1
0
Fork 0
flightgear/src/Scenery/tilemgr.cxx
2000-02-04 22:50:04 +00:00

1079 lines
30 KiB
C++

// tilemgr.cxx -- routines to handle dynamic management of scenery tiles
//
// Written by Curtis Olson, started January 1998.
//
// Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#ifdef HAVE_WINDOWS_H
# include <windows.h>
#endif
#include <GL/glut.h>
#include <XGL/xgl.h>
#include <Aircraft/aircraft.hxx>
#include <Debug/logstream.hxx>
// #include <Bucket/bucketutils.hxx>
#include <Include/fg_constants.h>
#include <Main/options.hxx>
#include <Main/views.hxx>
#include <Math/fg_geodesy.hxx>
#include <Math/mat3.h>
#include <Math/point3d.hxx>
#include <Math/polar3d.hxx>
#include <Math/vector.hxx>
#include <Objects/materialmgr.hxx>
#include <Objects/obj.hxx>
#ifndef FG_OLD_WEATHER
# include <WeatherCM/FGLocalWeatherDatabase.h>
#else
# include <Weather/weather.hxx>
#endif
#include "scenery.hxx"
#include "tilecache.hxx"
#include "tileentry.hxx"
#include "tilemgr.hxx"
// to test clipping speedup in fgTileMgrRender()
#if defined ( USE_FAST_FOV_CLIP )
// #define TEST_FOV_CLIP
// #define TEST_ELEV
#endif
extern ssgRoot *scene;
// the tile manager
FGTileMgr global_tile_mgr;
// Constructor
FGTileMgr::FGTileMgr ( void ):
state( Start )
{
}
// Destructor
FGTileMgr::~FGTileMgr ( void ) {
}
// Initialize the Tile Manager subsystem
int FGTileMgr::init( void ) {
FG_LOG( FG_TERRAIN, FG_INFO, "Initializing Tile Manager subsystem." );
// load default material library
if ( ! material_mgr.loaded() ) {
material_mgr.load_lib();
}
global_tile_cache.init();
state = Inited;
return 1;
}
// schedule a tile for loading
static void disable_tile( int cache_index ) {
// see if tile already exists in the cache
// cout << "DISABLING CACHE ENTRY = " << cache_index << endl;
FGTileEntry *t = global_tile_cache.get_tile( cache_index );
t->ssg_disable();
}
// schedule a tile for loading
int FGTileMgr::sched_tile( const FGBucket& b ) {
// see if tile already exists in the cache
int cache_index = global_tile_cache.exists( b );
if ( cache_index >= 0 ) {
// tile exists in cache, reenable it.
// cout << "REENABLING DISABLED TILE" << endl;
FGTileEntry *t = global_tile_cache.get_tile( cache_index );
t->select_ptr->select( 1 );
t->mark_loaded();
} else {
// find the next available cache entry and mark it as
// scheduled
cache_index = global_tile_cache.next_avail();
FGTileEntry *t = global_tile_cache.get_tile( cache_index );
t->mark_scheduled_for_use();
// register a load request
FGLoadRec request;
request.b = b;
request.cache_index = cache_index;
load_queue.push_back( request );
}
return cache_index;
}
// load a tile
void FGTileMgr::load_tile( const FGBucket& b, int cache_index) {
FG_LOG( FG_TERRAIN, FG_DEBUG, "Loading tile " << b );
global_tile_cache.fill_in(cache_index, b);
FG_LOG( FG_TERRAIN, FG_DEBUG, "Loaded for cache index: " << cache_index );
}
// Calculate shortest distance from point to line
static double point_line_dist_squared( const Point3D& tc, const Point3D& vp,
MAT3vec d )
{
MAT3vec p, p0;
p[0] = tc.x(); p[1] = tc.y(); p[2] = tc.z();
p0[0] = vp.x(); p0[1] = vp.y(); p0[2] = vp.z();
return fgPointLineSquared(p, p0, d);
}
// Determine scenery altitude. Normally this just happens when we
// render the scene, but we'd also like to be able to do this
// explicitely. lat & lon are in radians. abs_view_pos in meters.
// Returns result in meters.
double
FGTileMgr::current_elev_new( const FGBucket& p ) {
FGTileEntry *t;
fgFRAGMENT *frag_ptr;
Point3D abs_view_pos = current_view.get_abs_view_pos();
Point3D earth_center(0.0);
Point3D result;
MAT3vec local_up;
double dist, lat_geod, alt, sea_level_r;
int index;
local_up[0] = abs_view_pos.x();
local_up[1] = abs_view_pos.y();
local_up[2] = abs_view_pos.z();
// Find current translation offset
// fgBucketFind(lon * RAD_TO_DEG, lat * RAD_TO_DEG, &p);
index = global_tile_cache.exists(p);
if ( index < 0 ) {
FG_LOG( FG_TERRAIN, FG_WARN, "Tile not found" );
return 0.0;
}
t = global_tile_cache.get_tile(index);
scenery.next_center = t->center;
FG_LOG( FG_TERRAIN, FG_DEBUG,
"Current bucket = " << p << " Index = " << p.gen_index_str() );
FG_LOG( FG_TERRAIN, FG_DEBUG,
"abs_view_pos = " << abs_view_pos );
// calculate tile offset
// x = (t->offset.x = t->center.x - scenery.center.x);
// y = (t->offset.y = t->center.y - scenery.center.y);
// z = (t->offset.z = t->center.z - scenery.center.z);
// calc current terrain elevation calculate distance from
// vertical tangent line at current position to center of
// tile.
/* printf("distance squared = %.2f, bounding radius = %.2f\n",
point_line_dist_squared(&(t->offset), &(v->view_pos),
v->local_up), t->bounding_radius); */
dist = point_line_dist_squared( t->center, abs_view_pos, local_up );
if ( dist < FG_SQUARE(t->bounding_radius) ) {
// traverse fragment list for tile
FGTileEntry::FragmentIterator current = t->begin();
FGTileEntry::FragmentIterator last = t->end();
for ( ; current != last; ++current ) {
frag_ptr = &(*current);
/* printf("distance squared = %.2f, bounding radius = %.2f\n",
point_line_dist_squared( &(frag_ptr->center),
&abs_view_pos), local_up),
frag_ptr->bounding_radius); */
dist = point_line_dist_squared( frag_ptr->center,
abs_view_pos,
local_up);
if ( dist <= FG_SQUARE(frag_ptr->bounding_radius) ) {
if ( frag_ptr->intersect( abs_view_pos,
earth_center, 0, result ) ) {
FG_LOG( FG_TERRAIN, FG_DEBUG, "intersection point " <<
result );
// compute geocentric coordinates of tile center
Point3D pp = fgCartToPolar3d(result);
FG_LOG( FG_TERRAIN, FG_DEBUG, " polar form = " << pp );
// convert to geodetic coordinates
fgGeocToGeod(pp.lat(), pp.radius(), &lat_geod,
&alt, &sea_level_r);
// printf("alt = %.2f\n", alt);
// exit since we found an intersection
if ( alt > -9999.0 ) {
// printf("returning alt\n");
return alt;
} else {
// printf("returning 0\n");
return 0.0;
}
}
}
}
}
FG_LOG( FG_TERRAIN, FG_INFO, "(new) no terrain intersection found" );
return 0.0;
}
// Determine scenery altitude. Normally this just happens when we
// render the scene, but we'd also like to be able to do this
// explicitely. lat & lon are in radians. abs_view_pos in meters.
// Returns result in meters.
double
FGTileMgr::current_elev( double lon, double lat, const Point3D& abs_view_pos ) {
FGTileCache *c;
FGTileEntry *t;
fgFRAGMENT *frag_ptr;
Point3D earth_center(0.0);
Point3D result;
MAT3vec local_up;
double dist, lat_geod, alt, sea_level_r;
int index;
c = &global_tile_cache;
local_up[0] = abs_view_pos.x();
local_up[1] = abs_view_pos.y();
local_up[2] = abs_view_pos.z();
FG_LOG( FG_TERRAIN, FG_DEBUG, "Absolute view pos = " << abs_view_pos );
// Find current translation offset
FGBucket p( lon * RAD_TO_DEG, lat * RAD_TO_DEG );
index = c->exists(p);
if ( index < 0 ) {
FG_LOG( FG_TERRAIN, FG_WARN, "Tile not found" );
return 0.0;
}
t = c->get_tile(index);
scenery.next_center = t->center;
FG_LOG( FG_TERRAIN, FG_DEBUG,
"Pos = (" << lon * RAD_TO_DEG << ", " << lat * RAD_TO_DEG
<< ") Current bucket = " << p
<< " Index = " << p.gen_index_str() );
FG_LOG( FG_TERRAIN, FG_DEBUG, "Tile center " << t->center
<< " bounding radius = " << t->bounding_radius );
// calculate tile offset
// x = (t->offset.x = t->center.x - scenery.center.x);
// y = (t->offset.y = t->center.y - scenery.center.y);
// z = (t->offset.z = t->center.z - scenery.center.z);
// calc current terrain elevation calculate distance from
// vertical tangent line at current position to center of
// tile.
/* printf("distance squared = %.2f, bounding radius = %.2f\n",
point_line_dist_squared(&(t->offset), &(v->view_pos),
v->local_up), t->bounding_radius); */
dist = point_line_dist_squared( t->center, abs_view_pos, local_up );
FG_LOG( FG_TERRAIN, FG_DEBUG, "(gross check) dist squared = " << dist );
if ( dist < FG_SQUARE(t->bounding_radius) ) {
// traverse fragment list for tile
FGTileEntry::FragmentIterator current = t->begin();
FGTileEntry::FragmentIterator last = t->end();
for ( ; current != last; ++current ) {
frag_ptr = &(*current);
/* printf("distance squared = %.2f, bounding radius = %.2f\n",
point_line_dist_squared( &(frag_ptr->center),
&abs_view_pos), local_up),
frag_ptr->bounding_radius); */
dist = point_line_dist_squared( frag_ptr->center,
abs_view_pos,
local_up);
if ( dist <= FG_SQUARE(frag_ptr->bounding_radius) ) {
if ( frag_ptr->intersect( abs_view_pos,
earth_center, 0, result ) ) {
FG_LOG( FG_TERRAIN, FG_DEBUG, "intersection point " <<
result );
// compute geocentric coordinates of tile center
Point3D pp = fgCartToPolar3d(result);
FG_LOG( FG_TERRAIN, FG_DEBUG, " polar form = " << pp );
// convert to geodetic coordinates
fgGeocToGeod(pp.lat(), pp.radius(), &lat_geod,
&alt, &sea_level_r);
// printf("alt = %.2f\n", alt);
// exit since we found an intersection
if ( alt > -9999.0 ) {
// printf("returning alt\n");
return alt;
} else {
// printf("returning 0\n");
return 0.0;
}
}
}
}
}
FG_LOG( FG_TERRAIN, FG_INFO, "(old) no terrain intersection found" );
return 0.0;
}
inline int fg_sign( const double x ) {
return x < 0 ? -1 : 1;
}
inline double fg_min( const double a, const double b ) {
return b < a ? b : a;
}
inline double fg_max( const double a, const double b ) {
return a < b ? b : a;
}
// return the minimum of the three values
inline double fg_min3( const double a, const double b, const double c ) {
return a > b ? fg_min(b, c) : fg_min(a, c);
}
// return the maximum of the three values
inline double fg_max3 (const double a, const double b, const double c ) {
return a < b ? fg_max(b, c) : fg_max(a, c);
}
// check for an instersection with the individual triangles of a leaf
static bool my_ssg_instersect_leaf( string s, ssgLeaf *leaf, sgdMat4 m,
const sgdVec3 p, const sgdVec3 dir,
sgdVec3 result )
{
sgdVec3 v1, v2, n;
sgdVec3 p1, p2, p3;
double x, y, z; // temporary holding spot for result
double a, b, c, d;
double x0, y0, z0, x1, y1, z1, a1, b1, c1;
double t1, t2, t3;
double xmin, xmax, ymin, ymax, zmin, zmax;
double dx, dy, dz, min_dim, x2, y2, x3, y3, rx, ry;
sgdVec3 tmp;
float *ftmp;
int side1, side2;
short i1, i2, i3;
// cout << s << "Intersecting" << endl;
// traverse the triangle list for this leaf
for ( int i = 0; i < leaf->getNumTriangles(); ++i ) {
// cout << s << "testing triangle = " << i << endl;
leaf->getTriangle( i, &i1, &i2, &i3 );
// get triangle vertex coordinates
ftmp = leaf->getVertex( i1 );
sgdSetVec3( tmp, ftmp );
// cout << s << "orig point 1 = " << tmp[0] << " " << tmp[1]
// << " " << tmp[2] << endl;
sgdXformPnt3( p1, tmp, m ) ;
ftmp = leaf->getVertex( i2 );
sgdSetVec3( tmp, ftmp );
// cout << s << "orig point 2 = " << tmp[0] << " " << tmp[1]
// << " " << tmp[2] << endl;
sgdXformPnt3( p2, tmp, m ) ;
ftmp = leaf->getVertex( i3 );
sgdSetVec3( tmp, ftmp );
// cout << s << "orig point 3 = " << tmp[0] << " " << tmp[1]
// << " " << tmp[2] << endl;
sgdXformPnt3( p3, tmp, m ) ;
// cout << s << "point 1 = " << p1[0] << " " << p1[1] << " " << p1[2]
// << endl;
// cout << s << "point 2 = " << p2[0] << " " << p2[1] << " " << p2[2]
// << endl;
// cout << s << "point 3 = " << p3[0] << " " << p3[1] << " " << p3[2]
// << endl;
// calculate two edge vectors, and the face normal
sgdSubVec3(v1, p2, p1);
sgdSubVec3(v2, p3, p1);
sgdVectorProductVec3(n, v1, v2);
// calculate the plane coefficients for the plane defined by
// this face. If n is the normal vector, n = (a, b, c) and p1
// is a point on the plane, p1 = (x0, y0, z0), then the
// equation of the line is a(x-x0) + b(y-y0) + c(z-z0) = 0
a = n[0];
b = n[1];
c = n[2];
d = a * p1[0] + b * p1[1] + c * p1[2];
// printf("a, b, c, d = %.2f %.2f %.2f %.2f\n", a, b, c, d);
// printf("p1(d) = %.2f\n", a * p1[0] + b * p1[1] + c * p1[2]);
// printf("p2(d) = %.2f\n", a * p2[0] + b * p2[1] + c * p2[2]);
// printf("p3(d) = %.2f\n", a * p3[0] + b * p3[1] + c * p3[2]);
// calculate the line coefficients for the specified line
x0 = p[0]; x1 = p[0] + dir[0];
y0 = p[1]; y1 = p[1] + dir[1];
z0 = p[2]; z1 = p[2] + dir[2];
if ( fabs(x1 - x0) > FG_EPSILON ) {
a1 = 1.0 / (x1 - x0);
} else {
// we got a big divide by zero problem here
a1 = 0.0;
}
b1 = y1 - y0;
c1 = z1 - z0;
// intersect the specified line with this plane
t1 = b * b1 * a1;
t2 = c * c1 * a1;
// printf("a = %.2f t1 = %.2f t2 = %.2f\n", a, t1, t2);
if ( fabs(a + t1 + t2) > FG_EPSILON ) {
x = (t1*x0 - b*y0 + t2*x0 - c*z0 + d) / (a + t1 + t2);
t3 = a1 * (x - x0);
y = b1 * t3 + y0;
z = c1 * t3 + z0;
// printf("result(d) = %.2f\n", a * x + b * y + c * z);
} else {
// no intersection point
continue;
}
#if 0
if ( side_flag ) {
// check to see if end0 and end1 are on opposite sides of
// plane
if ( (x - x0) > FG_EPSILON ) {
t1 = x;
t2 = x0;
t3 = x1;
} else if ( (y - y0) > FG_EPSILON ) {
t1 = y;
t2 = y0;
t3 = y1;
} else if ( (z - z0) > FG_EPSILON ) {
t1 = z;
t2 = z0;
t3 = z1;
} else {
// everything is too close together to tell the difference
// so the current intersection point should work as good
// as any
sgdSetVec3( result, x, y, z );
return true;
}
side1 = fg_sign (t1 - t2);
side2 = fg_sign (t1 - t3);
if ( side1 == side2 ) {
// same side, punt
continue;
}
}
#endif
// check to see if intersection point is in the bounding
// cube of the face
#ifdef XTRA_DEBUG_STUFF
xmin = fg_min3 (p1[0], p2[0], p3[0]);
xmax = fg_max3 (p1[0], p2[0], p3[0]);
ymin = fg_min3 (p1[1], p2[1], p3[1]);
ymax = fg_max3 (p1[1], p2[1], p3[1]);
zmin = fg_min3 (p1[2], p2[2], p3[2]);
zmax = fg_max3 (p1[2], p2[2], p3[2]);
printf("bounding cube = %.2f,%.2f,%.2f %.2f,%.2f,%.2f\n",
xmin, ymin, zmin, xmax, ymax, zmax);
#endif
// punt if outside bouding cube
if ( x < (xmin = fg_min3 (p1[0], p2[0], p3[0])) ) {
continue;
} else if ( x > (xmax = fg_max3 (p1[0], p2[0], p3[0])) ) {
continue;
} else if ( y < (ymin = fg_min3 (p1[1], p2[1], p3[1])) ) {
continue;
} else if ( y > (ymax = fg_max3 (p1[1], p2[1], p3[1])) ) {
continue;
} else if ( z < (zmin = fg_min3 (p1[2], p2[2], p3[2])) ) {
continue;
} else if ( z > (zmax = fg_max3 (p1[2], p2[2], p3[2])) ) {
continue;
}
// (finally) check to see if the intersection point is
// actually inside this face
//first, drop the smallest dimension so we only have to work
//in 2d.
dx = xmax - xmin;
dy = ymax - ymin;
dz = zmax - zmin;
min_dim = fg_min3 (dx, dy, dz);
if ( fabs(min_dim - dx) <= FG_EPSILON ) {
// x is the smallest dimension
x1 = p1[1];
y1 = p1[2];
x2 = p2[1];
y2 = p2[2];
x3 = p3[1];
y3 = p3[2];
rx = y;
ry = z;
} else if ( fabs(min_dim - dy) <= FG_EPSILON ) {
// y is the smallest dimension
x1 = p1[0];
y1 = p1[2];
x2 = p2[0];
y2 = p2[2];
x3 = p3[0];
y3 = p3[2];
rx = x;
ry = z;
} else if ( fabs(min_dim - dz) <= FG_EPSILON ) {
// z is the smallest dimension
x1 = p1[0];
y1 = p1[1];
x2 = p2[0];
y2 = p2[1];
x3 = p3[0];
y3 = p3[1];
rx = x;
ry = y;
} else {
// all dimensions are really small so lets call it close
// enough and return a successful match
sgdSetVec3( result, x, y, z );
return true;
}
// check if intersection point is on the same side of p1 <-> p2 as p3
t1 = (y1 - y2) / (x1 - x2);
side1 = fg_sign (t1 * ((x3) - x2) + y2 - (y3));
side2 = fg_sign (t1 * ((rx) - x2) + y2 - (ry));
if ( side1 != side2 ) {
// printf("failed side 1 check\n");
continue;
}
// check if intersection point is on correct side of p2 <-> p3 as p1
t1 = (y2 - y3) / (x2 - x3);
side1 = fg_sign (t1 * ((x1) - x3) + y3 - (y1));
side2 = fg_sign (t1 * ((rx) - x3) + y3 - (ry));
if ( side1 != side2 ) {
// printf("failed side 2 check\n");
continue;
}
// check if intersection point is on correct side of p1 <-> p3 as p2
t1 = (y1 - y3) / (x1 - x3);
side1 = fg_sign (t1 * ((x2) - x3) + y3 - (y2));
side2 = fg_sign (t1 * ((rx) - x3) + y3 - (ry));
if ( side1 != side2 ) {
// printf("failed side 3 check\n");
continue;
}
// printf( "intersection point = %.2f %.2f %.2f\n", x, y, z);
sgdSetVec3( result, x, y, z );
return true;
}
// printf("\n");
return false;
}
void FGTileMgr::my_ssg_los( string s, ssgBranch *branch, sgdMat4 m,
const sgdVec3 p, const sgdVec3 dir )
{
sgSphere *bsphere;
for ( ssgEntity *kid = branch->getKid( 0 );
kid != NULL;
kid = branch->getNextKid() )
{
if ( kid->getTraversalMask() & SSGTRAV_HOT ) {
bsphere = kid->getBSphere();
sgVec3 fcenter;
sgCopyVec3( fcenter, bsphere->getCenter() );
sgdVec3 center;
center[0] = fcenter[0];
center[1] = fcenter[1];
center[2] = fcenter[2];
sgdXformPnt3( center, m ) ;
// cout << s << "entity bounding sphere:" << endl;
// cout << s << "center = " << center[0] << " "
// << center[1] << " " << center[2] << endl;
// cout << s << "radius = " << bsphere->getRadius() << endl;
double radius_sqd = bsphere->getRadius() * bsphere->getRadius();
if ( sgdPointLineDistSquared( center, p, dir ) < radius_sqd ) {
// possible intersections
if ( kid->isAKindOf ( ssgTypeBranch() ) ) {
sgdMat4 m_new;
sgdCopyMat4(m_new, m);
if ( kid->isA( ssgTypeTransform() ) ) {
sgMat4 fxform;
((ssgTransform *)kid)->getTransform( fxform );
sgdMat4 xform;
sgdSetMat4( xform, fxform );
sgdPreMultMat4( m_new, xform );
}
my_ssg_los( s + " ", (ssgBranch *)kid, m_new, p, dir );
} else if ( kid->isAKindOf ( ssgTypeLeaf() ) ) {
sgdVec3 result;
if ( my_ssg_instersect_leaf( s, (ssgLeaf *)kid, m, p, dir,
result ) )
{
// cout << "sgLOS hit: " << result[0] << ","
// << result[1] << "," << result[2] << endl;
hit_pts[hitcount] = result;
hitcount++;
}
}
} else {
// end of the line for this branch
}
} else {
// branch requested not to be traversed
}
}
}
// Determine scenery altitude via ssg. Normally this just happens
// when we render the scene, but we'd also like to be able to do this
// explicitely. lat & lon are in radians. view_pos in current world
// coordinate translated near (0,0,0) (in meters.) Returns result in
// meters.
double
FGTileMgr::current_elev_ssg( const Point3D& abs_view_pos,
const Point3D& view_pos )
{
hitcount = 0;
sgdMat4 m;
sgdMakeIdentMat4 ( m ) ;
sgdVec3 sgavp, sgvp;
sgdSetVec3(sgavp, abs_view_pos.x(), abs_view_pos.y(), abs_view_pos.z() );
sgdSetVec3(sgvp, view_pos.x(), view_pos.y(), view_pos.z() );
// cout << "starting ssg_los, abs view pos = " << abs_view_pos[0] << " "
// << abs_view_pos[1] << " " << abs_view_pos[2] << endl;
// cout << "starting ssg_los, view pos = " << view_pos[0] << " "
// << view_pos[1] << " " << view_pos[2] << endl;
my_ssg_los( "", scene, m, sgvp, sgavp );
double result = -9999;
for ( int i = 0; i < hitcount; ++i ) {
Point3D rel_cart( hit_pts[i][0], hit_pts[i][1], hit_pts[i][2] );
Point3D abs_cart = rel_cart + scenery.center;
Point3D pp = fgCartToPolar3d( abs_cart );
FG_LOG( FG_TERRAIN, FG_DEBUG, " polar form = " << pp );
// convert to geodetic coordinates
double lat_geod, alt, sea_level_r;
fgGeocToGeod(pp.lat(), pp.radius(), &lat_geod,
&alt, &sea_level_r);
// printf("alt = %.2f\n", alt);
// exit since we found an intersection
if ( alt > result && alt < 10000 ) {
// printf("returning alt\n");
result = alt;
}
}
if ( result > -9000 ) {
return result;
} else {
FG_LOG( FG_TERRAIN, FG_INFO, "no terrain intersection" );
return 0.0;
}
}
// given the current lon/lat, fill in the array of local chunks. If
// the chunk isn't already in the cache, then read it from disk.
int FGTileMgr::update( void ) {
FGTileCache *c;
FGInterface *f;
FGTileEntry *t;
FGBucket p2;
static FGBucket p_last(false);
static double last_lon = -1000.0; // in degrees
static double last_lat = -1000.0; // in degrees
int tile_diameter;
int i, j, dw, dh;
c = &global_tile_cache;
f = current_aircraft.fdm_state;
tile_diameter = current_options.get_tile_diameter();
FGBucket p1( f->get_Longitude() * RAD_TO_DEG,
f->get_Latitude() * RAD_TO_DEG );
long int index = c->exists(p1);
if ( index >= 0 ) {
t = c->get_tile(index);
scenery.next_center = t->center;
} else {
FG_LOG( FG_TERRAIN, FG_WARN, "Tile not found" );
}
dw = tile_diameter / 2;
dh = tile_diameter / 2;
if ( (p1 == p_last) && (state == Running) ) {
// same bucket as last time
FG_LOG( FG_TERRAIN, FG_DEBUG, "Same bucket as last time" );
} else if ( (state == Start) || (state == Inited) ) {
state = Running;
// First time through or we have teleported, initialize the
// system and load all relavant tiles
FG_LOG( FG_TERRAIN, FG_INFO, "Updating Tile list for " << p1 );
FG_LOG( FG_TERRAIN, FG_INFO, " First time through ... " );
FG_LOG( FG_TERRAIN, FG_INFO, " Updating Tile list for " << p1 );
FG_LOG( FG_TERRAIN, FG_INFO, " Loading "
<< tile_diameter * tile_diameter << " tiles" );
// wipe/initialize tile cache
c->init();
p_last.make_bad();
// build the local area list and schedule tiles for loading
// start with the center tile and work out in concentric
// "rings"
p2 = fgBucketOffset( f->get_Longitude() * RAD_TO_DEG,
f->get_Latitude() * RAD_TO_DEG,
0, 0 );
sched_tile( p2 );
// prime scenery center calculations
Point3D geod_view_center( p2.get_center_lon(),
p2.get_center_lat(),
cur_fdm_state->get_Altitude()*FEET_TO_METER +
3 );
current_view.abs_view_pos = fgGeodToCart( geod_view_center );
current_view.view_pos = current_view.abs_view_pos - scenery.next_center;
for ( i = 3; i <= tile_diameter; i = i + 2 ) {
int span = i / 2;
// bottom row
for ( j = -span; j <= span; ++j ) {
p2 = fgBucketOffset( f->get_Longitude() * RAD_TO_DEG,
f->get_Latitude() * RAD_TO_DEG,
j, -span );
sched_tile( p2 );
}
// top row
for ( j = -span; j <= span; ++j ) {
p2 = fgBucketOffset( f->get_Longitude() * RAD_TO_DEG,
f->get_Latitude() * RAD_TO_DEG,
j, span );
sched_tile( p2 );
}
// middle rows
for ( j = -span + 1; j <= span - 1; ++j ) {
p2 = fgBucketOffset( f->get_Longitude() * RAD_TO_DEG,
f->get_Latitude() * RAD_TO_DEG,
-span, j );
sched_tile( p2 );
p2 = fgBucketOffset( f->get_Longitude() * RAD_TO_DEG,
f->get_Latitude() * RAD_TO_DEG,
span, j );
sched_tile( p2 );
}
}
/* for ( j = 0; j < tile_diameter; j++ ) {
for ( i = 0; i < tile_diameter; i++ ) {
// fgBucketOffset(&p1, &p2, i - dw, j - dh);
p2 = fgBucketOffset( f->get_Longitude() * RAD_TO_DEG,
f->get_Latitude() * RAD_TO_DEG,
i - dw, j -dh );
sched_tile( p2 );
}
} */
// Now force a load of the center tile and inner ring so we
// have something to see in our first frame.
for ( i = 0; i < 9; ++i ) {
if ( load_queue.size() ) {
FG_LOG( FG_TERRAIN, FG_DEBUG,
"Load queue not empty, loading a tile" );
FGLoadRec pending = load_queue.front();
load_queue.pop_front();
load_tile( pending.b, pending.cache_index );
}
}
} else {
// We've moved to a new bucket, we need to scroll our
// structures, and load in the new tiles
#if 0
// make sure load queue is flushed before doing shift
while ( load_queue.size() ) {
FG_LOG( FG_TERRAIN, FG_DEBUG,
"Load queue not empty, flushing queue before tile shift." );
FGLoadRec pending = load_queue.front();
load_queue.pop_front();
load_tile( pending.b, pending.index );
}
#endif
// CURRENTLY THIS ASSUMES WE CAN ONLY MOVE TO ADJACENT TILES.
// AT ULTRA HIGH SPEEDS THIS ASSUMPTION MAY NOT BE VALID IF
// THE AIRCRAFT CAN SKIP A TILE IN A SINGLE ITERATION.
FG_LOG( FG_TERRAIN, FG_INFO, "Updating Tile list for " << p1 );
if ( (p1.get_lon() > p_last.get_lon()) ||
( (p1.get_lon() == p_last.get_lon()) &&
(p1.get_x() > p_last.get_x()) ) ) {
FG_LOG( FG_TERRAIN, FG_INFO,
" (East) Loading " << tile_diameter << " tiles" );
for ( j = 0; j < tile_diameter; j++ ) {
// scrolling East
// schedule new column
p2 = fgBucketOffset( last_lon, last_lat, dw + 1, j - dh );
sched_tile( p2 );
}
} else if ( (p1.get_lon() < p_last.get_lon()) ||
( (p1.get_lon() == p_last.get_lon()) &&
(p1.get_x() < p_last.get_x()) ) ) {
FG_LOG( FG_TERRAIN, FG_INFO,
" (West) Loading " << tile_diameter << " tiles" );
for ( j = 0; j < tile_diameter; j++ ) {
// scrolling West
// schedule new column
p2 = fgBucketOffset( last_lon, last_lat, -dw - 1, j - dh );
sched_tile( p2 );
}
}
if ( (p1.get_lat() > p_last.get_lat()) ||
( (p1.get_lat() == p_last.get_lat()) &&
(p1.get_y() > p_last.get_y()) ) ) {
FG_LOG( FG_TERRAIN, FG_INFO,
" (North) Loading " << tile_diameter << " tiles" );
for ( i = 0; i < tile_diameter; i++ ) {
// scrolling North
// schedule new row
p2 = fgBucketOffset( last_lon, last_lat, i - dw, dh + 1);
sched_tile( p2 );
}
} else if ( (p1.get_lat() < p_last.get_lat()) ||
( (p1.get_lat() == p_last.get_lat()) &&
(p1.get_y() < p_last.get_y()) ) ) {
FG_LOG( FG_TERRAIN, FG_INFO,
" (South) Loading " << tile_diameter << " tiles" );
for ( i = 0; i < tile_diameter; i++ ) {
// scrolling South
// schedule new row
p2 = fgBucketOffset( last_lon, last_lat, i - dw, -dh - 1);
sched_tile( p2 );
}
}
}
if ( load_queue.size() ) {
FG_LOG( FG_TERRAIN, FG_DEBUG, "Load queue not empty, loading a tile" );
FGLoadRec pending = load_queue.front();
load_queue.pop_front();
load_tile( pending.b, pending.cache_index );
}
// find our current elevation (feed in the current bucket to save work)
Point3D geod_pos = Point3D( f->get_Longitude(), f->get_Latitude(), 0.0);
Point3D tmp_abs_view_pos = fgGeodToCart(geod_pos);
// cout << "current elevation (old) == "
// << current_elev( f->get_Longitude(), f->get_Latitude(),
// tmp_abs_view_pos )
// << endl;
scenery.cur_elev = current_elev_ssg( current_view.abs_view_pos,
current_view.view_pos );
// cout << "current elevation (ssg) == " << scenery.cur_elev << endl;
p_last = p1;
last_lon = f->get_Longitude() * RAD_TO_DEG;
last_lat = f->get_Latitude() * RAD_TO_DEG;
return 1;
}
// NEW
// inrange() IS THIS POINT WITHIN POSSIBLE VIEWING RANGE ?
// calculate distance from vertical tangent line at
// current position to center of object.
// this is equivalent to
// dist = point_line_dist_squared( &(t->center), &(v->abs_view_pos),
// v->local_up );
// if ( dist < FG_SQUARE(t->bounding_radius) ) {
//
// the compiler should inline this for us
static int
inrange( const double radius, const Point3D& center, const Point3D& vp,
const MAT3vec up)
{
MAT3vec u, u1, v;
// double tmp;
// u = p - p0
u[0] = center.x() - vp.x();
u[1] = center.y() - vp.y();
u[2] = center.z() - vp.z();
// calculate the projection, u1, of u along d.
// u1 = ( dot_prod(u, d) / dot_prod(d, d) ) * d;
MAT3_SCALE_VEC(u1, up,
(MAT3_DOT_PRODUCT(u, up) / MAT3_DOT_PRODUCT(up, up)) );
// v = u - u1 = vector from closest point on line, p1, to the
// original point, p.
MAT3_SUB_VEC(v, u, u1);
return( FG_SQUARE(radius) >= MAT3_DOT_PRODUCT(v, v));
}
// NEW for legibility
// update this tile's geometry for current view
// The Compiler should inline this
static void
update_tile_geometry( FGTileEntry *t, GLdouble *MODEL_VIEW)
{
GLfloat *m;
double x, y, z;
// calculate tile offset
t->offset = t->center - scenery.center;
x = t->offset.x();
y = t->offset.y();
z = t->offset.z();
m = t->model_view;
// Calculate the model_view transformation matrix for this tile
FG_MEM_COPY( m, MODEL_VIEW, 16*sizeof(GLdouble) );
// This is equivalent to doing a glTranslatef(x, y, z);
m[12] += (m[0]*x + m[4]*y + m[8] *z);
m[13] += (m[1]*x + m[5]*y + m[9] *z);
m[14] += (m[2]*x + m[6]*y + m[10]*z);
// m[15] += (m[3]*x + m[7]*y + m[11]*z);
// m[3] m7[] m[11] are 0.0 see LookAt() in views.cxx
// so m[15] is unchanged
}
// Prepare the ssg nodes ... for each tile, set it's proper
// transform and update it's range selector based on current
// visibilty
void FGTileMgr::prep_ssg_nodes( void ) {
FGTileEntry *t;
float ranges[2];
ranges[0] = 0.0f;
// traverse the potentially viewable tile list and update range
// selector and transform
for ( int i = 0; i < (int)global_tile_cache.get_size(); i++ ) {
t = global_tile_cache.get_tile( i );
if ( t->is_loaded() ) {
// set range selector (LOD trick) to be distance to center
// of tile + bounding radius
#ifndef FG_OLD_WEATHER
ranges[1] = WeatherDatabase->getWeatherVisibility()
+ t->bounding_radius;
#else
ranges[1] = current_weather.get_visibility()+t->bounding_radius;
#endif
t->range_ptr->setRanges( ranges, 2 );
// calculate tile offset
t->SetOffset( scenery.center );
// calculate ssg transform
sgCoord sgcoord;
sgSetCoord( &sgcoord,
t->offset.x(), t->offset.y(), t->offset.z(),
0.0, 0.0, 0.0 );
t->transform_ptr->setTransform( &sgcoord );
}
}
}