1
0
Fork 0
flightgear/src/AIModel/AIShip.cxx

1119 lines
34 KiB
C++

// FGAIShip - FGAIBase-derived class creates an AI ship
//
// Written by David Culp, started October 2003.
// with major amendments and additions by Vivian Meazza, 2004 - 2007
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <cmath>
#ifdef _MSC_VER
# include <float.h>
double fgIsFinite(double x) { return _finite(x); }
#else
double fgIsFinite(double x) { return std::isfinite(x); }
#endif
#include <simgear/sg_inlines.h>
#include <simgear/math/sg_geodesy.hxx>
#include <simgear/timing/sg_time.hxx>
#include <simgear/math/sg_random.hxx>
#include <simgear/scene/util/SGNodeMasks.hxx>
#include <Scenery/scenery.hxx>
#include <Main/globals.hxx>
#include "AIShip.hxx"
using std::string;
FGAIShip::FGAIShip(object_type ot) :
// allow HOT to be enabled
FGAIBase(ot, true),
_waiting(false),
_new_waypoint(true),
_tunnel(false),
_initial_tunnel(false),
_restart(false),
_hdg_constant(0.01),
_limit(100),
_elevation_m(0),
_elevation_ft(0),
_tow_angle(0),
_missed_count(0),
_wp_range(0),
_dt_count(0),
_next_run(0),
_roll_constant(0.001),
_roll_factor(-0.0083335),
_old_range(0),
_range_rate(0),
_missed_time_sec(30),
_day(86400),
_lead_angle(0),
_xtrack_error(0),
_curr_alt(0),
_prev_alt(0),
_until_time(""),
_fp_init(false),
_missed(false)
{
invisible = false;
}
FGAIShip::~FGAIShip() {
}
void FGAIShip::readFromScenario(SGPropertyNode* scFileNode) {
if (!scFileNode)
return;
FGAIBase::readFromScenario(scFileNode);
setRudder(scFileNode->getFloatValue("rudder", 0.0));
setName(scFileNode->getStringValue("name", "Titanic"));
setRadius(scFileNode->getDoubleValue("turn-radius-ft", 2000));
const std::string& flightplan = scFileNode->getStringValue("flightplan");
setRepeat(scFileNode->getBoolValue("repeat", false));
setRestart(scFileNode->getBoolValue("restart", false));
setStartTime(scFileNode->getStringValue("time", ""));
setLeadAngleGain(scFileNode->getDoubleValue("lead-angle-gain", 1.5));
setLeadAngleLimit(scFileNode->getDoubleValue("lead-angle-limit-deg", 15));
setLeadAngleProp(scFileNode->getDoubleValue("lead-angle-proportion", 0.75));
setRudderConstant(scFileNode->getDoubleValue("rudder-constant", 0.5));
setFixedTurnRadius(scFileNode->getDoubleValue("fixed-turn-radius-ft", 500));
setSpeedConstant(scFileNode->getDoubleValue("speed-constant", 0.5));
setSMPath(scFileNode->getStringValue("submodel-path", ""));
setRollFactor(scFileNode->getDoubleValue("roll-factor", 1));
if (!flightplan.empty()) {
std::unique_ptr<FGAIFlightPlan> plan(new FGAIFlightPlan(flightplan));
setFlightPlan(std::move(plan));
}
}
bool FGAIShip::init(ModelSearchOrder searchOrder) {
reinit();
return FGAIBase::init(searchOrder);
}
void FGAIShip::reinit()
{
prev = 0; // the one behind you
curr = 0; // the one ahead
next = 0; // the next plus 1
props->setStringValue("name", _name.c_str());
props->setStringValue("waypoint/name-prev", _prev_name.c_str());
props->setStringValue("waypoint/name-curr", _curr_name.c_str());
props->setStringValue("waypoint/name-next", _next_name.c_str());
props->setStringValue("submodels/path", _path.c_str());
props->setStringValue("waypoint/start-time", _start_time.c_str());
props->setStringValue("waypoint/wait-until-time", _until_time.c_str());
_hdg_lock = false;
_rudder = 0.0;
no_roll = false;
_rd_turn_radius_ft = _sp_turn_radius_ft = turn_radius_ft;
if (fp)
_fp_init = initFlightPlan();
FGAIBase::reinit();
}
void FGAIShip::bind() {
FGAIBase::bind();
tie("surface-positions/rudder-pos-deg",
SGRawValuePointer<float>(&_rudder));
tie("controls/heading-lock",
SGRawValuePointer<bool>(&_hdg_lock));
tie("controls/tgt-speed-kts",
SGRawValuePointer<double>(&tgt_speed));
tie("controls/tgt-heading-degs",
SGRawValuePointer<double>(&tgt_heading));
tie("controls/constants/roll-factor",
SGRawValuePointer<double>(&_roll_factor));
tie("controls/constants/roll",
SGRawValuePointer<double>(&_roll_constant));
tie("controls/constants/rudder",
SGRawValuePointer<double>(&_rudder_constant));
tie("controls/constants/speed",
SGRawValuePointer<double>(&_speed_constant));
tie("waypoint/range-nm",
SGRawValuePointer<double>(&_wp_range));
tie("waypoint/brg-deg",
SGRawValuePointer<double>(&_course));
tie("waypoint/rangerate-nm-sec",
SGRawValuePointer<double>(&_range_rate));
tie("waypoint/new",
SGRawValuePointer<bool>(&_new_waypoint));
tie("waypoint/missed",
SGRawValuePointer<bool>(&_missed));
tie("waypoint/missed-count-sec",
SGRawValuePointer<double>(&_missed_count));
tie("waypoint/missed-range-nm",
SGRawValuePointer<double>(&_missed_range));
tie("waypoint/missed-time-sec",
SGRawValuePointer<double>(&_missed_time_sec));
tie("waypoint/wait-count-sec",
SGRawValuePointer<double>(&_wait_count));
tie("waypoint/xtrack-error-ft",
SGRawValuePointer<double>(&_xtrack_error));
tie("waypoint/waiting",
SGRawValuePointer<bool>(&_waiting));
tie("waypoint/lead-angle-deg",
SGRawValuePointer<double>(&_lead_angle));
tie("waypoint/tunnel",
SGRawValuePointer<bool>(&_tunnel));
tie("waypoint/alt-curr-m",
SGRawValuePointer<double>(&_curr_alt));
tie("waypoint/alt-prev-m",
SGRawValuePointer<double>(&_prev_alt));
tie("submodels/serviceable",
SGRawValuePointer<bool>(&_serviceable));
tie("controls/turn-radius-ft",
SGRawValuePointer<double>(&turn_radius_ft));
tie("controls/turn-radius-corrected-ft",
SGRawValuePointer<double>(&_rd_turn_radius_ft));
tie("controls/constants/lead-angle/gain",
SGRawValuePointer<double>(&_lead_angle_gain));
tie("controls/constants/lead-angle/limit-deg",
SGRawValuePointer<double>(&_lead_angle_limit));
tie("controls/constants/lead-angle/proportion",
SGRawValuePointer<double>(&_proportion));
tie("controls/fixed-turn-radius-ft",
SGRawValuePointer<double>(&_fixed_turn_radius));
tie("controls/restart",
SGRawValuePointer<bool>(&_restart));
tie("velocities/speed-kts",
SGRawValuePointer<double>(&speed));
tie("velocities/uBody-fps",
SGRawValuePointer<double>(&speed_fps));
// _tiedProperties is /ai/models/carrier[].
// this->props is /ai/models/carrier[].
}
void FGAIShip::update(double dt) {
if (replay_time->getDoubleValue() <= 0)
{
//SG_LOG(SG_AI, SG_ALERT, "updating Ship: " << _name <<hdg<<pitch<<roll);
// For computation of rotation speeds we just use finite differences here.
// That is perfectly valid since this thing is not driven by accelerations
// but by just apply discrete changes at its velocity variables.
// Update the velocity information stored in those nodes.
// Transform that one to the horizontal local coordinate system.
SGQuatd ec2hl = SGQuatd::fromLonLat(pos);
// The orientation of the ship wrt the horizontal local frame
SGQuatd hl2body = SGQuatd::fromYawPitchRollDeg(hdg, pitch, roll);
// and postrotate the orientation of the AIModel wrt the horizontal
// local frame
SGQuatd ec2body = ec2hl*hl2body;
// The cartesian position of the ship in the wgs84 world
//SGVec3d cartPos = SGVec3d::fromGeod(pos);
// The simulation time this transform is meant for
aip.setReferenceTime(globals->get_sim_time_sec());
// Compute the velocity in m/s in the body frame
// <speed> is in knots.
aip.setBodyLinearVelocity(SGVec3d(speed * SG_KT_TO_MPS, 0, 0));
// Update speed_fps so that velocities/uBody-fps will be set. <speed>
// is in knots.
//
{
speed_fps = speed * SG_KT_TO_FPS;
}
FGAIBase::update(dt);
Run(dt);
Transform();
if (fp)
setXTrackError();
// Only change these values if we are able to compute them safely
if (SGLimits<double>::min() < dt) {
// Now here is the finite difference ...
// Transform that one to the horizontal local coordinate system.
SGQuatd ec2hlNew = SGQuatd::fromLonLat(pos);
// compute the new orientation
SGQuatd hl2bodyNew = SGQuatd::fromYawPitchRollDeg(hdg, pitch, roll);
// The rotation difference
SGQuatd dOr = inverse(ec2body)*ec2hlNew*hl2bodyNew;
SGVec3d dOrAngleAxis;
dOr.getAngleAxis(dOrAngleAxis);
// divided by the time difference provides a rotation speed vector
dOrAngleAxis /= dt;
aip.setBodyAngularVelocity(dOrAngleAxis);
}
}
else
{
Transform();
}
}
void FGAIShip::Run(double dt) {
if (_fp_init)
ProcessFlightPlan(dt);
const string& type = getTypeString();
double alpha;
double rudder_limit;
double raw_roll;
// adjust speed
double speed_diff = tgt_speed - speed;
if (fabs(speed_diff) > 0.1) {
if (speed_diff > 0.0)
speed += _speed_constant * dt;
if (speed_diff < 0.0)
speed -= _speed_constant * dt;
} else {
speed = tgt_speed;
}
// do not allow unreasonable speeds
SG_CLAMP_RANGE(speed, -_limit * 0.75, _limit);
{
/* The rotation rotating from the earth centerd frame to the horizontal
local frame. */
SGQuatd hlOr = SGQuatd::fromLonLat(pos);
/* The rotation from the horizontal local frame to the basic view
orientation. */
SGQuatd hlToBody = SGQuatd::fromYawPitchRollDeg(hdg, pitch, roll);
/* Compute the eyepoints orientation and position wrt the earth
centered frame - that is global coorinates. */
SGQuatd ec2body = hlOr * hlToBody;
/* The cartesian position of the basic view coordinate. */
SGVec3d position = SGVec3d::fromGeod(pos);
/* This is rotates the x-forward, y-right, z-down coordinate system the
where simulation runs into the OpenGL camera system with x-right, y-up,
z-back. */
SGQuatd q(-0.5, -0.5, 0.5, 0.5);
SGVec3d offset(0, 0, -speed * SG_KT_TO_MPS * dt);
position += (ec2body * q).backTransform(offset);
pos = SGGeod::fromCart(position);
pitch = tgt_pitch;
}
// adjust heading based on current _rudder angle
if (turn_radius_ft <= 0)
turn_radius_ft = 0; // don't allow nonsense values
if (_rudder > 45)
_rudder = 45;
if (_rudder < -45)
_rudder = -45;
//we assume that at slow speed ships will manoeuvre using engines/bow thruster
if(type == "ship" || type == "carrier" || type == "escort"){
if (fabs(speed)<=5)
_sp_turn_radius_ft = _fixed_turn_radius;
else {
// adjust turn radius for speed. The equation is very approximate.
// we need to allow for negative speeds
_sp_turn_radius_ft = 10 * pow ((fabs(speed) - 15), 2) + turn_radius_ft;
}
} else {
if (fabs(speed) <= 40)
_sp_turn_radius_ft = _fixed_turn_radius;
else {
// adjust turn radius for speed.
_sp_turn_radius_ft = turn_radius_ft;
}
}
if (_rudder <= -0.25 || _rudder >= 0.25) {
// adjust turn radius for _rudder angle. The equation is even more approximate.
float a = 19;
float b = -0.2485;
float c = 0.543;
_rd_turn_radius_ft = (a * exp(b * fabs(_rudder)) + c) * _sp_turn_radius_ft;
// calculate the angle, alpha, subtended by the arc traversed in time dt
alpha = ((speed * 1.686 * dt) / _rd_turn_radius_ft) * SG_RADIANS_TO_DEGREES;
//cout << _name << " alpha " << alpha << endl;
// make sure that alpha is applied in the right direction
hdg += alpha * sign(_rudder);
SG_NORMALIZE_RANGE(hdg, 0.0, 360.0);
//adjust roll for rudder angle and speed. Another bit of voodoo
raw_roll = _roll_factor * speed * _rudder;
} else {
// _rudder angle is 0
raw_roll = 0;
}
//low pass filter
if (speed < 0)
roll = -roll;
roll = (raw_roll * _roll_constant) + (roll * (1 - _roll_constant));
// adjust target _rudder angle if heading lock engaged
double rudder_diff = 0.0;
if (_hdg_lock) {
double rudder_sense = 0.0;
double diff = fabs(hdg - tgt_heading);
//cout << "_rudder diff" << diff << endl;
if (diff > 180)
diff = fabs(diff - 360);
double sum = hdg + diff;
if (sum > 360.0)
sum -= 360.0;
if (fabs(sum - tgt_heading)< 1.0)
rudder_sense = 1.0;
else
rudder_sense = -1.0;
if (speed < 0)
rudder_sense = -rudder_sense;
if (diff < 15)
_tgt_rudder = diff * rudder_sense;
else
_tgt_rudder = 45 * rudder_sense;
rudder_diff = _tgt_rudder - _rudder;
}
// set the _rudder limit by speed
if (type == "ship" || type == "carrier" || type == "escort"){
if (speed <= 40)
rudder_limit = (-0.825 * speed) + 35;
else
rudder_limit = 2;
} else
rudder_limit = 20;
if (fabs(rudder_diff)> 0.1) { // apply dead zone
if (rudder_diff > 0.0) {
_rudder += _rudder_constant * dt;
if (_rudder > rudder_limit) // apply the _rudder limit
_rudder = rudder_limit;
} else if (rudder_diff < 0.0) {
_rudder -= _rudder_constant * dt;
if (_rudder < -rudder_limit)
_rudder = -rudder_limit;
}
// do calculations for radar
UpdateRadar(manager);
}
}//end function
void FGAIShip::AccelTo(double speed) {
tgt_speed = speed;
}
void FGAIShip::PitchTo(double angle) {
tgt_pitch = angle;
}
void FGAIShip::RollTo(double angle) {
tgt_roll = angle;
}
void FGAIShip::YawTo(double angle) {
}
void FGAIShip::ClimbTo(double altitude) {
tgt_altitude_ft = altitude;
_setAltitude(altitude);
}
void FGAIShip::TurnTo(double heading) {
tgt_heading = heading - _lead_angle + _tow_angle;
SG_NORMALIZE_RANGE(tgt_heading, 0.0, 360.0);
_hdg_lock = true;
}
double FGAIShip::sign(double x) {
if (x < 0.0)
return -1.0;
else
return 1.0;
}
void FGAIShip::setStartTime(const string& st) {
_start_time = st;
}
void FGAIShip::setUntilTime(const string& ut) {
_until_time = ut;
props->setStringValue("waypoint/wait-until-time", _until_time.c_str());
}
void FGAIShip::setCurrName(const string& c) {
_curr_name = c;
props->setStringValue("waypoint/name-curr", _curr_name.c_str());
}
void FGAIShip::setNextName(const string& n) {
_next_name = n;
props->setStringValue("waypoint/name-next", _next_name.c_str());
}
void FGAIShip::setPrevName(const string& p) {
_prev_name = p;
props->setStringValue("waypoint/name-prev", _prev_name.c_str());
}
void FGAIShip::setRepeat(bool r) {
_repeat = r;
}
void FGAIShip::setRestart(bool r) {
_restart = r;
}
void FGAIShip::setMissed(bool m) {
_missed = m;
props->setBoolValue("waypoint/missed", _missed);
}
void FGAIShip::setRudder(float r) {
_rudder = r;
}
void FGAIShip::setRoll(double rl) {
roll = rl;
}
void FGAIShip::setLeadAngleGain(double g) {
_lead_angle_gain = g;
}
void FGAIShip::setLeadAngleLimit(double l) {
_lead_angle_limit = l;
}
void FGAIShip::setLeadAngleProp(double p) {
_proportion = p;
}
void FGAIShip::setRudderConstant(double rc) {
_rudder_constant = rc;
}
void FGAIShip::setSpeedConstant(double sc) {
_speed_constant = sc;
}
void FGAIShip::setFixedTurnRadius(double ftr) {
_fixed_turn_radius = ftr;
}
void FGAIShip::setRollFactor(double rf) {
_roll_factor = rf * -0.0083335;
}
void FGAIShip::setInitialTunnel(bool t) {
_initial_tunnel = t;
setTunnel(_initial_tunnel);
}
void FGAIShip::setTunnel(bool t) {
_tunnel = t;
}
void FGAIShip::setWPNames() {
if (prev != 0)
setPrevName(prev->getName());
else
setPrevName("");
if (curr != 0)
setCurrName(curr->getName());
else{
setCurrName("");
SG_LOG(SG_AI, SG_ALERT, "AIShip: current wp name error" );
}
if (next != 0)
setNextName(next->getName());
else
setNextName("");
SG_LOG(SG_AI, SG_DEBUG, "AIShip: prev wp name " << prev->getName());
SG_LOG(SG_AI, SG_DEBUG, "AIShip: current wp name " << curr->getName());
SG_LOG(SG_AI, SG_DEBUG, "AIShip: next wp name " << next->getName());
}
double FGAIShip::getRange(double lat, double lon, double lat2, double lon2) const {
double course, distance, az2;
//calculate the bearing and range of the second pos from the first
geo_inverse_wgs_84(lat, lon, lat2, lon2, &course, &az2, &distance);
distance *= SG_METER_TO_NM;
return distance;
}
double FGAIShip::getCourse(double lat, double lon, double lat2, double lon2) const {
double course, distance, recip;
//calculate the bearing and range of the second pos from the first
geo_inverse_wgs_84(lat, lon, lat2, lon2, &course, &recip, &distance);
if (tgt_speed >= 0) {
SG_LOG(SG_AI, SG_DEBUG, "AIShip: course " << course);
return course;
} else {
SG_LOG(SG_AI, SG_DEBUG, "AIShip: recip " << recip);
return recip;
}
}
void FGAIShip::ProcessFlightPlan(double dt) {
if ( dt < 0.00001 ) {
return;
}
double time_sec = getDaySeconds();
_dt_count += dt;
///////////////////////////////////////////////////////////////////////////
// Check Execution time (currently once every 1 sec)
// Add a bit of randomization to prevent the execution of all flight plans
// in synchrony, which can add significant periodic framerate flutter.
///////////////////////////////////////////////////////////////////////////
//cout << "_start_sec " << _start_sec << " time_sec " << time_sec << endl;
if (_dt_count < _next_run && _start_sec < time_sec)
return;
_next_run = 0.05 + (0.025 * sg_random());
double until_time_sec = 0;
_missed = false;
// check to see if we've reached the point for our next turn
// if the range to the waypoint is less than the calculated turn
// radius we can start the turn to the next leg
_wp_range = getRange(pos.getLatitudeDeg(), pos.getLongitudeDeg(), curr->getLatitude(), curr->getLongitude());
_range_rate = (_wp_range - _old_range) / _dt_count;
double sp_turn_radius_nm = _sp_turn_radius_ft / 6076.1155;
// we need to try to identify a _missed waypoint
// calculate the time needed to turn through an arc of 90 degrees,
// and allow a time error
if (speed != 0)
_missed_time_sec = 10 + ((SGD_PI * sp_turn_radius_nm * 60 * 60) / (2 * fabs(speed)));
else
_missed_time_sec = 10;
_missed_range = 4 * sp_turn_radius_nm;
//cout << _name << " range_rate " << _range_rate << " " << _new_waypoint<< endl ;
//if ((_range_rate > 0) && !_new_waypoint){
if (_range_rate > 0 && _wp_range < _missed_range && !_new_waypoint){
_missed_count += _dt_count;
}
if (_missed_count >= 120)
setMissed(true);
else if (_missed_count >= _missed_time_sec)
setMissed(true);
else
setMissed(false);
_old_range = _wp_range;
setWPNames();
if ((_wp_range < (sp_turn_radius_nm * 1.25)) || _missed || (_waiting && !_new_waypoint)) {
if (_next_name == "TUNNEL"){
_tunnel = !_tunnel;
SG_LOG(SG_AI, SG_DEBUG, "AIShip: " << _name << " " << sp_turn_radius_nm );
fp->IncrementWaypoint(false);
next = fp->getNextWaypoint();
if (next->getName() == "WAITUNTIL" || next->getName() == "WAIT"
|| next->getName() == "END" || next->getName() == "TUNNEL")
return;
prev = curr;
fp->IncrementWaypoint(false);
curr = fp->getCurrentWaypoint();
next = fp->getNextWaypoint();
}else if(_next_name == "END" || fp->getNextWaypoint() == 0) {
if (_repeat) {
SG_LOG(SG_AI, SG_INFO, "AIShip: "<< _name << " Flightplan repeating ");
fp->restart();
prev = curr;
curr = fp->getCurrentWaypoint();
next = fp->getNextWaypoint();
setWPNames();
_wp_range = getRange(pos.getLatitudeDeg(), pos.getLongitudeDeg(), curr->getLatitude(), curr->getLongitude());
_old_range = _wp_range;
_range_rate = 0;
_new_waypoint = true;
_missed_count = 0;
_lead_angle = 0;
AccelTo(prev->getSpeed());
} else if (_restart){
SG_LOG(SG_AI, SG_INFO, "AIShip: " << _name << " Flightplan restarting ");
_missed_count = 0;
initFlightPlan();
} else {
SG_LOG(SG_AI, SG_ALERT, "AIShip: " << _name << " Flightplan dying ");
setDie(true);
_dt_count = 0;
return;
}
} else if (_next_name == "WAIT") {
if (_wait_count < next->getTime_sec()) {
SG_LOG(SG_AI, SG_DEBUG, "AIShip: " << _name << " waiting ");
setSpeed(0);
_waiting = true;
_wait_count += _dt_count;
_dt_count = 0;
_lead_angle = 0;
return;
} else {
SG_LOG(SG_AI, SG_DEBUG, "AIShip: " << _name
<< " wait done: getting new waypoints ");
_waiting = false;
_wait_count = 0;
fp->IncrementWaypoint(false);
next = fp->getNextWaypoint();
if (next->getName() == "WAITUNTIL" || next->getName() == "WAIT"
|| next->getName() == "END" || next->getName() == "TUNNEL")
return;
prev = curr;
fp->IncrementWaypoint(false);
curr = fp->getCurrentWaypoint();
next = fp->getNextWaypoint();
}
} else if (_next_name == "WAITUNTIL") {
time_sec = getDaySeconds();
until_time_sec = processTimeString(next->getTime());
_until_time = next->getTime();
setUntilTime(next->getTime());
if (until_time_sec > time_sec) {
SG_LOG(SG_AI, SG_INFO, "AIShip: " << _name << " "
<< curr->getName() << " waiting until: "
<< _until_time << " " << until_time_sec << " now " << time_sec );
setSpeed(0);
_lead_angle = 0;
_waiting = true;
return;
} else {
SG_LOG(SG_AI, SG_INFO, "AIShip: "
<< _name << " wait until done: getting new waypoints ");
setUntilTime("");
fp->IncrementWaypoint(false);
while (next->getName() == "WAITUNTIL") {
fp->IncrementWaypoint(false);
next = fp->getNextWaypoint();
}
if (next->getName() == "WAIT")
return;
prev = curr;
fp->IncrementWaypoint(false);
curr = fp->getCurrentWaypoint();
next = fp->getNextWaypoint();
_waiting = false;
}
} else {
//now reorganise the waypoints, so that next becomes current and so on
SG_LOG(SG_AI, SG_DEBUG, "AIShip: " << _name << " getting new waypoints ");
fp->IncrementWaypoint(false);
prev = fp->getPreviousWaypoint(); //first waypoint
curr = fp->getCurrentWaypoint(); //second waypoint
next = fp->getNextWaypoint(); //third waypoint (might not exist!)
}
setWPNames();
_new_waypoint = true;
_missed_count = 0;
_range_rate = 0;
_lead_angle = 0;
_wp_range = getRange(pos.getLatitudeDeg(), pos.getLongitudeDeg(), curr->getLatitude(), curr->getLongitude());
_old_range = _wp_range;
setWPPos();
object_type type = getType();
if (type != 10)
AccelTo(prev->getSpeed());
_curr_alt = curr->getAltitude();
_prev_alt = prev->getAltitude();
} else {
_new_waypoint = false;
}
// now revise the required course for the next way point
_course = getCourse(pos.getLatitudeDeg(), pos.getLongitudeDeg(), curr->getLatitude(), curr->getLongitude());
if (fgIsFinite(_course))
TurnTo(_course);
else
SG_LOG(SG_AI, SG_ALERT, "AIShip: Bearing or Range is not a finite number");
_dt_count = 0;
} // end Processing FlightPlan
bool FGAIShip::initFlightPlan() {
SG_LOG(SG_AI, SG_ALERT, "AIShip: " << _name << " initializing waypoints ");
bool init = false;
_start_sec = 0;
_tunnel = _initial_tunnel;
fp->restart();
fp->IncrementWaypoint(false);
prev = fp->getPreviousWaypoint(); //first waypoint
curr = fp->getCurrentWaypoint(); //second waypoint
next = fp->getNextWaypoint(); //third waypoint (might not exist!)
while (curr->getName() == "WAIT" || curr->getName() == "WAITUNTIL") { // don't wait when initialising
SG_LOG(SG_AI, SG_DEBUG, "AIShip: " << _name << " re-initializing waypoints ");
fp->IncrementWaypoint(false);
curr = fp->getCurrentWaypoint();
next = fp->getNextWaypoint();
} // end while loop
if (!_start_time.empty()){
_start_sec = processTimeString(_start_time);
double day_sec = getDaySeconds();
if (_start_sec < day_sec){
//cout << "flight plan has already started " << _start_time << endl;
init = advanceFlightPlan(_start_sec, day_sec);
} else if (_start_sec > day_sec && _repeat) {
//cout << "flight plan has not started, " << _start_time;
//cout << "offsetting start time by -24 hrs" << endl;
_start_sec -= _day;
init = advanceFlightPlan(_start_sec, day_sec);
}
if (init)
_start_sec = 0; // set to zero for an immediate start of the Flight Plan
else {
fp->restart();
fp->IncrementWaypoint(false);
prev = fp->getPreviousWaypoint();
curr = fp->getCurrentWaypoint();
next = fp->getNextWaypoint();
return false;
}
} else {
setLatitude(prev->getLatitude());
setLongitude(prev->getLongitude());
setSpeed(prev->getSpeed());
}
setWPNames();
setHeading(getCourse(prev->getLatitude(), prev->getLongitude(), curr->getLatitude(), curr->getLongitude()));
_wp_range = getRange(prev->getLatitude(), prev->getLongitude(), curr->getLatitude(), curr->getLongitude());
_old_range = _wp_range;
_range_rate = 0;
_hdg_lock = true;
_missed = false;
_missed_count = 0;
_new_waypoint = true;
SG_LOG(SG_AI, SG_ALERT, "AIShip: " << _name << " done initialising waypoints " << _tunnel);
if (prev)
init = true;
if (init)
return true;
else
return false;
} // end of initialization
double FGAIShip::processTimeString(const string& theTime) {
int Hour;
int Minute;
int Second;
// first split theTime string into
// hour, minute, second and convert to int;
Hour = atoi(theTime.substr(0,2).c_str());
Minute = atoi(theTime.substr(3,5).c_str());
Second = atoi(theTime.substr(6,8).c_str());
// offset by a day-sec to allow for starting a day earlier
double time_seconds = Hour * 3600
+ Minute * 60
+ Second;
return time_seconds;
}
double FGAIShip::getDaySeconds () {
// Date and time
struct tm *t = globals->get_time_params()->getGmt();
double day_seconds = t->tm_hour * 3600
+ t->tm_min * 60
+ t->tm_sec;
return day_seconds;
}
bool FGAIShip::advanceFlightPlan (double start_sec, double day_sec) {
double elapsed_sec = start_sec;
double distance_nm = 0;
//cout << "advancing flight plan start_sec: " << start_sec << " " << day_sec << endl;
while ( elapsed_sec < day_sec ) {
if (next->getName() == "END" || fp->getNextWaypoint() == 0) {
if (_repeat ) {
//cout << _name << ": " << "restarting flightplan" << endl;
fp->restart();
curr = fp->getCurrentWaypoint();
next = fp->getNextWaypoint();
} else {
//cout << _name << ": " << "ending flightplan" << endl;
setDie(true);
return false;
}
} else if (next->getName() == "WAIT") {
//cout << _name << ": begin WAIT: " << prev->name << " ";
//cout << curr->name << " " << next->name << endl;
elapsed_sec += next->getTime_sec();
if ( elapsed_sec >= day_sec)
continue;
fp->IncrementWaypoint(false);
next = fp->getNextWaypoint();
if (next->getName() != "WAITUNTIL" && next->getName() != "WAIT"
&& next->getName() != "END") {
prev = curr;
fp->IncrementWaypoint(false);
curr = fp->getCurrentWaypoint();
next = fp->getNextWaypoint();
}
} else if (next->getName() == "WAITUNTIL") {
double until_sec = processTimeString(next->getTime());
if (until_sec > _start_sec && start_sec < 0)
until_sec -= _day;
if (elapsed_sec < until_sec)
elapsed_sec = until_sec;
if (elapsed_sec >= day_sec )
break;
fp->IncrementWaypoint(false);
next = fp->getNextWaypoint();
if (next->getName() != "WAITUNTIL" && next->getName() != "WAIT") {
prev = curr;
fp->IncrementWaypoint(false);
curr = fp->getCurrentWaypoint();
next = fp->getNextWaypoint();
}
//cout << _name << ": end WAITUNTIL: ";
//cout << prev->name << " " << curr->name << " " << next->name << endl;
} else {
distance_nm = getRange(prev->getLatitude(), prev->getLongitude(), curr->getLatitude(), curr->getLongitude());
elapsed_sec += distance_nm * 60 * 60 / prev->getSpeed();
if (elapsed_sec >= day_sec)
continue;
fp->IncrementWaypoint(false);
prev = fp->getPreviousWaypoint();
curr = fp->getCurrentWaypoint();
next = fp->getNextWaypoint();
}
} // end while
// the required position lies between the previous and current waypoints
// so we will calculate the distance back up the track from the current waypoint
// then calculate the lat and lon.
//cout << "advancing flight plan done elapsed_sec: " << elapsed_sec
// << " " << day_sec << endl;
double time_diff = elapsed_sec - day_sec;
double lat, lon, recip;
//cout << " time diff " << time_diff << endl;
if (next->getName() == "WAIT" ){
setSpeed(0);
lat = curr->getLatitude();
lon = curr->getLongitude();
_wait_count= time_diff;
_waiting = true;
} else if (next->getName() == "WAITUNTIL") {
setSpeed(0);
lat = curr->getLatitude();
lon = curr->getLongitude();
_waiting = true;
} else {
setSpeed(prev->getSpeed());
distance_nm = speed * time_diff / (60 * 60);
double brg = getCourse(curr->getLatitude(), curr->getLongitude(), prev->getLatitude(), prev->getLongitude());
//cout << " brg " << brg << " from " << curr->name << " to " << prev->name << " "
// << " lat " << curr->latitude << " lon " << curr->longitude
// << " distance m " << distance_nm * SG_NM_TO_METER << endl;
lat = geo_direct_wgs_84 (curr->getLatitude(), curr->getLongitude(), brg,
distance_nm * SG_NM_TO_METER, &lat, &lon, &recip );
lon = geo_direct_wgs_84 (curr->getLatitude(), curr->getLongitude(), brg,
distance_nm * SG_NM_TO_METER, &lat, &lon, &recip );
recip = geo_direct_wgs_84 (curr->getLatitude(), curr->getLongitude(), brg,
distance_nm * SG_NM_TO_METER, &lat, &lon, &recip );
}
setLatitude(lat);
setLongitude(lon);
return true;
}
void FGAIShip::setWPPos() {
if (curr->getName() == "END" || curr->getName() == "WAIT"
|| curr->getName() == "WAITUNTIL" || curr->getName() == "TUNNEL"){
//cout << curr->name << " returning" << endl;
return;
}
double elevation_m = 0;
wppos.setLatitudeDeg(curr->getLatitude());
wppos.setLongitudeDeg(curr->getLongitude());
wppos.setElevationM(0);
if (curr->getOn_ground()){
if (globals->get_scenery()->get_elevation_m(SGGeod::fromGeodM(wppos, 3000),
elevation_m, NULL, 0)){
wppos.setElevationM(elevation_m);
}
//cout << curr->name << " setting measured elev " << elevation_m << endl;
} else {
wppos.setElevationM(curr->getAltitude());
//cout << curr->name << " setting FP elev " << elevation_m << endl;
}
curr->setAltitude(wppos.getElevationM());
}
void FGAIShip::setXTrackError() {
double course = getCourse(prev->getLatitude(), prev->getLongitude(),
curr->getLatitude(), curr->getLongitude());
double brg = getCourse(pos.getLatitudeDeg(), pos.getLongitudeDeg(),
curr->getLatitude(), curr->getLongitude());
double xtrack_error_nm = sin((course - brg)* SG_DEGREES_TO_RADIANS) * _wp_range;
double factor = -0.0045 * speed + 1;
double limit = _lead_angle_limit * factor;
if (_wp_range > 0){
_lead_angle = atan2(xtrack_error_nm,(_wp_range * _proportion)) * SG_RADIANS_TO_DEGREES;
} else
_lead_angle = 0;
_lead_angle *= _lead_angle_gain * factor;
_xtrack_error = xtrack_error_nm * 6076.1155;
SG_CLAMP_RANGE(_lead_angle, -limit, limit);
}