1
0
Fork 0
flightgear/src/Replay/replay.cxx
2004-04-02 16:20:17 +00:00

516 lines
17 KiB
C++

// replay.cxx - a system to record and replay FlightGear flights
//
// Written by Curtis Olson, started Juley 2003.
//
// Copyright (C) 2003 Curtis L. Olson - curt@flightgear.org
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
#include <simgear/constants.h>
#include <FDM/flight.hxx>
#include <Main/fg_props.hxx>
#include <Network/native_ctrls.hxx>
#include <Network/native_fdm.hxx>
#include <Network/net_ctrls.hxx>
#include <Network/net_fdm.hxx>
#include "replay.hxx"
const double FGReplay::st_list_time = 60.0; // 60 secs of high res data
const double FGReplay::mt_list_time = 600.0; // 10 mins of 1 fps data
const double FGReplay::lt_list_time = 3600.0; // 1 hr of 10 spf data
// short term sample rate is as every frame
const double FGReplay::mt_dt = 0.5; // medium term sample rate (sec)
const double FGReplay::lt_dt = 5.0; // long term sample rate (sec)
/**
* Constructor
*/
FGReplay::FGReplay() {
}
/**
* Destructor
*/
FGReplay::~FGReplay() {
// no dynamically allocated memory to free
}
/**
* Initialize the data structures
*/
void FGReplay::init() {
sim_time = 0.0;
last_mt_time = 0.0;
last_lt_time = 0.0;
// Make sure all queues are flushed
while ( !short_term.empty() ) {
short_term.pop_front();
}
while ( !medium_term.empty() ) {
medium_term.pop_front();
}
while ( !medium_term.empty() ) {
medium_term.pop_front();
}
}
/**
* Bind to the property tree
*/
void FGReplay::bind() {
// nothing to bind
}
/**
* Unbind from the property tree
*/
void FGReplay::unbind() {
// nothing to unbind
}
/**
* Update the saved data
*/
void FGReplay::update( double dt ) {
static SGPropertyNode *replay_master
= fgGetNode( "/sim/freeze/replay", true );
if ( replay_master->getBoolValue() ) {
// don't record the replay session
return;
}
sim_time += dt;
// build the replay record
FGNetFDM f;
FGProps2NetFDM( &f, false );
// sanity check, don't collect data if FDM data isn't good
if ( !cur_fdm_state->get_inited() ) {
return;
}
FGNetCtrls c;
FGProps2NetCtrls( &c, false, false );
FGReplayData r;
r.sim_time = sim_time;
r.ctrls = c;
r.fdm = f;
// update the short term list
short_term.push_back( r );
FGReplayData st_front = short_term.front();
if ( sim_time - st_front.sim_time > st_list_time ) {
while ( sim_time - st_front.sim_time > st_list_time ) {
st_front = short_term.front();
short_term.pop_front();
}
// update the medium term list
if ( sim_time - last_mt_time > mt_dt ) {
last_mt_time = sim_time;
medium_term.push_back( st_front );
FGReplayData mt_front = medium_term.front();
if ( sim_time - mt_front.sim_time > mt_list_time ) {
while ( sim_time - mt_front.sim_time > mt_list_time ) {
mt_front = medium_term.front();
medium_term.pop_front();
}
// update the long term list
if ( sim_time - last_lt_time > lt_dt ) {
last_lt_time = sim_time;
long_term.push_back( mt_front );
FGReplayData lt_front = long_term.front();
if ( sim_time - lt_front.sim_time > lt_list_time ) {
while ( sim_time - lt_front.sim_time > lt_list_time ) {
lt_front = long_term.front();
long_term.pop_front();
}
}
}
}
}
}
#if 0
cout << "short term size = " << short_term.size()
<< " time = " << sim_time - short_term.front().sim_time
<< endl;
cout << "medium term size = " << medium_term.size()
<< " time = " << sim_time - medium_term.front().sim_time
<< endl;
cout << "long term size = " << long_term.size()
<< " time = " << sim_time - long_term.front().sim_time
<< endl;
#endif
}
static double weight( double data1, double data2, double ratio,
bool rotational = false ) {
if ( rotational ) {
// special handling of rotational data
double tmp = data2 - data1;
if ( tmp > SGD_PI ) {
tmp -= SGD_2PI;
} else if ( tmp < -SGD_PI ) {
tmp += SGD_2PI;
}
return data1 + tmp * ratio;
} else {
// normal "linear" data
return data1 + ( data2 - data1 ) * ratio;
}
}
/**
* given two FGReplayData elements and a time, interpolate between them
*/
static void update_fdm( FGReplayData frame ) {
FGNetFDM2Props( &frame.fdm, false );
FGNetCtrls2Props( &frame.ctrls, false, false );
}
/**
* given two FGReplayData elements and a time, interpolate between them
*/
static FGReplayData interpolate( double time, FGReplayData f1, FGReplayData f2 )
{
FGReplayData result = f1;
FGNetFDM fdm1 = f1.fdm;
FGNetFDM fdm2 = f2.fdm;
FGNetCtrls ctrls1 = f1.ctrls;
FGNetCtrls ctrls2 = f2.ctrls;
double ratio = (time - f1.sim_time) / (f2.sim_time - f1.sim_time);
// Interpolate FDM data
// Positions
result.fdm.longitude = weight( fdm1.longitude, fdm2.longitude, ratio );
result.fdm.latitude = weight( fdm1.latitude, fdm2.latitude, ratio );
result.fdm.altitude = weight( fdm1.altitude, fdm2.altitude, ratio );
result.fdm.agl = weight( fdm1.agl, fdm2.agl, ratio );
result.fdm.phi = weight( fdm1.phi, fdm2.phi, ratio, true );
result.fdm.theta = weight( fdm1.theta, fdm2.theta, ratio, true );
result.fdm.psi = weight( fdm1.psi, fdm2.psi, ratio, true );
// Velocities
result.fdm.phidot = weight( fdm1.phidot, fdm2.phidot, ratio, true );
result.fdm.thetadot = weight( fdm1.thetadot, fdm2.thetadot, ratio, true );
result.fdm.psidot = weight( fdm1.psidot, fdm2.psidot, ratio, true );
result.fdm.vcas = weight( fdm1.vcas, fdm2.vcas, ratio );
result.fdm.climb_rate = weight( fdm1.climb_rate, fdm2.climb_rate, ratio );
result.fdm.v_north = weight( fdm1.v_north, fdm2.v_north, ratio );
result.fdm.v_east = weight( fdm1.v_east, fdm2.v_east, ratio );
result.fdm.v_down = weight( fdm1.v_down, fdm2.v_down, ratio );
result.fdm.v_wind_body_north
= weight( fdm1.v_wind_body_north, fdm2.v_wind_body_north, ratio );
result.fdm.v_wind_body_east
= weight( fdm1.v_wind_body_east, fdm2.v_wind_body_east, ratio );
result.fdm.v_wind_body_down
= weight( fdm1.v_wind_body_down, fdm2.v_wind_body_down, ratio );
// Stall
result.fdm.stall_warning
= weight( fdm1.stall_warning, fdm2.stall_warning, ratio );
// Accelerations
result.fdm.A_X_pilot = weight( fdm1.A_X_pilot, fdm2.A_X_pilot, ratio );
result.fdm.A_Y_pilot = weight( fdm1.A_Y_pilot, fdm2.A_Y_pilot, ratio );
result.fdm.A_Z_pilot = weight( fdm1.A_Z_pilot, fdm2.A_Z_pilot, ratio );
int i;
// Engine status
for ( i = 0; i < fdm1.num_engines; ++i ) {
result.fdm.eng_state[i] = fdm1.eng_state[i];
result.fdm.rpm[i] = weight( fdm1.rpm[i], fdm2.rpm[i], ratio );
result.fdm.fuel_flow[i]
= weight( fdm1.fuel_flow[i], fdm2.fuel_flow[i], ratio );
result.fdm.egt[i] = weight( fdm1.egt[i], fdm2.egt[i], ratio );
result.fdm.mp_osi[i] = weight( fdm1.mp_osi[i], fdm2.mp_osi[i], ratio );
result.fdm.oil_temp[i]
= weight( fdm1.oil_temp[i], fdm2.oil_temp[i], ratio );
result.fdm.oil_px[i] = weight( fdm1.oil_px[i], fdm2.oil_px[i], ratio );
}
// Consumables
for ( i = 0; i < fdm1.num_tanks; ++i ) {
result.fdm.fuel_quantity[i]
= weight( fdm1.fuel_quantity[i], fdm2.fuel_quantity[i], ratio );
}
// Gear status
for ( i = 0; i < fdm1.num_wheels; ++i ) {
result.fdm.wow[i] = weight( fdm1.wow[i], fdm2.wow[i], ratio );
result.fdm.gear_pos[i]
= weight( fdm1.gear_pos[i], fdm2.gear_pos[i], ratio );
result.fdm.gear_steer[i]
= weight( fdm1.gear_steer[i], fdm2.gear_steer[i], ratio );
result.fdm.gear_compression[i]
= weight( fdm1.gear_compression[i], fdm2.gear_compression[i],
ratio );
}
// Environment
result.fdm.cur_time = fdm1.cur_time;
result.fdm.warp = fdm1.warp;
result.fdm.visibility = weight( fdm1.visibility, fdm2.visibility, ratio );
// Control surface positions (normalized values)
result.fdm.elevator = weight( fdm1.elevator, fdm2.elevator, ratio );
result.fdm.flaps = weight( fdm1.flaps, fdm2.flaps, ratio );
result.fdm.left_aileron
= weight( fdm1.left_aileron, fdm2.left_aileron, ratio );
result.fdm.right_aileron
= weight( fdm1.right_aileron, fdm2.right_aileron, ratio );
result.fdm.rudder = weight( fdm1.rudder, fdm2.rudder, ratio );
result.fdm.speedbrake = weight( fdm1.speedbrake, fdm2.speedbrake, ratio );
result.fdm.spoilers = weight( fdm1.spoilers, fdm2.spoilers, ratio );
// Interpolate Control input data
// Aero controls
result.ctrls.aileron = weight( ctrls1.aileron, ctrls2.aileron, ratio );
result.ctrls.elevator = weight( ctrls1.elevator, ctrls2.elevator, ratio );
result.ctrls.elevator_trim
= weight( ctrls1.elevator_trim, ctrls2.elevator_trim, ratio );
result.ctrls.rudder = weight( ctrls1.rudder, ctrls2.rudder, ratio );
result.ctrls.flaps = weight( ctrls1.flaps, ctrls2.flaps, ratio );
result.ctrls.flaps_power = ctrls1.flaps_power;
result.ctrls.flap_motor_ok = ctrls1.flap_motor_ok;
// Engine controls
for ( i = 0; i < ctrls1.num_engines; ++i ) {
result.ctrls.master_bat[i] = ctrls1.master_bat[i];
result.ctrls.master_alt[i] = ctrls1.master_alt[i];
result.ctrls.magnetos[i] = ctrls1.magnetos[i];
result.ctrls.starter_power[i] = ctrls1.starter_power[i];
result.ctrls.throttle[i]
= weight( ctrls1.throttle[i], ctrls2.throttle[i], ratio );
result.ctrls.mixture[i]
= weight( ctrls1.mixture[i], ctrls2.mixture[i], ratio );
result.ctrls.fuel_pump_power[i] = ctrls1.fuel_pump_power[i];
result.ctrls.prop_advance[i]
= weight( ctrls1.prop_advance[i], ctrls2.prop_advance[i], ratio );
result.ctrls.engine_ok[i] = ctrls1.engine_ok[i];
result.ctrls.mag_left_ok[i] = ctrls1.mag_left_ok[i];
result.ctrls.mag_right_ok[i] = ctrls1.mag_right_ok[i];
result.ctrls.spark_plugs_ok[i] = ctrls1.spark_plugs_ok[i];
result.ctrls.oil_press_status[i] = ctrls1.oil_press_status[i];
result.ctrls.fuel_pump_ok[i] = ctrls1.fuel_pump_ok[i];
}
// Fuel management
for ( i = 0; i < ctrls1.num_tanks; ++i ) {
result.ctrls.fuel_selector[i] = ctrls1.fuel_selector[i];
}
// Brake controls
result.ctrls.brake_left
= weight( ctrls1.brake_left, ctrls2.brake_right, ratio );
result.ctrls.brake_right
= weight( ctrls1.brake_right, ctrls2.brake_right, ratio );
result.ctrls.brake_parking
= weight( ctrls1.brake_parking, ctrls2.brake_parking, ratio );
// Landing Gear
result.ctrls.gear_handle = ctrls1.gear_handle;
// Switches
result.ctrls.turbulence_norm = ctrls1.turbulence_norm;
// wind and turbulance
result.ctrls.wind_speed_kt
= weight( ctrls1.wind_speed_kt, ctrls2.wind_speed_kt, ratio );
result.ctrls.wind_dir_deg
= weight( ctrls1.wind_dir_deg, ctrls2.wind_dir_deg, ratio );
result.ctrls.turbulence_norm
= weight( ctrls1.turbulence_norm, ctrls2.turbulence_norm, ratio );
// other information about environment
result.ctrls.hground = weight( ctrls1.hground, ctrls2.hground, ratio );
result.ctrls.magvar = weight( ctrls1.magvar, ctrls2.magvar, ratio );
// simulation control
result.ctrls.speedup = ctrls1.speedup;
result.ctrls.freeze = ctrls1.freeze;
return result;
}
/**
* interpolate a specific time from a specific list
*/
static void interpolate( double time, const replay_list_type &list ) {
// sanity checking
if ( list.size() == 0 ) {
// handle empty list
return;
} else if ( list.size() == 1 ) {
// handle list size == 1
update_fdm( list[0] );
return;
}
unsigned int last = list.size() - 1;
unsigned int first = 0;
unsigned int mid = ( last + first ) / 2;
bool done = false;
while ( !done ) {
// cout << " " << first << " <=> " << last << endl;
if ( last == first ) {
done = true;
} else if ( list[mid].sim_time < time && list[mid+1].sim_time < time ) {
// too low
first = mid;
mid = ( last + first ) / 2;
} else if ( list[mid].sim_time > time && list[mid+1].sim_time > time ) {
// too high
last = mid;
mid = ( last + first ) / 2;
} else {
done = true;
}
}
FGReplayData result = interpolate( time, list[mid], list[mid+1] );
update_fdm( result );
}
/**
* Replay a saved frame based on time, interpolate from the two
* nearest saved frames.
*/
void FGReplay::replay( double time ) {
// cout << "replay: " << time << " ";
// find the two frames to interpolate between
double t1, t2;
if ( short_term.size() > 0 ) {
t1 = short_term.back().sim_time;
t2 = short_term.front().sim_time;
if ( time > t1 ) {
// replay the most recent frame
update_fdm( short_term.back() );
// cout << "first frame" << endl;
} else if ( time <= t1 && time >= t2 ) {
interpolate( time, short_term );
// cout << "from short term" << endl;
} else if ( medium_term.size() > 0 ) {
t1 = short_term.front().sim_time;
t2 = medium_term.back().sim_time;
if ( time <= t1 && time >= t2 ) {
FGReplayData result = interpolate( time,
medium_term.back(),
short_term.front() );
update_fdm( result );
// cout << "from short/medium term" << endl;
} else {
t1 = medium_term.back().sim_time;
t2 = medium_term.front().sim_time;
if ( time <= t1 && time >= t2 ) {
interpolate( time, medium_term );
// cout << "from medium term" << endl;
} else if ( long_term.size() > 0 ) {
t1 = medium_term.front().sim_time;
t2 = long_term.back().sim_time;
if ( time <= t1 && time >= t2 ) {
FGReplayData result = interpolate( time,
long_term.back(),
medium_term.front());
update_fdm( result );
// cout << "from medium/long term" << endl;
} else {
t1 = long_term.back().sim_time;
t2 = long_term.front().sim_time;
if ( time <= t1 && time >= t2 ) {
interpolate( time, long_term );
// cout << "from long term" << endl;
} else {
// replay the oldest long term frame
update_fdm( long_term.front() );
// cout << "oldest long term frame" << endl;
}
}
} else {
// replay the oldest medium term frame
update_fdm( medium_term.front() );
// cout << "oldest medium term frame" << endl;
}
}
} else {
// replay the oldest short term frame
update_fdm( short_term.front() );
// cout << "oldest short term frame" << endl;
}
} else {
// nothing to replay
}
}
double FGReplay::get_start_time() {
if ( long_term.size() > 0 ) {
return long_term.front().sim_time;
} else if ( medium_term.size() > 0 ) {
return medium_term.front().sim_time;
} else if ( short_term.size() ) {
return short_term.front().sim_time;
} else {
return 0.0;
}
}
double FGReplay::get_end_time() {
if ( short_term.size() ) {
return short_term.back().sim_time;
} else {
return 0.0;
}
}