899 lines
30 KiB
C++
899 lines
30 KiB
C++
// FGAICarrier - FGAIShip-derived class creates an AI aircraft carrier
|
|
//
|
|
// Written by David Culp, started October 2004.
|
|
// - davidculp2@comcast.net
|
|
//
|
|
// This program is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of the
|
|
// License, or (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful, but
|
|
// WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
# include <config.h>
|
|
#endif
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include <simgear/math/point3d.hxx>
|
|
#include <simgear/math/sg_geodesy.hxx>
|
|
#include <math.h>
|
|
#include <Main/util.hxx>
|
|
#include <Main/viewer.hxx>
|
|
|
|
#include "AICarrier.hxx"
|
|
|
|
#include "AIScenario.hxx"
|
|
|
|
/** Value of earth radius (meters) */
|
|
#define RADIUS_M SG_EQUATORIAL_RADIUS_M
|
|
|
|
|
|
|
|
FGAICarrier::FGAICarrier(FGAIManager* mgr) : FGAIShip(mgr) {
|
|
_type_str = "carrier";
|
|
_otype = otCarrier;
|
|
|
|
|
|
}
|
|
|
|
FGAICarrier::~FGAICarrier() {
|
|
}
|
|
|
|
void FGAICarrier::setWind_from_east(double fps) {
|
|
wind_from_east = fps;
|
|
}
|
|
|
|
void FGAICarrier::setWind_from_north(double fps) {
|
|
wind_from_north = fps;
|
|
}
|
|
|
|
void FGAICarrier::setMaxLat(double deg) {
|
|
max_lat = fabs(deg);
|
|
}
|
|
|
|
void FGAICarrier::setMinLat(double deg) {
|
|
min_lat = fabs(deg);
|
|
}
|
|
|
|
void FGAICarrier::setMaxLong(double deg) {
|
|
max_long = fabs(deg);
|
|
}
|
|
|
|
void FGAICarrier::setMinLong(double deg) {
|
|
min_long = fabs(deg);
|
|
}
|
|
|
|
void FGAICarrier::setSolidObjects(const list<string>& so) {
|
|
solid_objects = so;
|
|
}
|
|
|
|
void FGAICarrier::setWireObjects(const list<string>& wo) {
|
|
wire_objects = wo;
|
|
}
|
|
|
|
void FGAICarrier::setCatapultObjects(const list<string>& co) {
|
|
catapult_objects = co;
|
|
}
|
|
|
|
void FGAICarrier::setParkingPositions(const list<ParkPosition>& p) {
|
|
ppositions = p;
|
|
}
|
|
|
|
void FGAICarrier::setSign(const string& s) {
|
|
sign = s;
|
|
}
|
|
|
|
void FGAICarrier::setTACANChannelID(const string& id) {
|
|
TACAN_channel_id = id;
|
|
}
|
|
|
|
void FGAICarrier::setFlolsOffset(const Point3D& off) {
|
|
flols_off = off;
|
|
}
|
|
|
|
void FGAICarrier::getVelocityWrtEarth(sgdVec3& v, sgdVec3& omega, sgdVec3& pivot) {
|
|
sgdCopyVec3(v, vel_wrt_earth );
|
|
sgdCopyVec3(omega, rot_wrt_earth );
|
|
sgdCopyVec3(pivot, rot_pivot_wrt_earth );
|
|
}
|
|
|
|
void FGAICarrier::update(double dt) {
|
|
|
|
// For computation of rotation speeds we just use finite differences her.
|
|
// That is perfectly valid since this thing is not driven by accelerations
|
|
// but by just apply discrete changes at its velocity variables.
|
|
double old_hdg = hdg;
|
|
double old_roll = roll;
|
|
double old_pitch = pitch;
|
|
|
|
// Update the velocity information stored in those nodes.
|
|
double v_north = 0.51444444*speed*cos(hdg * SGD_DEGREES_TO_RADIANS);
|
|
double v_east = 0.51444444*speed*sin(hdg * SGD_DEGREES_TO_RADIANS);
|
|
|
|
double sin_lat = sin(pos.lat() * SGD_DEGREES_TO_RADIANS);
|
|
double cos_lat = cos(pos.lat() * SGD_DEGREES_TO_RADIANS);
|
|
double sin_lon = sin(pos.lon() * SGD_DEGREES_TO_RADIANS);
|
|
double cos_lon = cos(pos.lon() * SGD_DEGREES_TO_RADIANS);
|
|
double sin_roll = sin(roll * SGD_DEGREES_TO_RADIANS);
|
|
double cos_roll = cos(roll * SGD_DEGREES_TO_RADIANS);
|
|
double sin_pitch = sin(pitch * SGD_DEGREES_TO_RADIANS);
|
|
double cos_pitch = cos(pitch * SGD_DEGREES_TO_RADIANS);
|
|
double sin_hdg = sin(hdg * SGD_DEGREES_TO_RADIANS);
|
|
double cos_hdg = cos(hdg * SGD_DEGREES_TO_RADIANS);
|
|
|
|
// Transform this back the the horizontal local frame.
|
|
sgdMat3 trans;
|
|
|
|
// set up the transform matrix
|
|
trans[0][0] = cos_pitch*cos_hdg;
|
|
trans[0][1] = sin_roll*sin_pitch*cos_hdg - cos_roll*sin_hdg;
|
|
trans[0][2] = cos_roll*sin_pitch*cos_hdg + sin_roll*sin_hdg;
|
|
|
|
trans[1][0] = cos_pitch*sin_hdg;
|
|
trans[1][1] = sin_roll*sin_pitch*sin_hdg + cos_roll*cos_hdg;
|
|
trans[1][2] = cos_roll*sin_pitch*sin_hdg - sin_roll*cos_hdg;
|
|
|
|
trans[2][0] = -sin_pitch;
|
|
trans[2][1] = sin_roll*cos_pitch;
|
|
trans[2][2] = cos_roll*cos_pitch;
|
|
|
|
sgdSetVec3( vel_wrt_earth,
|
|
- cos_lon*sin_lat*v_north - sin_lon*v_east,
|
|
- sin_lon*sin_lat*v_north + cos_lon*v_east,
|
|
cos_lat*v_north );
|
|
sgGeodToCart(pos.lat() * SGD_DEGREES_TO_RADIANS,
|
|
pos.lon() * SGD_DEGREES_TO_RADIANS,
|
|
pos.elev(), rot_pivot_wrt_earth);
|
|
|
|
// Now update the position and heading. This will compute new hdg and
|
|
// roll values required for the rotation speed computation.
|
|
FGAIShip::update(dt);
|
|
|
|
|
|
//automatic turn into wind with a target wind of 25 kts otd
|
|
if(turn_to_launch_hdg){
|
|
TurnToLaunch();
|
|
} else if(OutsideBox() || returning) {// check that the carrier is inside the operating box
|
|
ReturnToBox();
|
|
} else { //if(!returning
|
|
TurnToBase();
|
|
} //end if
|
|
|
|
// Only change these values if we are able to compute them safely
|
|
if (dt < DBL_MIN)
|
|
sgdSetVec3( rot_wrt_earth, 0.0, 0.0, 0.0);
|
|
else {
|
|
// Compute the change of the euler angles.
|
|
double hdg_dot = SGD_DEGREES_TO_RADIANS * (hdg-old_hdg)/dt;
|
|
// Allways assume that the movement was done by the shorter way.
|
|
if (hdg_dot < - SGD_DEGREES_TO_RADIANS * 180)
|
|
hdg_dot += SGD_DEGREES_TO_RADIANS * 360;
|
|
if (hdg_dot > SGD_DEGREES_TO_RADIANS * 180)
|
|
hdg_dot -= SGD_DEGREES_TO_RADIANS * 360;
|
|
double pitch_dot = SGD_DEGREES_TO_RADIANS * (pitch-old_pitch)/dt;
|
|
// Allways assume that the movement was done by the shorter way.
|
|
if (pitch_dot < - SGD_DEGREES_TO_RADIANS * 180)
|
|
pitch_dot += SGD_DEGREES_TO_RADIANS * 360;
|
|
if (pitch_dot > SGD_DEGREES_TO_RADIANS * 180)
|
|
pitch_dot -= SGD_DEGREES_TO_RADIANS * 360;
|
|
double roll_dot = SGD_DEGREES_TO_RADIANS * (roll-old_roll)/dt;
|
|
// Allways assume that the movement was done by the shorter way.
|
|
if (roll_dot < - SGD_DEGREES_TO_RADIANS * 180)
|
|
roll_dot += SGD_DEGREES_TO_RADIANS * 360;
|
|
if (roll_dot > SGD_DEGREES_TO_RADIANS * 180)
|
|
roll_dot -= SGD_DEGREES_TO_RADIANS * 360;
|
|
/*cout << "euler derivatives = "
|
|
<< roll_dot << " " << pitch_dot << " " << hdg_dot << endl;*/
|
|
|
|
// Now Compute the rotation vector in the carriers coordinate frame
|
|
// originating from the euler angle changes.
|
|
sgdVec3 body;
|
|
body[0] = roll_dot - hdg_dot*sin_pitch;
|
|
body[1] = pitch_dot*cos_roll + hdg_dot*sin_roll*cos_pitch;
|
|
body[2] = -pitch_dot*sin_roll + hdg_dot*cos_roll*cos_pitch;
|
|
|
|
// Transform that back to the horizontal local frame.
|
|
sgdVec3 hl;
|
|
hl[0] = body[0]*trans[0][0] + body[1]*trans[0][1] + body[2]*trans[0][2];
|
|
hl[1] = body[0]*trans[1][0] + body[1]*trans[1][1] + body[2]*trans[1][2];
|
|
hl[2] = body[0]*trans[2][0] + body[1]*trans[2][1] + body[2]*trans[2][2];
|
|
|
|
// Now we need to project out rotation components ending in speeds in y
|
|
// direction in the hoirizontal local frame.
|
|
hl[1] = 0;
|
|
|
|
// Transform that to the earth centered frame.
|
|
sgdSetVec3(rot_wrt_earth,
|
|
- cos_lon*sin_lat*hl[0] - sin_lon*hl[1] - cos_lat*cos_lon*hl[2],
|
|
- sin_lon*sin_lat*hl[0] + cos_lon*hl[1] - cos_lat*sin_lon*hl[2],
|
|
cos_lat*hl[0] - sin_lat*hl[2]);
|
|
}
|
|
|
|
UpdateWind(dt);
|
|
UpdateTACAN(dt);
|
|
UpdateFlols(trans);
|
|
} //end update
|
|
|
|
bool FGAICarrier::init() {
|
|
if (!FGAIShip::init())
|
|
return false;
|
|
|
|
// process the 3d model here
|
|
// mark some objects solid, mark the wires ...
|
|
|
|
// The model should be used for altitude computations.
|
|
// To avoid that every detail in a carrier 3D model will end into
|
|
// the aircraft local cache, only set the HOT traversal bit on
|
|
// selected objects.
|
|
ssgEntity *sel = aip.getSceneGraph();
|
|
// Clear the HOT traversal flag
|
|
mark_nohot(sel);
|
|
// Selectively set that flag again for wires/cats/solid objects.
|
|
// Attach a pointer to this carrier class to those objects.
|
|
mark_wires(sel, wire_objects);
|
|
mark_cat(sel, catapult_objects);
|
|
mark_solid(sel, solid_objects);
|
|
|
|
_longitude_node = fgGetNode("/position/longitude-deg", true);
|
|
_latitude_node = fgGetNode("/position/latitude-deg", true);
|
|
_altitude_node = fgGetNode("/position/altitude-ft", true);
|
|
_dme_freq_node = fgGetNode("/instrumentation/dme/frequencies/selected-mhz", true);
|
|
_surface_wind_from_deg_node =
|
|
fgGetNode("/environment/config/boundary/entry[0]/wind-from-heading-deg", true);
|
|
_surface_wind_speed_node =
|
|
fgGetNode("/environment/config/boundary/entry[0]/wind-speed-kt", true);
|
|
|
|
|
|
turn_to_launch_hdg = false;
|
|
returning = false;
|
|
|
|
initialpos = pos;
|
|
base_course = hdg;
|
|
base_speed = speed;
|
|
|
|
return true;
|
|
}
|
|
|
|
void FGAICarrier::bind() {
|
|
FGAIShip::bind();
|
|
|
|
props->untie("velocities/true-airspeed-kt");
|
|
|
|
props->tie("controls/flols/source-lights",
|
|
SGRawValuePointer<int>(&source));
|
|
props->tie("controls/flols/distance-m",
|
|
SGRawValuePointer<double>(&dist));
|
|
props->tie("controls/flols/angle-degs",
|
|
SGRawValuePointer<double>(&angle));
|
|
props->tie("controls/turn-to-launch-hdg",
|
|
SGRawValuePointer<bool>(&turn_to_launch_hdg));
|
|
props->tie("controls/in-to-wind",
|
|
SGRawValuePointer<bool>(&turn_to_launch_hdg));
|
|
props->tie("controls/base-course-deg",
|
|
SGRawValuePointer<double>(&base_course));
|
|
props->tie("controls/base-speed-kts",
|
|
SGRawValuePointer<double>(&base_speed));
|
|
props->tie("controls/start-pos-lat-deg",
|
|
SGRawValuePointer<double>(&initialpos[1]));
|
|
props->tie("controls/start-pos-long-deg",
|
|
SGRawValuePointer<double>(&initialpos[0]));
|
|
props->tie("velocities/speed-kts",
|
|
SGRawValuePointer<double>(&speed));
|
|
props->tie("environment/surface-wind-speed-true-kts",
|
|
SGRawValuePointer<double>(&wind_speed_kts));
|
|
props->tie("environment/surface-wind-from-true-degs",
|
|
SGRawValuePointer<double>(&wind_from_deg));
|
|
props->tie("environment/rel-wind-from-degs",
|
|
SGRawValuePointer<double>(&rel_wind_from_deg));
|
|
props->tie("environment/rel-wind-from-carrier-hdg-degs",
|
|
SGRawValuePointer<double>(&rel_wind));
|
|
props->tie("environment/rel-wind-speed-kts",
|
|
SGRawValuePointer<double>(&rel_wind_speed_kts));
|
|
props->tie("controls/flols/wave-off-lights",
|
|
SGRawValuePointer<bool>(&wave_off_lights));
|
|
|
|
props->setBoolValue("controls/flols/cut-lights", false);
|
|
props->setBoolValue("controls/flols/wave-off-lights", false);
|
|
props->setBoolValue("controls/flols/cond-datum-lights", true);
|
|
props->setBoolValue("controls/crew", false);
|
|
|
|
props->setStringValue("navaids/tacan/channel-ID", TACAN_channel_id.c_str());
|
|
props->setStringValue("sign", sign.c_str());
|
|
}
|
|
|
|
void FGAICarrier::unbind() {
|
|
FGAIShip::unbind();
|
|
|
|
props->untie("velocities/true-airspeed-kt");
|
|
|
|
props->untie("controls/flols/source-lights");
|
|
props->untie("controls/flols/distance-m");
|
|
props->untie("controls/flols/angle-degs");
|
|
props->untie("controls/turn-to-launch-hdg");
|
|
props->untie("velocities/speed-kts");
|
|
props->untie("environment/wind-speed-true-kts");
|
|
props->untie("environment/wind-from-true-degs");
|
|
props->untie("environment/rel-wind-from-degs");
|
|
props->untie("environment/rel-wind-speed-kts");
|
|
props->untie("controls/flols/wave-off-lights");
|
|
|
|
}
|
|
|
|
bool FGAICarrier::getParkPosition(const string& id, Point3D& geodPos,
|
|
double& hdng, sgdVec3 uvw)
|
|
{
|
|
|
|
// FIXME: does not yet cover rotation speeds.
|
|
list<ParkPosition>::iterator it = ppositions.begin();
|
|
while (it != ppositions.end()) {
|
|
// Take either the specified one or the first one ...
|
|
if ((*it).name == id || id.empty()) {
|
|
ParkPosition ppos = *it;
|
|
geodPos = getGeocPosAt(ppos.offset);
|
|
hdng = hdg + ppos.heading_deg;
|
|
double shdng = sin(ppos.heading_deg * SGD_DEGREES_TO_RADIANS);
|
|
double chdng = cos(ppos.heading_deg * SGD_DEGREES_TO_RADIANS);
|
|
double speed_fps = speed*1.6878099;
|
|
sgdSetVec3(uvw, chdng*speed_fps, shdng*speed_fps, 0);
|
|
return true;
|
|
}
|
|
++it;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void FGAICarrier::mark_nohot(ssgEntity* e) {
|
|
if (e->isAKindOf(ssgTypeBranch())) {
|
|
ssgBranch* br = (ssgBranch*)e;
|
|
ssgEntity* kid;
|
|
for ( kid = br->getKid(0); kid != NULL ; kid = br->getNextKid() )
|
|
mark_nohot(kid);
|
|
|
|
br->clrTraversalMaskBits(SSGTRAV_HOT);
|
|
|
|
} else if (e->isAKindOf(ssgTypeLeaf())) {
|
|
|
|
e->clrTraversalMaskBits(SSGTRAV_HOT);
|
|
|
|
}
|
|
}
|
|
|
|
bool FGAICarrier::mark_wires(ssgEntity* e, const list<string>& wire_objects, bool mark) {
|
|
bool found = false;
|
|
if (e->isAKindOf(ssgTypeBranch())) {
|
|
ssgBranch* br = (ssgBranch*)e;
|
|
ssgEntity* kid;
|
|
|
|
list<string>::const_iterator it;
|
|
for (it = wire_objects.begin(); it != wire_objects.end(); ++it)
|
|
mark = mark || (e->getName() && (*it) == e->getName());
|
|
|
|
for ( kid = br->getKid(0); kid != NULL ; kid = br->getNextKid() )
|
|
found = mark_wires(kid, wire_objects, mark) || found;
|
|
|
|
if (found)
|
|
br->setTraversalMaskBits(SSGTRAV_HOT);
|
|
|
|
} else if (e->isAKindOf(ssgTypeLeaf())) {
|
|
list<string>::const_iterator it;
|
|
for (it = wire_objects.begin(); it != wire_objects.end(); ++it) {
|
|
if (mark || (e->getName() && (*it) == e->getName())) {
|
|
e->setTraversalMaskBits(SSGTRAV_HOT);
|
|
ssgBase* ud = e->getUserData();
|
|
if (ud) {
|
|
FGAICarrierHardware* ch = dynamic_cast<FGAICarrierHardware*>(ud);
|
|
if (ch) {
|
|
SG_LOG(SG_GENERAL, SG_WARN,
|
|
"AICarrier: Carrier hardware gets marked twice!\n"
|
|
" You have propably a whole branch marked as"
|
|
" a wire which also includes other carrier hardware."
|
|
);
|
|
} else {
|
|
SG_LOG(SG_GENERAL, SG_ALERT,
|
|
"AICarrier: Found user data attached to a leaf node which "
|
|
"should be marked as a wire!\n ****Skipping!****");
|
|
}
|
|
} else {
|
|
e->setUserData( FGAICarrierHardware::newWire( this ) );
|
|
ssgLeaf *l = (ssgLeaf*)e;
|
|
if ( l->getNumLines() != 1 ) {
|
|
SG_LOG(SG_GENERAL, SG_ALERT,
|
|
"AICarrier: Found wires not modelled with exactly one line!");
|
|
}
|
|
found = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return found;
|
|
}
|
|
|
|
bool FGAICarrier::mark_solid(ssgEntity* e, const list<string>& solid_objects, bool mark) {
|
|
bool found = false;
|
|
if (e->isAKindOf(ssgTypeBranch())) {
|
|
ssgBranch* br = (ssgBranch*)e;
|
|
ssgEntity* kid;
|
|
|
|
list<string>::const_iterator it;
|
|
for (it = solid_objects.begin(); it != solid_objects.end(); ++it)
|
|
mark = mark || (e->getName() && (*it) == e->getName());
|
|
|
|
for ( kid = br->getKid(0); kid != NULL ; kid = br->getNextKid() )
|
|
found = mark_solid(kid, solid_objects, mark) || found;
|
|
|
|
if (found)
|
|
br->setTraversalMaskBits(SSGTRAV_HOT);
|
|
|
|
} else if (e->isAKindOf(ssgTypeLeaf())) {
|
|
list<string>::const_iterator it;
|
|
for (it = solid_objects.begin(); it != solid_objects.end(); ++it) {
|
|
if (mark || (e->getName() && (*it) == e->getName())) {
|
|
e->setTraversalMaskBits(SSGTRAV_HOT);
|
|
ssgBase* ud = e->getUserData();
|
|
if (ud) {
|
|
FGAICarrierHardware* ch = dynamic_cast<FGAICarrierHardware*>(ud);
|
|
if (ch) {
|
|
SG_LOG(SG_GENERAL, SG_WARN,
|
|
"AICarrier: Carrier hardware gets marked twice!\n"
|
|
" You have propably a whole branch marked solid"
|
|
" which also includes other carrier hardware."
|
|
);
|
|
} else {
|
|
SG_LOG(SG_GENERAL, SG_ALERT,
|
|
"AICarrier: Found user data attached to a leaf node which "
|
|
"should be marked solid!\n ****Skipping!****");
|
|
}
|
|
} else {
|
|
e->setUserData( FGAICarrierHardware::newSolid( this ) );
|
|
found = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return found;
|
|
}
|
|
|
|
bool FGAICarrier::mark_cat(ssgEntity* e, const list<string>& cat_objects, bool mark) {
|
|
bool found = false;
|
|
if (e->isAKindOf(ssgTypeBranch())) {
|
|
ssgBranch* br = (ssgBranch*)e;
|
|
ssgEntity* kid;
|
|
|
|
list<string>::const_iterator it;
|
|
for (it = cat_objects.begin(); it != cat_objects.end(); ++it)
|
|
mark = mark || (e->getName() && (*it) == e->getName());
|
|
|
|
for ( kid = br->getKid(0); kid != NULL ; kid = br->getNextKid() )
|
|
found = mark_cat(kid, cat_objects, mark) || found;
|
|
|
|
if (found)
|
|
br->setTraversalMaskBits(SSGTRAV_HOT);
|
|
|
|
} else if (e->isAKindOf(ssgTypeLeaf())) {
|
|
list<string>::const_iterator it;
|
|
for (it = cat_objects.begin(); it != cat_objects.end(); ++it) {
|
|
if (mark || (e->getName() && (*it) == e->getName())) {
|
|
e->setTraversalMaskBits(SSGTRAV_HOT);
|
|
ssgBase* ud = e->getUserData();
|
|
if (ud) {
|
|
FGAICarrierHardware* ch = dynamic_cast<FGAICarrierHardware*>(ud);
|
|
if (ch) {
|
|
SG_LOG(SG_GENERAL, SG_WARN,
|
|
"AICarrier: Carrier hardware gets marked twice!\n"
|
|
"You have probably a whole branch marked as"
|
|
"a catapult which also includes other carrier hardware."
|
|
);
|
|
} else {
|
|
SG_LOG(SG_GENERAL, SG_ALERT,
|
|
"AICarrier: Found user data attached to a leaf node which "
|
|
"should be marked as a catapult!\n ****Skipping!****");
|
|
}
|
|
} else {
|
|
e->setUserData( FGAICarrierHardware::newCatapult( this ) );
|
|
ssgLeaf *l = (ssgLeaf*)e;
|
|
if ( l->getNumLines() != 1 ) {
|
|
SG_LOG(SG_GENERAL, SG_ALERT,
|
|
"AICarrier: Found a cat not modelled with exactly "
|
|
"one line!");
|
|
} else {
|
|
// Now some special code to make sure the cat points in the right
|
|
// direction. The 0 index must be the backward end, the 1 index
|
|
// the forward end.
|
|
// Forward is positive x-direction in our 3D model, also the model
|
|
// as such is flattened when it is loaded, so we do not need to
|
|
// care for transforms ...
|
|
short v[2];
|
|
l->getLine(0, v, v+1 );
|
|
sgVec3 ends[2];
|
|
for (int k=0; k<2; ++k)
|
|
sgCopyVec3( ends[k], l->getVertex( v[k] ) );
|
|
|
|
// When the 1 end is behind the 0 end, swap the coordinates.
|
|
if (ends[0][0] < ends[1][0]) {
|
|
sgCopyVec3( l->getVertex( v[0] ), ends[1] );
|
|
sgCopyVec3( l->getVertex( v[1] ), ends[0] );
|
|
}
|
|
|
|
found = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return found;
|
|
}
|
|
|
|
void FGAICarrier::UpdateFlols(const sgdMat3& trans) {
|
|
|
|
float in[3];
|
|
float out[3];
|
|
|
|
double flolsXYZ[3], eyeXYZ[3];
|
|
double lat, lon, alt;
|
|
Point3D eyepos;
|
|
Point3D flolspos;
|
|
|
|
/* cout << "x_offset " << flols_x_offset
|
|
<< " y_offset " << flols_y_offset
|
|
<< " z_offset " << flols_z_offset << endl;
|
|
|
|
cout << "roll " << roll
|
|
<< " heading " << hdg
|
|
<< " pitch " << pitch << endl;
|
|
|
|
cout << "carrier lon " << pos[0]
|
|
<< " lat " << pos[1]
|
|
<< " alt " << pos[2] << endl;*/
|
|
|
|
// set the Flols intitial position to the carrier position
|
|
|
|
flolspos = pos;
|
|
|
|
/* cout << "flols lon " << flolspos[0]
|
|
<< " lat " << flolspos[1]
|
|
<< " alt " << flolspos[2] << endl;*/
|
|
|
|
// set the offsets in metres
|
|
|
|
/* cout << "flols_x_offset " << flols_x_offset << endl
|
|
<< "flols_y_offset " << flols_y_offset << endl
|
|
<< "flols_z_offset " << flols_z_offset << endl;*/
|
|
|
|
in[0] = flols_off.x();
|
|
in[1] = flols_off.y();
|
|
in[2] = flols_off.z();
|
|
|
|
// multiply the input and transform matrices
|
|
|
|
out[0] = in[0] * trans[0][0] + in[1] * trans[0][1] + in[2] * trans[0][2];
|
|
out[1] = in[0] * trans[1][0] + in[1] * trans[1][1] + in[2] * trans[1][2];
|
|
out[2] = in[0] * trans[2][0] + in[1] * trans[2][1] + in[2] * trans[2][2];
|
|
|
|
// convert meters to ft to degrees of latitude
|
|
out[0] = (out[0] * 3.28083989501) /(366468.96 - 3717.12 * cos(flolspos[0] * SG_DEGREES_TO_RADIANS));
|
|
|
|
// convert meters to ft to degrees of longitude
|
|
out[1] = (out[1] * 3.28083989501)/(365228.16 * cos(flolspos[1] * SG_DEGREES_TO_RADIANS));
|
|
|
|
//print out the result
|
|
/* cout << "lat adjust deg" << out[0]
|
|
<< " lon adjust deg " << out[1]
|
|
<< " alt adjust m " << out[2] << endl;*/
|
|
|
|
// adjust Flols position
|
|
flolspos[0] += out[0];
|
|
flolspos[1] += out[1];
|
|
flolspos[2] += out[2];
|
|
|
|
// convert flols position to cartesian co-ordinates
|
|
|
|
sgGeodToCart(flolspos[1] * SG_DEGREES_TO_RADIANS,
|
|
flolspos[0] * SG_DEGREES_TO_RADIANS,
|
|
flolspos[2] , flolsXYZ );
|
|
|
|
|
|
/* cout << "flols X " << flolsXYZ[0]
|
|
<< " Y " << flolsXYZ[1]
|
|
<< " Z " << flolsXYZ[2] << endl;
|
|
|
|
// check the conversion
|
|
|
|
sgCartToGeod(flolsXYZ, &lat, &lon, &alt);
|
|
|
|
cout << "flols check lon " << lon
|
|
<< " lat " << lat
|
|
<< " alt " << alt << endl; */
|
|
|
|
//get the current position of the pilot's eyepoint (cartesian cordinates)
|
|
|
|
sgdCopyVec3( eyeXYZ, globals->get_current_view()->get_absolute_view_pos() );
|
|
|
|
/* cout << "Eye_X " << eyeXYZ[0]
|
|
<< " Eye_Y " << eyeXYZ[1]
|
|
<< " Eye_Z " << eyeXYZ[2] << endl; */
|
|
|
|
sgCartToGeod(eyeXYZ, &lat, &lon, &alt);
|
|
|
|
eyepos[0] = lon * SG_RADIANS_TO_DEGREES;
|
|
eyepos[1] = lat * SG_RADIANS_TO_DEGREES;
|
|
eyepos[2] = alt;
|
|
|
|
/* cout << "eye lon " << eyepos[0]
|
|
<< " eye lat " << eyepos[1]
|
|
<< " eye alt " << eyepos[2] << endl; */
|
|
|
|
//calculate the ditance from eye to flols
|
|
|
|
dist = sgdDistanceVec3( flolsXYZ, eyeXYZ );
|
|
|
|
//apply an index error
|
|
|
|
dist -= 100;
|
|
|
|
//cout << "distance " << dist << endl;
|
|
|
|
if ( dist < 5000 ) {
|
|
// calculate height above FLOLS
|
|
double y = eyepos[2] - flolspos[2];
|
|
|
|
// calculate the angle from the flols to eye
|
|
// above the horizontal
|
|
// double angle;
|
|
|
|
if ( dist != 0 ) {
|
|
angle = asin( y / dist );
|
|
} else {
|
|
angle = 0.0;
|
|
}
|
|
|
|
angle *= SG_RADIANS_TO_DEGREES;
|
|
|
|
|
|
// cout << " height " << y << " angle " << angle ;
|
|
|
|
// set the value of source
|
|
|
|
if ( angle <= 4.35 && angle > 4.01 )
|
|
{ source = 1; }
|
|
else if ( angle <= 4.01 && angle > 3.670 )
|
|
{ source = 2; }
|
|
else if ( angle <= 3.670 && angle > 3.330 )
|
|
{ source = 3; }
|
|
else if ( angle <= 3.330 && angle > 2.990 )
|
|
{ source = 4; }
|
|
else if ( angle <= 2.990 && angle > 2.650 )
|
|
{ source = 5; }
|
|
else if ( angle <= 2.650 )
|
|
{ source = 6; }
|
|
else
|
|
{ source = 0; }
|
|
|
|
// cout << " source " << source << endl;
|
|
|
|
}
|
|
} // end updateflols
|
|
|
|
// find relative wind
|
|
|
|
|
|
|
|
|
|
void FGAICarrier::UpdateWind( double dt) {
|
|
|
|
double recip;
|
|
|
|
//calculate the reciprocal hdg
|
|
|
|
if (hdg >= 180){
|
|
recip = hdg - 180;
|
|
}
|
|
else{
|
|
recip = hdg + 180;
|
|
}
|
|
|
|
//cout <<" heading: " << hdg << "recip: " << recip << endl;
|
|
|
|
//get the surface wind speed and direction
|
|
wind_from_deg = _surface_wind_from_deg_node->getDoubleValue();
|
|
wind_speed_kts = _surface_wind_speed_node->getDoubleValue();
|
|
|
|
//calculate the surface wind speed north and east in kts
|
|
double wind_speed_from_north_kts = cos( wind_from_deg / SGD_RADIANS_TO_DEGREES )* wind_speed_kts ;
|
|
double wind_speed_from_east_kts = sin( wind_from_deg / SGD_RADIANS_TO_DEGREES )* wind_speed_kts ;
|
|
|
|
//calculate the carrier speed north and east in kts
|
|
double speed_north_kts = cos( hdg / SGD_RADIANS_TO_DEGREES )* speed ;
|
|
double speed_east_kts = sin( hdg / SGD_RADIANS_TO_DEGREES )* speed ;
|
|
|
|
//calculate the relative wind speed north and east in kts
|
|
double rel_wind_speed_from_east_kts = wind_speed_from_east_kts + speed_east_kts;
|
|
double rel_wind_speed_from_north_kts = wind_speed_from_north_kts + speed_north_kts;
|
|
|
|
//combine relative speeds north and east to get relative windspeed in kts
|
|
rel_wind_speed_kts = sqrt((rel_wind_speed_from_east_kts * rel_wind_speed_from_east_kts)
|
|
+ (rel_wind_speed_from_north_kts * rel_wind_speed_from_north_kts));
|
|
|
|
//calculate the relative wind direction
|
|
rel_wind_from_deg = atan(rel_wind_speed_from_east_kts/rel_wind_speed_from_north_kts)
|
|
* SG_RADIANS_TO_DEGREES;
|
|
|
|
// rationalise the output
|
|
if (rel_wind_speed_from_north_kts <= 0){
|
|
rel_wind_from_deg = 180 + rel_wind_from_deg;
|
|
}
|
|
else{
|
|
if(rel_wind_speed_from_east_kts <= 0){
|
|
rel_wind_from_deg = 360 + rel_wind_from_deg;
|
|
}
|
|
}
|
|
|
|
//calculate rel wind
|
|
rel_wind = rel_wind_from_deg - hdg ;
|
|
if (rel_wind > 180) rel_wind -= 360;
|
|
|
|
//switch the wave-off lights
|
|
if (InToWind()){
|
|
wave_off_lights = false;
|
|
}else{
|
|
wave_off_lights = true;
|
|
}
|
|
|
|
// cout << "rel wind: " << rel_wind << endl;
|
|
|
|
}// end update wind
|
|
|
|
void FGAICarrier::TurnToLaunch(){
|
|
|
|
//calculate tgt speed
|
|
double tgt_speed = 25 - wind_speed_kts;
|
|
if (tgt_speed < 10) tgt_speed = 10;
|
|
|
|
//turn the carrier
|
|
FGAIShip::TurnTo(wind_from_deg);
|
|
FGAIShip::AccelTo(tgt_speed);
|
|
|
|
|
|
|
|
} // end turn to launch
|
|
|
|
void FGAICarrier::TurnToBase(){
|
|
|
|
//turn the carrier
|
|
FGAIShip::TurnTo(base_course);
|
|
FGAIShip::AccelTo(base_speed);
|
|
|
|
} // end turn to base
|
|
|
|
void FGAICarrier::ReturnToBox(){
|
|
double course, distance;
|
|
|
|
//get the carrier position
|
|
carrierpos = pos;
|
|
|
|
//cout << "lat: " << carrierpos[1] << " lon: " << carrierpos[0] << endl;
|
|
|
|
//calculate the bearing and range of the initial position from the carrier
|
|
geo_inverse_wgs_84(carrierpos[2],
|
|
carrierpos[1],
|
|
carrierpos[0],
|
|
initialpos[1],
|
|
initialpos[0],
|
|
&course, &az2, &distance);
|
|
|
|
distance *= SG_METER_TO_NM;
|
|
|
|
//cout << "return course: " << course << " distance: " << distance << endl;
|
|
//turn the carrier
|
|
FGAIShip::TurnTo(course);
|
|
FGAIShip::AccelTo(base_speed);
|
|
if (distance >= 1 ){
|
|
returning = true;
|
|
}else{
|
|
returning = false;
|
|
}
|
|
|
|
} // end turn to base
|
|
|
|
|
|
void FGAICarrier::UpdateTACAN(double dt){ //update the TACAN
|
|
|
|
//cout << "TACAN: " << TACAN_channel_id << endl;
|
|
|
|
double max_range_nm = 100; //nm
|
|
|
|
double dme_freq = _dme_freq_node->getDoubleValue();
|
|
|
|
//cout << "dme_freq: " << dme_freq << endl;
|
|
|
|
if (TACAN_channel_id == "017X"){
|
|
|
|
//get the aircraft position
|
|
double longitude_deg = _longitude_node->getDoubleValue();
|
|
double latitude_deg = _latitude_node->getDoubleValue();
|
|
double altitude_m = _altitude_node->getDoubleValue() * SG_FEET_TO_METER;
|
|
|
|
//get the carrier position
|
|
carrierpos = pos;
|
|
|
|
//cout << "lat: " << carrierpos[1] << " lon: " << carrierpos[0] << endl;
|
|
|
|
//calculate the bearing and range of the carrier from the aircraft
|
|
geo_inverse_wgs_84(altitude_m,
|
|
latitude_deg,
|
|
longitude_deg,
|
|
carrierpos[1],
|
|
carrierpos[0],
|
|
&bearing, &az2, &range);
|
|
|
|
range *= SG_METER_TO_NM;
|
|
|
|
|
|
|
|
double aircraft_horizon_nm = Horizon(altitude_m) * SG_METER_TO_NM;
|
|
double carrier_horizon_nm = Horizon(50) * SG_METER_TO_NM;
|
|
double horizon_nm = aircraft_horizon_nm + carrier_horizon_nm;
|
|
|
|
if (range > horizon_nm || range > max_range_nm) {
|
|
range = 0;
|
|
bearing = 0 ;
|
|
}
|
|
/*cout << "bearing: " << bearing << " range: " << range << " altitude: " << altitude_m
|
|
<< " horizon: " << horizon_nm << endl; */
|
|
} else {
|
|
range = 0;
|
|
bearing = 0 ;
|
|
} // end if
|
|
|
|
}// end update TACAN
|
|
|
|
bool FGAICarrier::OutsideBox(){ //returns true if the carrier is outside operating box
|
|
|
|
if ( max_lat == 0 && min_lat == 0 && max_long == 0 && min_long == 0) {
|
|
SG_LOG(SG_GENERAL, SG_BULK,"AICarrier: No Operating Box defined" );
|
|
return false;
|
|
}
|
|
|
|
if (initialpos[1] >= 0){//northern hemisphere
|
|
if (pos[1] >= initialpos[1] + max_lat) {return true;}
|
|
else if (pos[1] <= initialpos[1] - min_lat) {return true;}
|
|
}else{ //southern hemisphere
|
|
if (pos[1] <= initialpos[1] - max_lat) {return true;}
|
|
else if (pos[1] >= initialpos[1] + min_lat) {return true;}
|
|
}
|
|
|
|
if (initialpos[0] >=0) {//eastern hemisphere
|
|
if (pos[0] >= initialpos[0] + max_long) {return true;}
|
|
else if (pos[0] <= initialpos[0] - min_long) {return true;}
|
|
}else{ //western hemisphere
|
|
if (pos[0] <= initialpos[0] - max_long) {return true;}
|
|
else if (pos[0] >= initialpos[0] + min_long) {return true;}
|
|
}
|
|
|
|
SG_LOG(SG_GENERAL, SG_BULK,"AICarrier: Inside Operating Box" );
|
|
|
|
return false;
|
|
|
|
} // end OutsideBox
|
|
|
|
// return the distance to the horizon, given the altitude and the radius of the earth
|
|
float FGAICarrier::Horizon(float h) { return RADIUS_M * acos(RADIUS_M / (RADIUS_M + h)); }
|
|
|
|
bool FGAICarrier::InToWind(){
|
|
|
|
// test
|
|
if ( fabs(rel_wind) < 5 ) return true;
|
|
return false;
|
|
|
|
} //end InToWind
|
|
int FGAICarrierHardware::unique_id = 1;
|