1
0
Fork 0
flightgear/Cockpit/panel.cxx

1164 lines
34 KiB
C++

// panel.cxx -- routines to draw an instrument panel
//
// Written by Friedemann Reinhard, started June 1998.
//
// Copyright(C)1998 Friedemann Reinhard-reinhard@theorie2.physik.uni-erlangen.de
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
// (Log is kept at end of this file)
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#ifdef HAVE_WINDOWS_H
# include <windows.h>
#endif
// #include <GL/gl.h>
// #include <GL/glu.h>
#include <GL/glut.h>
#include <XGL/xgl.h>
#include "Include/compiler.h"
#ifdef FG_HAVE_STD_INCLUDES
# include <cstdlib>
# include <cstdio>
# include <cstring>
# include <cmath>
#else
# include <stdlib.h>
# include <stdio.h>
# include <string.h>
# include <math.h>
#endif
#include <string>
FG_USING_STD(string);
#include <Aircraft/aircraft.hxx>
#include <Debug/logstream.hxx>
#include <Main/options.hxx>
#include <Main/views.hxx>
#include "panel.hxx"
#include "cockpit.hxx"
#include "hud.hxx"
#define IMAGIC 0x01da
#define IMAGIC_SWAP 0xda01
#define SWAP_SHORT_BYTES(x) ((((x) & 0xff) << 8) | (((x) & 0xff00) >> 8))
#define SWAP_LONG_BYTES(x) (((((x) & 0xff) << 24) | (((x) & 0xff00) << 8)) | \
((((x) & 0xff0000) >> 8) | (((x) & 0xff000000) >> 24)))
typedef struct {
unsigned short imagic;
unsigned short type;
unsigned short dim;
unsigned short sizeX, sizeY, sizeZ;
unsigned long min, max;
unsigned long wasteBytes;
char name[80];
unsigned long colorMap;
FILE *file;
unsigned char *tmp[5];
unsigned long rleEnd;
unsigned long *rowStart;
unsigned long *rowSize;
} Image;
IMAGE *imag;
IMAGE *img2;
IMAGE *img;
static float value[4];
static GLuint panel_tex_id[2];
static GLubyte tex[32][128][3];
static float alphahist;
static float Xzoom, Yzoom;
static Pointer pointer[20];
static TurnCoordinator Turny;
static int NumPoint = 5;
static int i = 0;
static GLdouble mvmatrix[16];
static GLdouble matrix[16];
static double var[20];
static double offset;
static float alpha;
static float vertices[180][2];
static float normals[180][3];
static float texCoord[180][2];
static arthor myarthor;
static int n1;
static int n2;
static GLfloat Wings[] = {-1.25, -28.125, 1.255, -28.125, 1.255, 28.125, -1.25, 28.125};
static GLfloat Elevator[] = { 3.0, -10.9375, 4.5, -10.9375, 4.5, 10.9375, 3.0, 10.9375};
static GLfloat Rudder[] = {2.0, -0.45, 10.625, -0.45, 10.625, 0.55, 2.0, 0.55};
// image.c THIS FILE WAS COPIED FROM THE MESA GRAPHICS LIBRARY
static Image *ImageOpen(char *fileName)
{
Image *image;
unsigned long *rowStart, *rowSize, ulTmp;
int x, i;
image = (Image *)malloc(sizeof(Image));
if (image == NULL)
{
fprintf(stderr, "Out of memory!\n");
exit(-1);
}
if ((image->file = fopen(fileName, "rb")) == NULL)
{
perror(fileName);
exit(-1);
}
/*
* Read the image header
*/
fread(image, 1, 12, image->file);
/*
* Check byte order
*/
if (image->imagic == IMAGIC_SWAP)
{
image->type = SWAP_SHORT_BYTES(image->type);
image->dim = SWAP_SHORT_BYTES(image->dim);
image->sizeX = SWAP_SHORT_BYTES(image->sizeX);
image->sizeY = SWAP_SHORT_BYTES(image->sizeY);
image->sizeZ = SWAP_SHORT_BYTES(image->sizeZ);
}
for ( i = 0 ; i <= image->sizeZ ; i++ )
{
image->tmp[i] = (unsigned char *)malloc(image->sizeX*256);
if (image->tmp[i] == NULL )
{
fprintf(stderr, "Out of memory!\n");
exit(-1);
}
}
if ((image->type & 0xFF00) == 0x0100) // RLE image
{
x = image->sizeY * image->sizeZ * sizeof(long);
image->rowStart = (unsigned long *)malloc(x);
image->rowSize = (unsigned long *)malloc(x);
if (image->rowStart == NULL || image->rowSize == NULL)
{
fprintf(stderr, "Out of memory!\n");
exit(-1);
}
image->rleEnd = 512 + (2 * x);
fseek(image->file, 512, SEEK_SET);
fread(image->rowStart, 1, x, image->file);
fread(image->rowSize, 1, x, image->file);
if (image->imagic == IMAGIC_SWAP)
{
x /= sizeof(long);
rowStart = image->rowStart;
rowSize = image->rowSize;
while (x--)
{
ulTmp = *rowStart;
*rowStart++ = SWAP_LONG_BYTES(ulTmp);
ulTmp = *rowSize;
*rowSize++ = SWAP_LONG_BYTES(ulTmp);
}
}
}
return image;
}
static void ImageClose( Image *image)
{
int i;
fclose(image->file);
for ( i = 0 ; i <= image->sizeZ ; i++ )
free(image->tmp[i]);
free(image);
}
static void ImageGetRow( Image *image, unsigned char *buf, int y, int z)
{
unsigned char *iPtr, *oPtr, pixel;
int count;
if ((image->type & 0xFF00) == 0x0100) // RLE image
{
fseek(image->file, image->rowStart[y+z*image->sizeY], SEEK_SET);
fread(image->tmp[0], 1, (unsigned int)image->rowSize[y+z*image->sizeY],
image->file);
iPtr = image->tmp[0];
oPtr = buf;
while (1)
{
pixel = *iPtr++;
count = (int)(pixel & 0x7F);
if (!count)
return;
if (pixel & 0x80)
{
while (count--)
{
*oPtr++ = *iPtr++;
}
}
else
{
pixel = *iPtr++;
while (count--)
{
*oPtr++ = pixel;
}
}
}
}
else // verbatim image
{
fseek(image->file, 512+(y*image->sizeX)+(z*image->sizeX*image->sizeY),
SEEK_SET);
fread(buf, 1, image->sizeX, image->file);
}
}
static void ImageGetRawData( Image *image, char *data)
{
int i, j, k;
int remain;
switch ( image->sizeZ )
{
case 1:
remain = image->sizeX % 4;
break;
case 2:
remain = image->sizeX % 2;
break;
case 3:
remain = (image->sizeX * 3) & 0x3;
if (remain)
remain = 4 - remain;
break;
case 4:
remain = 0;
break;
}
for (i = 0; i < image->sizeY; i++)
{
for ( k = 0; k < image->sizeZ ; k++ )
ImageGetRow(image, image->tmp[k+1], i, k);
for (j = 0; j < image->sizeX; j++)
for ( k = 1; k <= image->sizeZ ; k++ )
*data++ = *(image->tmp[k] + j);
data += remain;
}
}
static IMAGE *ImageLoad(char *fileName)
{
Image *image;
IMAGE *final;
int sx;
image = ImageOpen(fileName);
final = (IMAGE *)malloc(sizeof(IMAGE));
if (final == NULL)
{
fprintf(stderr, "Out of memory!\n");
exit(-1);
}
final->imagic = image->imagic;
final->type = image->type;
final->dim = image->dim;
final->sizeX = image->sizeX;
final->sizeY = image->sizeY;
final->sizeZ = image->sizeZ;
/*
* Round up so rows are long-word aligned
*/
sx = ( (image->sizeX) * (image->sizeZ) + 3) >> 2;
final->data
= (unsigned char *)malloc( sx * image->sizeY * sizeof(unsigned int));
if (final->data == NULL)
{
fprintf(stderr, "Out of memory!\n");
exit(-1);
}
ImageGetRawData(image, (char*)final->data);
ImageClose(image);
return final;
}
// Beginning of the "panel-code"
// fgPanelInit() - routine to initialize a panel.
void fgPanelInit ( void ) {
// fgVIEW *v;
string tpath;
int x, y;
FILE *f;
char line[256];
GLint test;
// v = &current_view;
Xzoom = (float)((float)(current_view.get_winWidth())/1024);
Yzoom = (float)((float)(current_view.get_winHeight())/768);
pointer[1].XPos = 357.5;
pointer[1].YPos = 167;
pointer[1].radius = 5;
pointer[1].length = 32;
pointer[1].width = 3;
pointer[1].angle = 30;
pointer[1].value1 = 0;
pointer[1].value2 = 3000;
pointer[1].alpha1 = 0;
pointer[1].alpha2 = 1080;
pointer[1].variable = 1;
pointer[1].teXpos = 194;
pointer[1].texYpos = 191;
pointer[0].XPos = 357.5;
pointer[0].YPos = 167;
pointer[0].radius = 5;
pointer[0].length = 25;
pointer[0].width = 4;
pointer[0].angle = 30;
pointer[0].value1 = 0;
pointer[0].value2 = 10000;
pointer[0].alpha1 = 0;
pointer[0].alpha2 = 360;
pointer[0].variable = 1;
pointer[0].teXpos = 194;
pointer[0].texYpos = 191;
pointer[2].XPos = 358;
pointer[2].YPos = 52;
pointer[2].radius = 4;
pointer[2].length = 30;
pointer[2].width = 3;
pointer[2].angle = 30;
pointer[2].value1 = -3;
pointer[2].value2 = 3;
pointer[2].alpha1 = 100;
pointer[2].alpha2 = 440;
pointer[2].variable = 2;
pointer[2].teXpos = 66.15;
pointer[2].texYpos = 66;
pointer[3].XPos = 462;
pointer[3].YPos = 133;
pointer[3].radius = 9;
pointer[3].length = 20;
pointer[3].width = 5;
pointer[3].angle = 50;
pointer[3].value1 = 0.0;
pointer[3].value2 = 1.0;
pointer[3].alpha1 = 280;
pointer[3].alpha2 = 540;
pointer[3].variable = 3;
pointer[3].teXpos = 173.6;
pointer[3].texYpos = 83;
// These values define the airspeed pointer. Please note:
// As we have a Bonanza panel, but a navion airplane, this gauge
// doesn't show the true values !!!
pointer[4].XPos = 144.375;
pointer[4].YPos = 166.875;
pointer[4].radius = 4;
pointer[4].length = 32;
pointer[4].width = 3;
pointer[4].angle = 30;
pointer[4].value1 = 15.0;
pointer[4].value2 = 260.0;
pointer[4].alpha1 = -20.0;
pointer[4].alpha2 = 360.0;
pointer[4].variable = 0;
pointer[4].teXpos = 64;
pointer[4].texYpos = 193;
myarthor.XPos = 251;
myarthor.YPos = 168;
myarthor.radius = 29;
myarthor.texXPos = 56;
myarthor.texYPos = 174;
myarthor.bottom = 36.5;
myarthor.top = 36.5;
Turny.PlaneXPos = 143.75;
Turny.PlaneYPos = 51.75;
Turny.PlaneTexXPos = 49;
Turny.PlaneTexYPos = 59.75;
Turny.BallXPos = 145;
Turny.BallYPos = 24;
Turny.BallTexXPos = 49;
Turny.BallTexYPos = 16;
Turny.BallRadius = 3.5;
Turny.alphahist = 0;
Turny.PlaneAlphaHist = 0;
for(i=0;i<NumPoint;i++){
CreatePointer(&pointer[i]);
}
fgHorizonInit(myarthor);
fgInitTurnCoordinator(&Turny);
#ifdef GL_VERSION_1_1
xglGenTextures(2, panel_tex_id);
xglBindTexture(GL_TEXTURE_2D, panel_tex_id[1]);
#elif GL_EXT_texture_object
xglGenTexturesEXT(2, panel_tex_id);
xglBindTextureEXT(GL_TEXTURE_2D, panel_tex_id[1]);
#else
# error port me
#endif
xglMatrixMode(GL_PROJECTION);
xglPushMatrix();
xglLoadIdentity();
xglViewport(0, 0, 640, 480);
xglOrtho(0, 640, 0, 480, 1, -1);
xglMatrixMode(GL_MODELVIEW);
xglPushMatrix();
xglLoadIdentity();
xglPixelStorei(GL_UNPACK_ALIGNMENT, 4);
xglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
xglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
xglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
xglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// load in the texture data
xglPixelStorei(GL_UNPACK_ROW_LENGTH, 256);
tpath = current_options.get_fg_root() + "/Textures/gauges.rgb";
if((img = ImageLoad( (char *)tpath.c_str() ))==NULL){
}
xglPixelStorei(GL_UNPACK_ROW_LENGTH, 256);
tpath = current_options.get_fg_root() + "/Textures/gauges2.rgb";
if((imag = ImageLoad( (char *)tpath.c_str() ))==NULL){
}
xglPixelStorei(GL_UNPACK_ROW_LENGTH, 1024);
tpath = current_options.get_fg_root() + "/Textures/Fullone.rgb";
if ((img2 = ImageLoad( (char *)tpath.c_str() ))==NULL ){
}
xglPixelZoom(Xzoom, Yzoom);
xglPixelStorei(GL_UNPACK_ALIGNMENT, 1);
xglPixelStorei(GL_UNPACK_ROW_LENGTH, 1024);
xglPixelStorei(GL_UNPACK_ROW_LENGTH, 1024);
xglRasterPos2i(0,0);
xglPixelZoom(Xzoom, Yzoom);
xglPixelStorei(GL_UNPACK_ROW_LENGTH, 256);
xglTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 256, 256, 0, GL_RGB, GL_UNSIGNED_BYTE, (GLvoid *)(imag->data));
#ifdef GL_VERSION_1_1
xglBindTexture(GL_TEXTURE_2D, panel_tex_id[0]);
#elif GL_EXT_texture_object
xglBindTextureEXT(GL_TEXTURE_2D, panel_tex_id[0]);
#else
# error port me
#endif
xglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
xglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
xglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
xglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
xglTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 256, 256, 0, GL_RGB, GL_UNSIGNED_BYTE, (GLvoid *)(img->data));
xglMatrixMode(GL_MODELVIEW);
xglPopMatrix();
}
void fgPanelReInit( int x, int y, int finx, int finy){
fgOPTIONS *o;
int i;
GLint buffer;
o = &current_options;
Xzoom = (float)((float)(current_view.get_winWidth())/1024);
Yzoom = (float)((float)(current_view.get_winHeight())/768);
// save the current buffer state
xglGetIntegerv(GL_DRAW_BUFFER, &buffer);
// and enable both buffers for writing
xglDrawBuffer(GL_FRONT_AND_BACK);
xglMatrixMode(GL_PROJECTION);
xglPushMatrix();
xglLoadIdentity();
xglViewport(0, 0, 640, 480);
xglOrtho(0, 640, 0, 480, 1, -1);
xglMatrixMode(GL_MODELVIEW);
xglPushMatrix();
xglLoadIdentity();
xglPixelStorei(GL_UNPACK_ALIGNMENT, 1);
xglPixelZoom(Xzoom, Yzoom);
xglPixelStorei(GL_UNPACK_ALIGNMENT, 1);
xglPixelStorei(GL_UNPACK_ROW_LENGTH, 1024);
xglPixelStorei(GL_UNPACK_SKIP_PIXELS, x);
xglPixelStorei(GL_UNPACK_SKIP_ROWS, y);
xglRasterPos2i(x, y);
xglPixelZoom(Xzoom, Yzoom);
xglDrawPixels(finx - x, finy - y, GL_RGB, GL_UNSIGNED_BYTE, (GLvoid *)(img2->data));
// restore original buffer state
xglDrawBuffer( buffer );
}
void fgPanelUpdate ( void ) {
// fgVIEW *v;
float alpha;
double pitch;
double roll;
float alpharad;
double speed;
int i;
var[0] = get_speed() * 1.4; // We have to multiply the airspeed by a
// factor, to simulate flying a Bonanza
var[1] = get_altitude();
var[2] = get_climb_rate() / 1000.0;
var[3] = get_throttleval();
// v = &current_view;
xglMatrixMode(GL_PROJECTION);
xglPushMatrix();
xglLoadIdentity();
xglOrtho(0, 640, 0, 480, 10, -10);
xglMatrixMode(GL_MODELVIEW);
xglPushMatrix();
xglLoadIdentity();
xglDisable(GL_DEPTH_TEST);
xglEnable(GL_LIGHTING);
xglEnable(GL_TEXTURE_2D);
xglDisable(GL_BLEND);
xglMatrixMode(GL_MODELVIEW);
xglPopMatrix();
xglPushMatrix();
for(i=0;i<NumPoint;i++){
xglLoadIdentity();
xglTranslatef(pointer[i].XPos, pointer[i].YPos, 0.0);
xglRotatef(-pointer[i].tape[0], 0.0, 0.0, 1.0);
fgEraseArea(pointer[i].vertices, 20, (GLfloat)(pointer[i].teXpos), (GLfloat)(pointer[i].texYpos), (GLfloat)(pointer[i].XPos), (GLfloat)(pointer[i].YPos), 0, 1);
xglLoadIdentity();
}
xglDisable(GL_LIGHTING);
for(i=0;i<NumPoint;i++){
UpdatePointer( &pointer[i]);
xglPopMatrix();
xglPushMatrix();
}
fgUpdateTurnCoordinator(&Turny);
xglEnable(GL_LIGHTING);
horizon(myarthor);
// DrawScale(200, 200, 25, 28, 10, 270, 2, 3.0, 1.0, 0.1, 0.1);
xglDisable(GL_TEXTURE_2D);
xglPopMatrix();
xglEnable(GL_DEPTH_TEST);
xglEnable(GL_LIGHTING);
xglDisable(GL_TEXTURE_2D);
xglDisable(GL_BLEND);
xglMatrixMode(GL_PROJECTION);
xglPopMatrix();
xglMatrixMode(GL_MODELVIEW);
xglPopMatrix();
}
// horizon - Let's draw an artificial horizon using both texture mapping and
// primitive drawing
void horizon(arthor hor){
double pitch;
double roll;
float shifted, alpha, theta;
float epsi = 360 / 180;
GLboolean Light;
GLfloat normal[2];
static int n, dn, rot, tmp1, tmp2;
float a;
GLfloat material[] = { 0.714844, 0.265625, 0.056875 ,1.0};
GLfloat material2[] = {0.6640625, 0.921875, 0.984375, 1.0};
GLfloat material3[] = {0.2, 0.2, 0.2, 1.0};
GLfloat material4[] = {0.8, 0.8, 0.8, 1.0};
GLfloat material5[] = {0.0, 0.0, 0.0, 1.0};
GLfloat direction[] = {0.0, 0.0, 0.0};
GLfloat light_position[4];
GLfloat light_ambient[] = {0.7, 0.7, 0.7, 1.0};
GLfloat light_ambient2[] = {0.7, 0.7, 0.7, 1.0};
GLfloat light_diffuse[] = {1.0, 1.0, 1.0, 1.0};
GLfloat light_specular[] = {1.0, 1.0, 1.0, 1.0};
pitch = get_pitch() * RAD_TO_DEG;
if(pitch > 45)
pitch = 45;
if(pitch < -45)
pitch = -45;
roll = get_roll() * RAD_TO_DEG;
xglEnable(GL_NORMALIZE);
xglEnable(GL_LIGHTING);
xglEnable(GL_TEXTURE_2D);
xglEnable(GL_LIGHT1);
xglDisable(GL_LIGHT2);
xglDisable(GL_LIGHT0);
xglMatrixMode(GL_MODELVIEW);
xglLoadIdentity();
xglTranslatef(hor.XPos, hor.YPos, 0);
xglTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
xglMatrixMode(GL_TEXTURE);
xglPushMatrix();
// computations for the non-textured parts of the AH
shifted = -((pitch / 10) * 7.0588235);
if(shifted > (hor.bottom - hor.radius)){
theta = (180 - (acos((hor.bottom - shifted) / hor.radius)*RAD_TO_DEG));
n = (int)(theta / epsi) - 1;
n1 = n;
n2 = (180 - n1) + 2;
dn = n2 - n1;
rot = (int)(roll / epsi);
n1 += rot + 45;
n2 += rot + 45;
}
if(shifted < (-hor.top + hor.radius)){
theta = ((acos((-hor.top - shifted) / hor.radius)*RAD_TO_DEG));
n = (int)(theta / epsi) + 1;
n1 = n;
n2 = (180 - n1) + 2;
dn = n2 - n1;
rot = (int)(roll / epsi);
n1 += rot - 45;
n2 += rot - 45;
if(n1 < 0){ n1 += 180; n2 +=180;}
}
// end of computations
light_position[0] = 0.0;
light_position[1] = 0.0;
light_position[2] = 1.5;
light_position[3] = 0.0;
xglLightfv(GL_LIGHT1, GL_POSITION, light_position);
xglLightfv(GL_LIGHT1, GL_AMBIENT, light_ambient);
xglLightfv(GL_LIGHT1, GL_DIFFUSE, light_diffuse);
xglLightfv(GL_LIGHT1, GL_SPECULAR, light_specular);
xglLightfv(GL_LIGHT1, GL_SPOT_DIRECTION, direction);
#ifdef GL_VERSION_1_1
xglBindTexture(GL_TEXTURE_2D, panel_tex_id[1]);
#elif GL_EXT_texture_object
xglBindTextureEXT(GL_TEXTURE_2D, panel_tex_id[1]);
#else
# error port me
#endif
xglLoadIdentity();
xglTranslatef(0.0, ((pitch / 10) * 0.046875), 0.0);
xglTranslatef((hor.texXPos/256), (hor.texYPos/256), 0.0);
xglRotatef(-roll, 0.0, 0.0, 1.0);
xglScalef(1.7, 1.7, 0.0);
// the following loop draws the textured part of the AH
xglMaterialf(GL_FRONT, GL_SHININESS, 85.0);
xglMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, material4);
xglMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, material5);
xglMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, material3);
xglMatrixMode(GL_MODELVIEW);
xglBegin(GL_TRIANGLES);
for(i=45;i<225;i++){
xglTexCoord2f(0.0, 0.0);
xglNormal3f(0.0, 0.0, 0.6);
xglVertex3f(0.0, 0.0, 0.0);
xglTexCoord2f(texCoord[i % 180][0], texCoord[i % 180][1]);
xglNormal3f(normals[i % 180][0], normals[i % 180][1], 0.6);
xglVertex3f(vertices[i % 180][0], vertices[i % 180][1],
0.0);
n = (i + 1) % 180;
xglTexCoord2f(texCoord[n][0], texCoord[n][1]);
xglNormal3f(normals[n][0], normals[n][1], 0.6);
xglVertex3f(vertices[n][0], vertices[n][1], 0.0);
}
xglEnd();
if((shifted > (hor.bottom - hor.radius)) && (n1 < 1000) && (n1 > 0)){
a = sin(theta * DEG_TO_RAD) * sin(theta * DEG_TO_RAD);
light_ambient2[0] = a;
light_ambient2[1] = a;
light_ambient2[2] = a;
xglLightfv(GL_LIGHT1, GL_AMBIENT, light_ambient2);
xglLightfv(GL_LIGHT1, GL_DIFFUSE, light_ambient2);
xglLightfv(GL_LIGHT1, GL_SPECULAR, light_ambient2);
xglBegin(GL_TRIANGLES);
tmp1 = n1; tmp2 = n2;
for(i = tmp1; i < tmp2 + 1; i++){
n = i % 180;
xglNormal3f(0.0, 0.0, 1.5);
xglTexCoord2f((56 / 256), (140 / 256));
xglVertex3f(((vertices[n1 % 180][0] + vertices[n2 % 180][0]) / 2), ((vertices[n1 % 180][1] + vertices[n2 % 180][1]) / 2), 0.0);
xglTexCoord2f((57 / 256), (139 / 256));
xglNormal3f(normals[n][0], normals[n][1], normals[n][3]);
xglVertex3f(vertices[n][0], vertices[n][1], 0.0);
n = (i + 1) % 180;
xglTexCoord2f((57 / 256), (139 / 256));
xglNormal3f(normals[n][0], normals[n][1], normals[n][3]);
xglVertex3f(vertices[n][0], vertices[n][1], 0.0);
}
xglEnd();
}
if((shifted < (-hor.top + hor.radius)) && (n1 < 1000) && (n1 > 0)){
a = sin(theta * DEG_TO_RAD) * sin(theta * DEG_TO_RAD);
light_ambient2[0] = a;
light_ambient2[1] = a;
light_ambient2[2] = a;
xglLightfv(GL_LIGHT1, GL_AMBIENT, light_ambient2);
xglLightfv(GL_LIGHT1, GL_DIFFUSE, light_ambient2);
xglLightfv(GL_LIGHT1, GL_SPECULAR, light_ambient2);
xglMaterialf(GL_FRONT, GL_SHININESS, a * 85);
xglBegin(GL_TRIANGLES);
tmp1 = n1; tmp2 = n2;
for(i = tmp1; i <= tmp2; i++){
n = i % 180;
xglNormal3f(0.0, 0.0, 1.5);
xglTexCoord2f((73 / 256), (237 / 256));
xglVertex3f(((vertices[n1 % 180][0] + vertices[n2 % 180][0]) / 2), ((vertices[n1 % 180][1] + vertices[n2 % 180][1]) / 2), 0.0);
xglTexCoord2f((73 / 256), (236 / 256));
xglNormal3f(normals[n][0], normals[n][1], normals[n][2]);
xglVertex3f(vertices[n][0], vertices[n][1], 0.0);
n = (i + 1) % 180;
xglTexCoord2f((73 / 256), (236 / 256));
xglNormal3f(normals[n][0], normals[n][1], normals[n][2]);
xglVertex3f(vertices[n][0], vertices[n][1], 0.0);
}
xglEnd();
}
// Now we will have to draw the small triangle indicating the roll value
xglDisable(GL_LIGHTING);
xglDisable(GL_TEXTURE_2D);
xglRotatef(roll, 0.0, 0.0, 1.0);
xglBegin(GL_TRIANGLES);
xglColor3f(1.0, 1.0, 1.0);
xglVertex3f(0.0, hor.radius, 0.0);
xglVertex3f(-3.0, (hor.radius - 7.0), 0.0);
xglVertex3f(3.0, (hor.radius - 7.0), 0.0);
xglEnd();
xglLoadIdentity();
xglBegin(GL_POLYGON);
xglColor3f(0.2109375, 0.23046875, 0.203125);
xglVertex2f(275.625, 138.0);
xglVertex2f(275.625, 148.125);
xglVertex2f(258.125, 151.25);
xglVertex2f(246.875, 151.25);
xglVertex2f(226.875, 147.5);
xglVertex2f(226.875, 138.0);
xglVertex2f(275.625, 138.0);
xglEnd();
xglLoadIdentity();
xglMatrixMode(GL_TEXTURE);
xglPopMatrix();
xglMatrixMode(GL_PROJECTION);
xglPopMatrix();
xglDisable(GL_TEXTURE_2D);
xglDisable(GL_NORMALIZE);
xglDisable(GL_LIGHTING);
xglDisable(GL_LIGHT1);
xglEnable(GL_LIGHT0);
}
// fgHorizonInit - initialize values for the AH
void fgHorizonInit( arthor hor){
int n;
float step = (360*DEG_TO_RAD)/180;
for(n=0;n<180;n++){
vertices[n][0] = cos(n * step) * hor.radius;
vertices[n][1] = sin(n * step) * hor.radius;
texCoord[n][0] = (cos(n * step) * hor.radius)/256;
texCoord[n][1] = (sin(n * step) * hor.radius)/256;
normals[n][0] = cos(n * step) * hor.radius + sin(n * step);
normals[n][1] = sin(n * step) * hor.radius + cos(n * step);
normals[n][2] = 0.0;
}
}
void UpdatePointer(Pointer *pointer){
double pitch;
double roll;
float alpharad;
double speed;
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(2, GL_FLOAT, 0, pointer->vertices);
alpha=((((float)((var[pointer->variable]) - (pointer->value1))) / (pointer->value2 - pointer->value1))* (pointer->alpha2 - pointer->alpha1) + pointer->alpha1);
if (alpha < pointer->alpha1)
alpha = pointer->alpha1;
if (alpha > pointer->alpha2)
alpha = pointer->alpha2;
xglMatrixMode(GL_MODELVIEW);
xglPushMatrix();
xglLoadIdentity();
xglDisable(GL_TEXTURE_2D);
xglTranslatef(pointer->XPos, pointer->YPos, 0);
xglRotatef(-alpha, 0.0, 0.0, 1.0);
xglColor4f(1.0, 1.0, 1.0, 1.0);
glDrawArrays(GL_POLYGON, 0, 10);
pointer->tape[0] = pointer->tape[1];
pointer->tape[1] = alpha;
xglEnable(GL_TEXTURE_2D);
glDisableClientState(GL_VERTEX_ARRAY);
}
// fgEraseArea - 'Erases' a drawn Polygon by overlaying it with a textured
// area. Shall be a method of a panel class once.
void fgEraseArea( GLfloat *array, int NumVerti, GLfloat texXPos,
GLfloat texYPos, GLfloat XPos, GLfloat YPos,
int Texid, float ScaleFactor = 1)
{
int i, j;
int n;
float a;
float ififth;
xglEnable(GL_TEXTURE_2D);
xglEnable(GL_TEXTURE_GEN_S);
xglEnable(GL_TEXTURE_GEN_T);
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR);
xglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
xglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
xglTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
xglMatrixMode(GL_TEXTURE);
xglLoadIdentity();
#ifdef GL_VERSION_1_1
xglBindTexture(GL_TEXTURE_2D, panel_tex_id[Texid]);
#elif GL_EXT_texture_object
xglBindTextureEXT(GL_TEXTURE_2D, panel_tex_id[Texid]);
#else
# error port me
#endif
xglMatrixMode(GL_TEXTURE);
xglLoadIdentity();
xglTranslatef(-((float)((XPos/0.625)/256)), -((float)((YPos/0.625)/256)), 0.0);
xglTranslatef(texXPos/256 , texYPos/256, 0.0);
xglScalef(0.00625, 0.00625, 1.0);
xglBegin(GL_POLYGON);
for(n=0;n<NumVerti;n += 2){
xglVertex2f(array[n] * ScaleFactor, array[n + 1] * ScaleFactor);
}
xglEnd();
xglLoadIdentity();
xglMatrixMode(GL_MODELVIEW);
xglPixelStorei(GL_UNPACK_SKIP_PIXELS, 0);
xglPixelStorei(GL_UNPACK_SKIP_ROWS, 0);
xglDisable(GL_TEXTURE_2D);
xglDisable(GL_TEXTURE_GEN_S);
xglDisable(GL_TEXTURE_GEN_T);
}
// CreatePointer - calculate the vertices of a pointer
void CreatePointer(Pointer *pointer){
int i;
float alpha;
float alphastep;
float r = pointer->radius;
float angle = pointer->angle;
float length = pointer->length;
float width = pointer->width;
pointer->vertices[0] = 0;
pointer->vertices[1] = length;
pointer->vertices[2] = -(width/2);
pointer->vertices[3] = length - ((width/2)/(tan(angle*DEG_TO_RAD/2)));
pointer->vertices[4] = -(width/2);
pointer->vertices[5] = cos(asin((width/2)/r))*r;
alphastep = (asin((width/2)/r)+asin((width/2)/r))/5;
alpha = asin(-(width/2)/r);
for(i=0;i<5;i++){
alpha += alphastep;
pointer->vertices[(i*2)+6] = sin(alpha)*r;
}
alpha = asin(-(width/2)/r);
for(i=0;i<5;i++){
alpha +=alphastep;
pointer->vertices[(i*2)+7]= cos(alpha)*r;
}
pointer->vertices[16] = - pointer->vertices[4];
pointer->vertices[17] = pointer->vertices[5];
pointer->vertices[18] = - pointer->vertices[2];
pointer->vertices[19] = pointer->vertices[3];
}
// fgUpdateTurnCoordinator - draws turn coordinator related stuff
void fgUpdateTurnCoordinator(TurnCoordinator *turn){
int n;
xglDisable(GL_LIGHTING);
xglDisable(GL_BLEND);
xglEnable(GL_TEXTURE_2D);
turn->alpha = (get_sideslip() / 1.5) * 560;
if(turn->alpha > 56){
turn->alpha = 56;
}
if(turn->alpha < -56){
turn->alpha = -56;
}
turn->PlaneAlpha = get_roll();
xglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
xglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
xglMatrixMode(GL_MODELVIEW);
xglLoadIdentity();
xglTranslatef(turn->BallXPos, turn->BallYPos, 0.0);
xglTranslatef(0.75 * sin(turn->alphahist * DEG_TO_RAD) * 31, 0.3 * (39 - (cos(turn->alphahist * DEG_TO_RAD) * 39)), 0.0);
fgEraseArea(turn->vertices, 72, turn->BallTexXPos + ((0.75 * sin(turn->alphahist * DEG_TO_RAD) * 31) / 0.625), turn->BallTexYPos + ((0.3 * (39 - (cos(turn->alphahist * DEG_TO_RAD) * 39))) / 0.625), turn->BallXPos + (0.75 * sin(turn->alphahist * DEG_TO_RAD) * 31), turn->BallYPos + (0.3 * (39 - (cos(turn->alphahist * DEG_TO_RAD) * 39))), 1);
xglDisable(GL_TEXTURE_2D);
xglEnable(GL_BLEND);
xglBlendFunc(GL_ONE_MINUS_DST_COLOR, GL_ONE);
xglMatrixMode(GL_MODELVIEW);
xglLoadIdentity();
xglTranslatef(turn->BallXPos, turn->BallYPos, 0.0);
xglTranslatef(0.75 * sin(turn->alpha * DEG_TO_RAD) * 31, 0.3 * (39 - (cos(turn->alpha * DEG_TO_RAD) * 39)), 0.0);
xglBegin(GL_POLYGON);
xglColor3f(0.8, 0.8, 0.8);
for(i=0;i<36;i++){
xglVertex2f(turn->vertices[2 * i], turn->vertices[(2 * i) + 1]);
}
xglEnd();
xglDisable(GL_TEXTURE_2D);
xglDisable(GL_BLEND);
xglMatrixMode(GL_MODELVIEW);
xglLoadIdentity();
xglTranslatef(turn->PlaneXPos, turn->PlaneYPos, 0.0);
xglRotatef(turn->rollhist * RAD_TO_DEG + 90, 0.0, 0.0, 1.0);
fgEraseArea(Wings, 8, turn->PlaneTexXPos, turn->PlaneTexYPos, turn->PlaneXPos, turn->PlaneYPos, 1);
fgEraseArea(Elevator, 8, turn->PlaneTexXPos, turn->PlaneTexYPos, turn->PlaneXPos, turn->PlaneYPos, 1);
fgEraseArea(Rudder, 8, turn->PlaneTexXPos, turn->PlaneTexYPos, turn->PlaneXPos, turn->PlaneYPos, 1);
xglLoadIdentity();
xglTranslatef(turn->PlaneXPos, turn->PlaneYPos, 0.0);
xglRotatef(-get_roll() * RAD_TO_DEG + 90, 0.0, 0.0, 1.0);
xglBegin(GL_POLYGON);
xglColor3f(1.0, 1.0, 1.0);
for(i=0;i<90;i++){
xglVertex2f(cos(i * 4 * DEG_TO_RAD) * 5, sin(i * 4 * DEG_TO_RAD) * 5);
}
xglEnd();
xglBegin(GL_POLYGON);
xglVertex2f(Wings[0], Wings[1]);
xglVertex2f(Wings[2], Wings[3]);
xglVertex2f(Wings[4], Wings[5]);
xglVertex2f(Wings[6], Wings[7]);
xglVertex2f(Wings[0], Wings[1]);
xglEnd();
xglBegin(GL_POLYGON);
xglVertex2f(Elevator[0], Elevator[1]);
xglVertex2f(Elevator[2], Elevator[3]);
xglVertex2f(Elevator[4], Elevator[5]);
xglVertex2f(Elevator[6], Elevator[7]);
xglVertex2f(Elevator[0], Elevator[1]);
xglEnd();
xglBegin(GL_POLYGON);
xglVertex2f(Rudder[0], Rudder[1]);
xglVertex2f(Rudder[2], Rudder[3]);
xglVertex2f(Rudder[4], Rudder[5]);
xglVertex2f(Rudder[6], Rudder[7]);
xglVertex2f(Rudder[0], Rudder[1]);
xglEnd();
turn->alphahist = turn->alpha;
turn->PlaneAlphaHist = turn->PlaneAlpha;
turn->rollhist = -get_roll();
xglDisable(GL_BLEND);
}
void fgInitTurnCoordinator(TurnCoordinator *turn){
int n;
for(n=0;n<36;n++){
turn->vertices[2 * n] = cos(10 * n * DEG_TO_RAD) * turn->BallRadius;
turn->vertices[(2 * n) + 1] = sin(10 * n * DEG_TO_RAD) * turn->BallRadius;
}
}
void DrawScale(float XPos, float YPos, float InnerRadius, float OuterRadius, float alpha1, float alpha2, int steps, float LineWidth, float red, float green, float blue){
int i;
float diff = (alpha2 - alpha1) / (float)(steps);
xglMatrixMode(GL_MODELVIEW);
xglLoadIdentity();
xglTranslatef(XPos, YPos, 0.0);
xglRotatef(-alpha1, 0.0, 0.0, 1.0);
xglLineWidth(LineWidth);
xglColor3f(red, green, blue);
xglBegin(GL_LINES);
for(i=0;i < steps; i++){
xglVertex3f(sin(i * diff * DEG_TO_RAD) * OuterRadius, cos(i * diff * DEG_TO_RAD) * OuterRadius, 0.0);
xglVertex3f(sin(i * diff * DEG_TO_RAD) * InnerRadius, cos(i * diff * DEG_TO_RAD) * InnerRadius, 0.0);
}
xglEnd();
xglLoadIdentity();
}
// PrintMatrix - routine to print the current modelview matrix.
void PrintMatrix( void){
xglGetDoublev(GL_MODELVIEW_MATRIX, mvmatrix);
printf("matrix2 = %f %f %f %f \n", mvmatrix[0], mvmatrix[1], mvmatrix[2], mvmatrix[3]);
printf(" %f %f %f %f \n", mvmatrix[4], mvmatrix[5], mvmatrix[6], mvmatrix[7]);
printf(" %f %f %f %f \n", mvmatrix[8], mvmatrix[9], mvmatrix[10], mvmatrix[11]);
printf(" %f %f %f %f \n", mvmatrix[12], mvmatrix[13], mvmatrix[14], mvmatrix[15]);
}
// $Log$
// Revision 1.16 1999/02/26 22:08:46 curt
// Added initial support for native SGI compilers.
//
// Revision 1.15 1999/02/12 01:46:29 curt
// Updates and fixes from Friedemann.
//
// Revision 1.14 1999/02/02 20:13:33 curt
// MSVC++ portability changes by Bernie Bright:
//
// Lib/Serial/serial.[ch]xx: Initial Windows support - incomplete.
// Simulator/Astro/stars.cxx: typo? included <stdio> instead of <cstdio>
// Simulator/Cockpit/hud.cxx: Added Standard headers
// Simulator/Cockpit/panel.cxx: Redefinition of default parameter
// Simulator/Flight/flight.cxx: Replaced cout with FG_LOG. Deleted <stdio.h>
// Simulator/Main/fg_init.cxx:
// Simulator/Main/GLUTmain.cxx:
// Simulator/Main/options.hxx: Shuffled <fg_serial.hxx> dependency
// Simulator/Objects/material.hxx:
// Simulator/Time/timestamp.hxx: VC++ friend kludge
// Simulator/Scenery/tile.[ch]xx: Fixed using std::X declarations
// Simulator/Main/views.hxx: Added a constant
//
// Revision 1.13 1999/01/07 19:25:53 curt
// Updates from Friedemann Reinhard.
//
// Revision 1.11 1998/11/11 00:19:27 curt
// Updated comment delimeter to C++ style.
//
// Revision 1.10 1998/11/09 23:38:52 curt
// Panel updates from Friedemann.
//
// Revision 1.9 1998/11/06 21:18:01 curt
// Converted to new logstream debugging facility. This allows release
// builds with no messages at all (and no performance impact) by using
// the -DFG_NDEBUG flag.
//
// Revision 1.8 1998/10/16 23:27:37 curt
// C++-ifying.
//
// Revision 1.7 1998/08/31 20:45:31 curt
// Tweaks from Friedemann.
//
// Revision 1.6 1998/08/28 18:14:40 curt
// Added new cockpit code from Friedemann Reinhard
// <mpt218@faupt212.physik.uni-erlangen.de>
//
// Revision 1.1 1998/06/27 16:47:54 curt
// Incorporated Friedemann Reinhard's <mpt218@faupt212.physik.uni-erlangen.de>
// first pass at an isntrument panel.
//