// tile.cxx -- routines to handle a scenery tile
//
// Written by Curtis Olson, started May 1998.
//
// Copyright (C) 1998  Curtis L. Olson  - curt@infoplane.com
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
// (Log is kept at end of this file)


#include <Include/fg_constants.h>
#include <Include/fg_types.h>
#include <Math/mat3.h>

#include "tile.hxx"


#if 0
// return the sign of a value
#define FG_SIGN( x )  ((x) < 0 ? -1 : 1)

// return min or max of two values
#define FG_MIN(A,B)	((A) < (B) ? (A) :  (B))
#define FG_MAX(A,B)	((A) > (B) ? (A) :  (B))


fgFACE :: fgFACE () : 
    n1(0), n2(0), n3(0)
{
}

fgFACE :: ~fgFACE()
{
}

fgFACE :: fgFACE( const fgFACE & image ) :
    n1( image.n1), n2( image.n2), n3( image.n3)
{
}

bool fgFACE :: operator < (const fgFACE & rhs )
{
    return ( n1 < rhs.n1 ? true : false);
}

bool fgFACE :: operator == (const fgFACE & rhs )
{
    return ((n1 == rhs.n1) && (n2 == rhs.n2) && ( n3 == rhs.n3));
}


// Constructor
fgFRAGMENT::fgFRAGMENT ( void ) {
}


// Copy constructor
fgFRAGMENT ::   fgFRAGMENT ( const fgFRAGMENT & rhs ) :
    center         ( rhs.center          ),
    bounding_radius( rhs.bounding_radius ),
    material_ptr   ( rhs.material_ptr    ),
    tile_ptr       ( rhs.tile_ptr        ),
    display_list   ( rhs.display_list    ),
    faces          ( rhs.faces           ),
    num_faces      ( rhs.num_faces       )
{
}

fgFRAGMENT & fgFRAGMENT :: operator = ( const fgFRAGMENT & rhs )
{
    if(!(this == &rhs )) {
	center          = rhs.center;
	bounding_radius = rhs.bounding_radius;
	material_ptr    = rhs.material_ptr;
	tile_ptr        = rhs.tile_ptr;
	// display_list    = rhs.display_list;
	faces           = rhs.faces;
    }
    return *this;
}


// Add a face to the face list
void fgFRAGMENT::add_face(int n1, int n2, int n3) {
    fgFACE face;

    face.n1 = n1;
    face.n2 = n2;
    face.n3 = n3;

    faces.push_back(face);
    num_faces++;
}


/*
// return the sign of a value
static int fg_sign( double x ) {
    if ( x >= 0 ) {
	return(1);
    } else {
	return(-1);
    }
}


// return the minimum of the three values
static double fg_min( double a, double b, double c ) {
    double result;
    result = a;
    if (result > b) result = b;
    if (result > c) result = c;

    return(result);
}


// return the maximum of the three values
static double fg_max( double a, double b, double c ) {
    double result;
    result = a;
    if (result < b) result = b;
    if (result < c) result = c;

    return(result);
}
*/


// return the minimum of the three values
static double fg_min3 (double a, double b, double c)
{
    return (a > b ? FG_MIN (b, c) : FG_MIN (a, c));
}


// return the maximum of the three values
static double fg_max3 (double a, double b, double c)
{
  return (a < b ? FG_MAX (b, c) : FG_MAX (a, c));
}


// test if line intesects with this fragment.  p0 and p1 are the two
// line end points of the line.  If side_flag is true, check to see
// that end points are on opposite sides of face.  Returns 1 if it
// intersection found, 0 otherwise.  If it intesects, result is the
// point of intersection

int fgFRAGMENT::intersect( fgPoint3d *end0, fgPoint3d *end1, int side_flag,
			   fgPoint3d *result)
{
    fgTILE *t;
    fgFACE face;
    MAT3vec v1, v2, n, center;
    double p1[3], p2[3], p3[3];
    double x, y, z;  // temporary holding spot for result
    double a, b, c, d;
    double x0, y0, z0, x1, y1, z1, a1, b1, c1;
    double t1, t2, t3;
    double xmin, xmax, ymin, ymax, zmin, zmax;
    double dx, dy, dz, min_dim, x2, y2, x3, y3, rx, ry;
    int side1, side2;
    list < fgFACE > :: iterator current;
    list < fgFACE > :: iterator last;

    // find the associated tile
    t = tile_ptr;

    // printf("Intersecting\n");

    // traverse the face list for this fragment
    current = faces.begin();
    last = faces.end();
    while ( current != last ) {
	face = *current;
	current++;

	// printf(".");

	// get face vertex coordinates
	center[0] = t->center.x;
	center[1] = t->center.y;
	center[2] = t->center.z;

	MAT3_ADD_VEC(p1, t->nodes[face.n1], center);
	MAT3_ADD_VEC(p2, t->nodes[face.n2], center);
	MAT3_ADD_VEC(p3, t->nodes[face.n3], center);

	// printf("point 1 = %.2f %.2f %.2f\n", p1[0], p1[1], p1[2]);
	// printf("point 2 = %.2f %.2f %.2f\n", p2[0], p2[1], p2[2]);
	// printf("point 3 = %.2f %.2f %.2f\n", p3[0], p3[1], p3[2]);

	// calculate two edge vectors, and the face normal
	MAT3_SUB_VEC(v1, p2, p1);
	MAT3_SUB_VEC(v2, p3, p1);
	MAT3cross_product(n, v1, v2);

	// calculate the plane coefficients for the plane defined by
	// this face.  If n is the normal vector, n = (a, b, c) and p1
	// is a point on the plane, p1 = (x0, y0, z0), then the
	// equation of the line is a(x-x0) + b(y-y0) + c(z-z0) = 0
	a = n[0];
	b = n[1];
	c = n[2];
	d = a * p1[0] + b * p1[1] + c * p1[2];
	// printf("a, b, c, d = %.2f %.2f %.2f %.2f\n", a, b, c, d);

	// printf("p1(d) = %.2f\n", a * p1[0] + b * p1[1] + c * p1[2]);
	// printf("p2(d) = %.2f\n", a * p2[0] + b * p2[1] + c * p2[2]);
	// printf("p3(d) = %.2f\n", a * p3[0] + b * p3[1] + c * p3[2]);

	// calculate the line coefficients for the specified line
	x0 = end0->x;  x1 = end1->x;
	y0 = end0->y;  y1 = end1->y;
	z0 = end0->z;  z1 = end1->z;

	if ( fabs(x1 - x0) > FG_EPSILON ) {
	    a1 = 1.0 / (x1 - x0);
	} else {
	    // we got a big divide by zero problem here
	    a1 = 0.0;
	}
	b1 = y1 - y0;
	c1 = z1 - z0;

	// intersect the specified line with this plane
	t1 = b * b1 * a1;
	t2 = c * c1 * a1;

	// printf("a = %.2f  t1 = %.2f  t2 = %.2f\n", a, t1, t2);

	if ( fabs(a + t1 + t2) > FG_EPSILON ) {
	    x = (t1*x0 - b*y0 + t2*x0 - c*z0 + d) / (a + t1 + t2);
	    t3 = a1 * (x - x0);
	    y = b1 * t3 + y0;
	    z = c1 * t3 + z0;	    
	    // printf("result(d) = %.2f\n", a * x + b * y + c * z);
	} else {
	    // no intersection point
	    continue;
	}

	if ( side_flag ) {
	    // check to see if end0 and end1 are on opposite sides of
	    // plane
	    if ( (x - x0) > FG_EPSILON ) {
		t1 = x;
		t2 = x0;
		t3 = x1;
	    } else if ( (y - y0) > FG_EPSILON ) {
		t1 = y;
		t2 = y0;
		t3 = y1;
	    } else if ( (z - z0) > FG_EPSILON ) {
		t1 = z;
		t2 = z0;
		t3 = z1;
	    } else {
		// everything is too close together to tell the difference
		// so the current intersection point should work as good
		// as any
		result->x = x;
		result->y = y;
		result->z = z;
		return(1);
	    }
	    side1 = FG_SIGN (t1 - t2);
	    side2 = FG_SIGN (t1 - t3);
	    if ( side1 == side2 ) {
		// same side, punt
		continue;
	    }
	}

	// check to see if intersection point is in the bounding
	// cube of the face
#ifdef XTRA_DEBUG_STUFF
	xmin = fg_min3 (p1[0], p2[0], p3[0]);
	xmax = fg_max3 (p1[0], p2[0], p3[0]);
	ymin = fg_min3 (p1[1], p2[1], p3[1]);
	ymax = fg_max3 (p1[1], p2[1], p3[1]);
	zmin = fg_min3 (p1[2], p2[2], p3[2]);
	zmax = fg_max3 (p1[2], p2[2], p3[2]);
	printf("bounding cube = %.2f,%.2f,%.2f  %.2f,%.2f,%.2f\n",
	       xmin, ymin, zmin, xmax, ymax, zmax);
#endif
	// punt if outside bouding cube
	if ( x < (xmin = fg_min3 (p1[0], p2[0], p3[0])) ) {
	    continue;
	} else if ( x > (xmax = fg_max3 (p1[0], p2[0], p3[0])) ) {
	    continue;
	} else if ( y < (ymin = fg_min3 (p1[1], p2[1], p3[1])) ) {
	    continue;
	} else if ( y > (ymax = fg_max3 (p1[1], p2[1], p3[1])) ) {
	    continue;
	} else if ( z < (zmin = fg_min3 (p1[2], p2[2], p3[2])) ) {
	    continue;
	} else if ( z > (zmax = fg_max3 (p1[2], p2[2], p3[2])) ) {
	    continue;
	}

	// (finally) check to see if the intersection point is
	// actually inside this face

	//first, drop the smallest dimension so we only have to work
	//in 2d.
	dx = xmax - xmin;
	dy = ymax - ymin;
	dz = zmax - zmin;
	min_dim = fg_min3 (dx, dy, dz);
	if ( fabs(min_dim - dx) <= FG_EPSILON ) {
	    // x is the smallest dimension
	    x1 = p1[1];
	    y1 = p1[2];
	    x2 = p2[1];
	    y2 = p2[2];
	    x3 = p3[1];
	    y3 = p3[2];
	    rx = y;
	    ry = z;
	} else if ( fabs(min_dim - dy) <= FG_EPSILON ) {
	    // y is the smallest dimension
	    x1 = p1[0];
	    y1 = p1[2];
	    x2 = p2[0];
	    y2 = p2[2];
	    x3 = p3[0];
	    y3 = p3[2];
	    rx = x;
	    ry = z;
	} else if ( fabs(min_dim - dz) <= FG_EPSILON ) {
	    // z is the smallest dimension
	    x1 = p1[0];
	    y1 = p1[1];
	    x2 = p2[0];
	    y2 = p2[1];
	    x3 = p3[0];
	    y3 = p3[1];
	    rx = x;
	    ry = y;
	} else {
	    // all dimensions are really small so lets call it close
	    // enough and return a successful match
	    result->x = x;
	    result->y = y;
	    result->z = z;
	    return(1);
	}

	// check if intersection point is on the same side of p1 <-> p2 as p3
	t1 = (y1 - y2) / (x1 - x2);
	side1 = FG_SIGN (t1 * ((x3) - x2) + y2 - (y3));
	side2 = FG_SIGN (t1 * ((rx) - x2) + y2 - (ry));
	if ( side1 != side2 ) {
	    // printf("failed side 1 check\n");
	    continue;
	}

	// check if intersection point is on correct side of p2 <-> p3 as p1
	t1 = (y2 - y3) / (x2 - x3);
	side1 = FG_SIGN (t1 * ((x1) - x3) + y3 - (y1));
	side2 = FG_SIGN (t1 * ((rx) - x3) + y3 - (ry));
	if ( side1 != side2 ) {
	    // printf("failed side 2 check\n");
	    continue;
	}

	// check if intersection point is on correct side of p1 <-> p3 as p2
	t1 = (y1 - y3) / (x1 - x3);
	side1 = FG_SIGN (t1 * ((x2) - x3) + y3 - (y2));
	side2 = FG_SIGN (t1 * ((rx) - x3) + y3 - (ry));
	if ( side1 != side2 ) {
	    // printf("failed side 3  check\n");
	    continue;
	}

	// printf( "intersection point = %.2f %.2f %.2f\n", x, y, z);
	result->x = x;
	result->y = y;
	result->z = z;
	return(1);
    }

    // printf("\n");

    return(0);
}


// Destructor
fgFRAGMENT::~fgFRAGMENT ( void ) {
    // Step through the face list deleting the items until the list is
    // empty

    // printf("destructing a fragment with %d faces\n", faces.size());

    faces.erase( faces.begin(), faces.end() );
}


// equality operator
bool  fgFRAGMENT :: operator == ( const fgFRAGMENT & rhs)
{
    if(( center.x - rhs.center.x ) < FG_EPSILON) {
	if(( center.y - rhs.center.y) < FG_EPSILON) {
	    if(( center.z - rhs.center.z) < FG_EPSILON) {
		return true;
	    }
	}
    }
    return false;
}

// comparison operator
bool  fgFRAGMENT :: operator < ( const fgFRAGMENT &rhs)
{
    // This is completely arbitrary. It satisfies RW's STL implementation

    return bounding_radius < rhs.bounding_radius;
}
#endif


// Constructor
fgTILE::fgTILE ( void ) {
    nodes = new double[MAX_NODES][3];
}


// Destructor
fgTILE::~fgTILE ( void ) {
    free(nodes);
}


// $Log$
// Revision 1.11  1998/09/02 14:37:08  curt
// Use erase() instead of while ( size() ) pop_front();
//
// Revision 1.10  1998/08/25 16:52:42  curt
// material.cxx material.hxx obj.cxx obj.hxx texload.c texload.h moved to
//   ../Objects
//
// Revision 1.9  1998/08/24 20:11:39  curt
// Tweaks ...
//
// Revision 1.8  1998/08/22  14:49:58  curt
// Attempting to iron out seg faults and crashes.
// Did some shuffling to fix a initialization order problem between view
// position, scenery elevation.
//
// Revision 1.7  1998/08/20 15:12:05  curt
// Used a forward declaration of classes fgTILE and fgMATERIAL to eliminate
// the need for "void" pointers and casts.
// Quick hack to count the number of scenery polygons that are being drawn.
//
// Revision 1.6  1998/08/12 21:13:05  curt
// material.cxx: don't load textures if they are disabled
// obj.cxx: optimizations from Norman Vine
// tile.cxx: minor tweaks
// tile.hxx: addition of num_faces
// tilemgr.cxx: minor tweaks
//
// Revision 1.5  1998/07/24 21:42:08  curt
// material.cxx: whups, double method declaration with no definition.
// obj.cxx: tweaks to avoid errors in SGI's CC.
// tile.cxx: optimizations by Norman Vine.
// tilemgr.cxx: optimizations by Norman Vine.
//
// Revision 1.4  1998/07/22 21:41:42  curt
// Add basic fgFACE methods contributed by Charlie Hotchkiss.
// intersect optimization from Norman Vine.
//
// Revision 1.3  1998/07/16 17:34:24  curt
// Ground collision detection optimizations contributed by Norman Vine.
//
// Revision 1.2  1998/07/12 03:18:28  curt
// Added ground collision detection.  This involved:
// - saving the entire vertex list for each tile with the tile records.
// - saving the face list for each fragment with the fragment records.
// - code to intersect the current vertical line with the proper face in
//   an efficient manner as possible.
// Fixed a bug where the tiles weren't being shifted to "near" (0,0,0)
//
// Revision 1.1  1998/05/23 14:09:21  curt
// Added tile.cxx and tile.hxx.
// Working on rewriting the tile management system so a tile is just a list
// fragments, and the fragment record contains the display list for that fragment.
//