 sgavp, sgvp;
|
|
sgdSetVec3(sgavp, abs_view_pos.x(), abs_view_pos.y(), abs_view_pos.z() );
|
|
sgdSetVec3(sgvp, view_pos.x(), view_pos.y(), view_pos.z() );
|
|
|
|
// cout << "starting ssg_los, abs view pos = " << abs_view_pos[0] << " "
|
|
// << abs_view_pos[1] << " " << abs_view_pos[2] << endl;
|
|
// cout << "starting ssg_los, view pos = " << view_pos[0] << " "
|
|
// << view_pos[1] << " " << view_pos[2] << endl;
|
|
my_ssg_los( "", scene, m, sgvp, sgavp );
|
|
|
|
double result = -9999;
|
|
|
|
for ( int i = 0; i < hitcount; ++i ) {
|
|
Point3D rel_cart( hit_pts[i][0], hit_pts[i][1], hit_pts[i][2] );
|
|
Point3D abs_cart = rel_cart + scenery.center;
|
|
Point3D pp = fgCartToPolar3d( abs_cart );
|
|
FG_LOG( FG_TERRAIN, FG_DEBUG, " polar form = " << pp );
|
|
// convert to geodetic coordinates
|
|
double lat_geod, alt, sea_level_r;
|
|
fgGeocToGeod(pp.lat(), pp.radius(), &lat_geod,
|
|
&alt, &sea_level_r);
|
|
|
|
// printf("alt = %.2f\n", alt);
|
|
// exit since we found an intersection
|
|
if ( alt > result && alt < 10000 ) {
|
|
// printf("returning alt\n");
|
|
result = alt;
|
|
}
|
|
}
|
|
|
|
if ( result > -9000 ) {
|
|
return result;
|
|
} else {
|
|
FG_LOG( FG_TERRAIN, FG_INFO, "no terrain intersection" );
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
|
|
// given the current lon/lat, fill in the array of local chunks. If
|
|
// the chunk isn't already in the cache, then read it from disk.
|
|
int FGTileMgr::update( void ) {
|
|
FGTileCache *c;
|
|
FGInterface *f;
|
|
FGTileEntry *t;
|
|
FGBucket p2;
|
|
static FGBucket p_last(false);
|
|
static double last_lon = -1000.0; // in degrees
|
|
static double last_lat = -1000.0; // in degrees
|
|
int tile_diameter;
|
|
int i, j, dw, dh;
|
|
|
|
c = &global_tile_cache;
|
|
f = current_aircraft.fdm_state;
|
|
|
|
tile_diameter = current_options.get_tile_diameter();
|
|
|
|
FGBucket p1( f->get_Longitude() * RAD_TO_DEG,
|
|
f->get_Latitude() * RAD_TO_DEG );
|
|
|
|
long int index = c->exists(p1);
|
|
if ( index >= 0 ) {
|
|
t = c->get_tile(index);
|
|
scenery.next_center = t->center;
|
|
} else {
|
|
FG_LOG( FG_TERRAIN, FG_WARN, "Tile not found" );
|
|
}
|
|
|
|
dw = tile_diameter / 2;
|
|
dh = tile_diameter / 2;
|
|
|
|
if ( (p1 == p_last) && (state == Running) ) {
|
|
// same bucket as last time
|
|
FG_LOG( FG_TERRAIN, FG_DEBUG, "Same bucket as last time" );
|
|
} else if ( (state == Start) || (state == Inited) ) {
|
|
state = Running;
|
|
|
|
// First time through or we have teleported, initialize the
|
|
// system and load all relavant tiles
|
|
|
|
FG_LOG( FG_TERRAIN, FG_INFO, "Updating Tile list for " << p1 );
|
|
FG_LOG( FG_TERRAIN, FG_INFO, " First time through ... " );
|
|
FG_LOG( FG_TERRAIN, FG_INFO, " Updating Tile list for " << p1 );
|
|
FG_LOG( FG_TERRAIN, FG_INFO, " Loading "
|
|
<< tile_diameter * tile_diameter << " tiles" );
|
|
|
|
// wipe/initialize tile cache
|
|
c->init();
|
|
p_last.make_bad();
|
|
|
|
// build the local area list and schedule tiles for loading
|
|
|
|
// start with the center tile and work out in concentric
|
|
// "rings"
|
|
|
|
p2 = fgBucketOffset( f->get_Longitude() * RAD_TO_DEG,
|
|
f->get_Latitude() * RAD_TO_DEG,
|
|
0, 0 );
|
|
sched_tile( p2 );
|
|
|
|
// prime scenery center calculations
|
|
Point3D geod_view_center( p2.get_center_lon(),
|
|
p2.get_center_lat(),
|
|
cur_fdm_state->get_Altitude()*FEET_TO_METER +
|
|
3 );
|
|
current_view.abs_view_pos = fgGeodToCart( geod_view_center );
|
|
current_view.view_pos = current_view.abs_view_pos - scenery.next_center;
|
|
|
|
for ( i = 3; i <= tile_diameter; i = i + 2 ) {
|
|
int span = i / 2;
|
|
|
|
// bottom row
|
|
for ( j = -span; j <= span; ++j ) {
|
|
p2 = fgBucketOffset( f->get_Longitude() * RAD_TO_DEG,
|
|
f->get_Latitude() * RAD_TO_DEG,
|
|
j, -span );
|
|
sched_tile( p2 );
|
|
}
|
|
|
|
// top row
|
|
for ( j = -span; j <= span; ++j ) {
|
|
p2 = fgBucketOffset( f->get_Longitude() * RAD_TO_DEG,
|
|
f->get_Latitude() * RAD_TO_DEG,
|
|
j, span );
|
|
sched_tile( p2 );
|
|
}
|
|
|
|
// middle rows
|
|
for ( j = -span + 1; j <= span - 1; ++j ) {
|
|
p2 = fgBucketOffset( f->get_Longitude() * RAD_TO_DEG,
|
|
f->get_Latitude() * RAD_TO_DEG,
|
|
-span, j );
|
|
sched_tile( p2 );
|
|
p2 = fgBucketOffset( f->get_Longitude() * RAD_TO_DEG,
|
|
f->get_Latitude() * RAD_TO_DEG,
|
|
span, j );
|
|
sched_tile( p2 );
|
|
}
|
|
|
|
}
|
|
|
|
/* for ( j = 0; j < tile_diameter; j++ ) {
|
|
for ( i = 0; i < tile_diameter; i++ ) {
|
|
// fgBucketOffset(&p1, &p2, i - dw, j - dh);
|
|
p2 = fgBucketOffset( f->get_Longitude() * RAD_TO_DEG,
|
|
f->get_Latitude() * RAD_TO_DEG,
|
|
i - dw, j -dh );
|
|
sched_tile( p2 );
|
|
}
|
|
} */
|
|
|
|
// Now force a load of the center tile and inner ring so we
|
|
// have something to see in our first frame.
|
|
for ( i = 0; i < 9; ++i ) {
|
|
if ( load_queue.size() ) {
|
|
FG_LOG( FG_TERRAIN, FG_DEBUG,
|
|
"Load queue not empty, loading a tile" );
|
|
|
|
FGLoadRec pending = load_queue.front();
|
|
load_queue.pop_front();
|
|
load_tile( pending.b, pending.cache_index );
|
|
}
|
|
}
|
|
|
|
} else {
|
|
// We've moved to a new bucket, we need to scroll our
|
|
// structures, and load in the new tiles
|
|
|
|
#if 0
|
|
// make sure load queue is flushed before doing shift
|
|
while ( load_queue.size() ) {
|
|
FG_LOG( FG_TERRAIN, FG_DEBUG,
|
|
"Load queue not empty, flushing queue before tile shift." );
|
|
|
|
FGLoadRec pending = load_queue.front();
|
|
load_queue.pop_front();
|
|
load_tile( pending.b, pending.index );
|
|
}
|
|
#endif
|
|
|
|
// CURRENTLY THIS ASSUMES WE CAN ONLY MOVE TO ADJACENT TILES.
|
|
// AT ULTRA HIGH SPEEDS THIS ASSUMPTION MAY NOT BE VALID IF
|
|
// THE AIRCRAFT CAN SKIP A TILE IN A SINGLE ITERATION.
|
|
|
|
FG_LOG( FG_TERRAIN, FG_INFO, "Updating Tile list for " << p1 );
|
|
|
|
if ( (p1.get_lon() > p_last.get_lon()) ||
|
|
( (p1.get_lon() == p_last.get_lon()) &&
|
|
(p1.get_x() > p_last.get_x()) ) ) {
|
|
FG_LOG( FG_TERRAIN, FG_INFO,
|
|
" (East) Loading " << tile_diameter << " tiles" );
|
|
for ( j = 0; j < tile_diameter; j++ ) {
|
|
// scrolling East
|
|
// schedule new column
|
|
p2 = fgBucketOffset( last_lon, last_lat, dw + 1, j - dh );
|
|
sched_tile( p2 );
|
|
}
|
|
} else if ( (p1.get_lon() < p_last.get_lon()) ||
|
|
( (p1.get_lon() == p_last.get_lon()) &&
|
|
(p1.get_x() < p_last.get_x()) ) ) {
|
|
FG_LOG( FG_TERRAIN, FG_INFO,
|
|
" (West) Loading " << tile_diameter << " tiles" );
|
|
for ( j = 0; j < tile_diameter; j++ ) {
|
|
// scrolling West
|
|
// schedule new column
|
|
p2 = fgBucketOffset( last_lon, last_lat, -dw - 1, j - dh );
|
|
sched_tile( p2 );
|
|
}
|
|
}
|
|
|
|
if ( (p1.get_lat() > p_last.get_lat()) ||
|
|
( (p1.get_lat() == p_last.get_lat()) &&
|
|
(p1.get_y() > p_last.get_y()) ) ) {
|
|
FG_LOG( FG_TERRAIN, FG_INFO,
|
|
" (North) Loading " << tile_diameter << " tiles" );
|
|
for ( i = 0; i < tile_diameter; i++ ) {
|
|
// scrolling North
|
|
// schedule new row
|
|
p2 = fgBucketOffset( last_lon, last_lat, i - dw, dh + 1);
|
|
sched_tile( p2 );
|
|
}
|
|
} else if ( (p1.get_lat() < p_last.get_lat()) ||
|
|
( (p1.get_lat() == p_last.get_lat()) &&
|
|
(p1.get_y() < p_last.get_y()) ) ) {
|
|
FG_LOG( FG_TERRAIN, FG_INFO,
|
|
" (South) Loading " << tile_diameter << " tiles" );
|
|
for ( i = 0; i < tile_diameter; i++ ) {
|
|
// scrolling South
|
|
// schedule new row
|
|
p2 = fgBucketOffset( last_lon, last_lat, i - dw, -dh - 1);
|
|
sched_tile( p2 );
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( load_queue.size() ) {
|
|
FG_LOG( FG_TERRAIN, FG_DEBUG, "Load queue not empty, loading a tile" );
|
|
|
|
FGLoadRec pending = load_queue.front();
|
|
load_queue.pop_front();
|
|
load_tile( pending.b, pending.cache_index );
|
|
}
|
|
|
|
// find our current elevation (feed in the current bucket to save work)
|
|
Point3D geod_pos = Point3D( f->get_Longitude(), f->get_Latitude(), 0.0);
|
|
Point3D tmp_abs_view_pos = fgGeodToCart(geod_pos);
|
|
|
|
// cout << "current elevation (old) == "
|
|
// << current_elev( f->get_Longitude(), f->get_Latitude(),
|
|
// tmp_abs_view_pos )
|
|
// << endl;
|
|
scenery.cur_elev = current_elev_ssg( current_view.abs_view_pos,
|
|
current_view.view_pos );
|
|
// cout << "current elevation (ssg) == " << scenery.cur_elev << endl;
|
|
|
|
p_last = p1;
|
|
last_lon = f->get_Longitude() * RAD_TO_DEG;
|
|
last_lat = f->get_Latitude() * RAD_TO_DEG;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
// NEW
|
|
|
|
// inrange() IS THIS POINT WITHIN POSSIBLE VIEWING RANGE ?
|
|
// calculate distance from vertical tangent line at
|
|
// current position to center of object.
|
|
// this is equivalent to
|
|
// dist = point_line_dist_squared( &(t->center), &(v->abs_view_pos),
|
|
// v->local_up );
|
|
// if ( dist < FG_SQUARE(t->bounding_radius) ) {
|
|
//
|
|
// the compiler should inline this for us
|
|
|
|
static int
|
|
inrange( const double radius, const Point3D& center, const Point3D& vp,
|
|
const MAT3vec up)
|
|
{
|
|
MAT3vec u, u1, v;
|
|
// double tmp;
|
|
|
|
// u = p - p0
|
|
u[0] = center.x() - vp.x();
|
|
u[1] = center.y() - vp.y();
|
|
u[2] = center.z() - vp.z();
|
|
|
|
// calculate the projection, u1, of u along d.
|
|
// u1 = ( dot_prod(u, d) / dot_prod(d, d) ) * d;
|
|
|
|
MAT3_SCALE_VEC(u1, up,
|
|
(MAT3_DOT_PRODUCT(u, up) / MAT3_DOT_PRODUCT(up, up)) );
|
|
|
|
// v = u - u1 = vector from closest point on line, p1, to the
|
|
// original point, p.
|
|
MAT3_SUB_VEC(v, u, u1);
|
|
|
|
return( FG_SQUARE(radius) >= MAT3_DOT_PRODUCT(v, v));
|
|
}
|
|
|
|
|
|
// NEW for legibility
|
|
|
|
// update this tile's geometry for current view
|
|
// The Compiler should inline this
|
|
static void
|
|
update_tile_geometry( FGTileEntry *t, GLdouble *MODEL_VIEW)
|
|
{
|
|
GLfloat *m;
|
|
double x, y, z;
|
|
|
|
// calculate tile offset
|
|
t->offset = t->center - scenery.center;
|
|
|
|
x = t->offset.x();
|
|
y = t->offset.y();
|
|
z = t->offset.z();
|
|
|
|
m = t->model_view;
|
|
|
|
// Calculate the model_view transformation matrix for this tile
|
|
FG_MEM_COPY( m, MODEL_VIEW, 16*sizeof(GLdouble) );
|
|
|
|
// This is equivalent to doing a glTranslatef(x, y, z);
|
|
m[12] += (m[0]*x + m[4]*y + m[8] *z);
|
|
m[13] += (m[1]*x + m[5]*y + m[9] *z);
|
|
m[14] += (m[2]*x + m[6]*y + m[10]*z);
|
|
// m[15] += (m[3]*x + m[7]*y + m[11]*z);
|
|
// m[3] m7[] m[11] are 0.0 see LookAt() in views.cxx
|
|
// so m[15] is unchanged
|
|
}
|
|
|
|
|
|
// Prepare the ssg nodes ... for each tile, set it's proper
|
|
// transform and update it's range selector based on current
|
|
// visibilty
|
|
void FGTileMgr::prep_ssg_nodes( void ) {
|
|
FGTileEntry *t;
|
|
|
|
float ranges[2];
|
|
ranges[0] = 0.0f;
|
|
|
|
// traverse the potentially viewable tile list and update range
|
|
// selector and transform
|
|
for ( int i = 0; i < (int)global_tile_cache.get_size(); i++ ) {
|
|
t = global_tile_cache.get_tile( i );
|
|
|
|
if ( t->is_loaded() ) {
|
|
// set range selector (LOD trick) to be distance to center
|
|
// of tile + bounding radius
|
|
#ifndef FG_OLD_WEATHER
|
|
ranges[1] = WeatherDatabase->getWeatherVisibility()
|
|
+ t->bounding_radius;
|
|
#else
|
|
ranges[1] = current_weather.get_visibility()+t->bounding_radius;
|
|
#endif
|
|
t->range_ptr->setRanges( ranges, 2 );
|
|
|
|
// calculate tile offset
|
|
t->SetOffset( scenery.center );
|
|
|
|
// calculate ssg transform
|
|
sgCoord sgcoord;
|
|
sgSetCoord( &sgcoord,
|
|
t->offset.x(), t->offset.y(), t->offset.z(),
|
|
0.0, 0.0, 0.0 );
|
|
t->transform_ptr->setTransform( &sgcoord );
|
|
}
|
|
}
|
|
}
|