/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Module: FGAtmosphere.cpp Author: Jon Berndt Implementation of 1959 Standard Atmosphere added by Tony Peden Date started: 11/24/98 Purpose: Models the atmosphere Called by: FGSimExec ------------- Copyright (C) 1999 Jon S. Berndt (jsb@hal-pc.org) ------------- This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. Further information about the GNU General Public License can also be found on the world wide web at http://www.gnu.org. FUNCTIONAL DESCRIPTION -------------------------------------------------------------------------------- Models the atmosphere. The equation used below was determined by a third order curve fit using Excel. The data is from the ICAO atmosphere model. HISTORY -------------------------------------------------------------------------------- 11/24/98 JSB Created 07/23/99 TP Added implementation of 1959 Standard Atmosphere Moved calculation of Mach number to FGPropagate Later updated to '76 model %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% COMMENTS, REFERENCES, and NOTES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [1] Anderson, John D. "Introduction to Flight, Third Edition", McGraw-Hill, 1989, ISBN 0-07-001641-0 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% INCLUDES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ #include "FGAtmosphere.h" #include "FGState.h" #include "FGFDMExec.h" #include "FGAircraft.h" #include "FGPropagate.h" #include "FGInertial.h" #include "FGPropertyManager.h" namespace JSBSim { static const char *IdSrc = "$Id$"; static const char *IdHdr = ID_ATMOSPHERE; /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CLASS IMPLEMENTATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ FGAtmosphere::FGAtmosphere(FGFDMExec* fdmex) : FGModel(fdmex) { Name = "FGAtmosphere"; lastIndex = 0; h = 0.0; psiw = 0.0; htab[0]=0; htab[1]=36089.239; htab[2]=65616.798; htab[3]=104986.878; htab[4]=154199.475; htab[5]=170603.675; htab[6]=200131.234; htab[7]=259186.352; //ft. MagnitudedAccelDt = MagnitudeAccel = Magnitude = 0.0; // turbType = ttNone; turbType = ttStandard; // turbType = ttBerndt; TurbGain = 0.0; TurbRate = 1.0; T_dev_sl = T_dev = delta_T = 0.0; bind(); Debug(0); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FGAtmosphere::~FGAtmosphere() { unbind(); Debug(1); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bool FGAtmosphere::InitModel(void) { FGModel::InitModel(); Calculate(h); SLtemperature = intTemperature; SLpressure = intPressure; SLdensity = intDensity; SLsoundspeed = sqrt(SHRatio*Reng*intTemperature); rSLtemperature = 1.0/intTemperature; rSLpressure = 1.0/intPressure; rSLdensity = 1.0/intDensity; rSLsoundspeed = 1.0/SLsoundspeed; temperature=&intTemperature; pressure=&intPressure; density=&intDensity; useExternal=false; return true; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bool FGAtmosphere::Run(void) { if (!FGModel::Run()) { // if false then execute this Run() //do temp, pressure, and density first if (!useExternal) { h = Propagate->Geth(); Calculate(h); } if (turbType != ttNone) { Turbulence(); vWindNED += vTurbulence; } if (vWindNED(1) != 0.0) psiw = atan2( vWindNED(2), vWindNED(1) ); if (psiw < 0) psiw += 2*M_PI; soundspeed = sqrt(SHRatio*Reng*(*temperature)); Debug(2); return false; } else { // skip Run() execution this time return true; } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // // See reference 1 void FGAtmosphere::Calculate(double altitude) { double slope, reftemp, refpress; int i = 0; i = lastIndex; if (altitude < htab[lastIndex]) { if (altitude <= 0) { i = 0; altitude=0; } else { i = lastIndex-1; while (htab[i] > altitude) i--; } } else if (altitude > htab[lastIndex+1]) { if (altitude >= htab[7]) { i = 7; altitude = htab[7]; } else { i = lastIndex+1; while (htab[i+1] < altitude) i++; } } switch(i) { case 1: // 36089 ft. slope = 0; reftemp = 389.97; refpress = 472.452; //refdens = 0.000706032; break; case 2: // 65616 ft. slope = 0.00054864; reftemp = 389.97; refpress = 114.636; //refdens = 0.000171306; break; case 3: // 104986 ft. slope = 0.00153619; reftemp = 411.57; refpress = 8.36364; //refdens = 1.18422e-05; break; case 4: // 154199 ft. slope = 0; reftemp = 487.17; refpress = 0.334882; //refdens = 4.00585e-7; break; case 5: // 170603 ft. slope = -0.00109728; reftemp = 487.17; refpress = 0.683084; //refdens = 8.17102e-7; break; case 6: // 200131 ft. slope = -0.00219456; reftemp = 454.17; refpress = 0.00684986; //refdens = 8.77702e-9; break; case 7: // 259186 ft. slope = 0; reftemp = 325.17; refpress = 0.000122276; //refdens = 2.19541e-10; break; case 0: default: // sea level slope = -0.00356616; // R/ft. reftemp = 518.67; // R refpress = 2116.22; // psf //refdens = 0.00237767; // slugs/cubic ft. break; } T_dev = 0.0; if (delta_T != 0.0) { T_dev = delta_T; } else { if ((h < 36089.239) && (T_dev_sl != 0.0)) { T_dev = T_dev_sl * ( 1.0 - (h/36089.239)); } } density_altitude = h + T_dev * 66.7; reftemp+=T_dev; if (slope == 0) { intTemperature = reftemp; intPressure = refpress*exp(-Inertial->SLgravity()/(reftemp*Reng)*(altitude-htab[i])); //intDensity = refdens*exp(-Inertial->SLgravity()/(reftemp*Reng)*(altitude-htab[i])); intDensity = intPressure/(Reng*intTemperature); } else { intTemperature = reftemp+slope*(altitude-htab[i]); intPressure = refpress*pow(intTemperature/reftemp,-Inertial->SLgravity()/(slope*Reng)); //intDensity = refdens*pow(intTemperature/reftemp,-(Inertial->SLgravity()/(slope*Reng)+1)); intDensity = intPressure/(Reng*intTemperature); } lastIndex=i; //cout << "Atmosphere: h=" << altitude << " rho= " << intDensity << endl; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // Return the pressure at an arbitrary altitude and then restore the internal state double FGAtmosphere::GetPressure(double alt) { Calculate(alt); double p = *pressure; // Reset the internal atmospheric state Run(); return(p); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // square a value, but preserve the original sign static inline double square_signed (double value) { if (value < 0) return value * value * -1; else return value * value; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGAtmosphere::Turbulence(void) { switch (turbType) { case ttStandard: { vDirectiondAccelDt(eX) = 1 - 2.0*(double(rand())/double(RAND_MAX)); vDirectiondAccelDt(eY) = 1 - 2.0*(double(rand())/double(RAND_MAX)); vDirectiondAccelDt(eZ) = 1 - 2.0*(double(rand())/double(RAND_MAX)); MagnitudedAccelDt = 1 - 2.0*(double(rand())/double(RAND_MAX)) - Magnitude; // Scale the magnitude so that it moves // away from the peaks MagnitudedAccelDt = ((MagnitudedAccelDt - Magnitude) / (1 + fabs(Magnitude))); MagnitudeAccel += MagnitudedAccelDt*rate*TurbRate*State->Getdt(); Magnitude += MagnitudeAccel*rate*State->Getdt(); vDirectiondAccelDt.Normalize(); // deemphasise non-vertical forces vDirectiondAccelDt(eX) = square_signed(vDirectiondAccelDt(eX)); vDirectiondAccelDt(eY) = square_signed(vDirectiondAccelDt(eY)); vDirectionAccel += vDirectiondAccelDt*rate*TurbRate*State->Getdt(); vDirectionAccel.Normalize(); vDirection += vDirectionAccel*rate*State->Getdt(); vDirection.Normalize(); // Diminish turbulence within three wingspans // of the ground vTurbulence = TurbGain * Magnitude * vDirection; double HOverBMAC = Auxiliary->GetHOverBMAC(); if (HOverBMAC < 3.0) vTurbulence *= (HOverBMAC / 3.0) * (HOverBMAC / 3.0); vTurbulenceGrad = TurbGain*MagnitudeAccel * vDirection; vBodyTurbGrad = Propagate->GetTl2b()*vTurbulenceGrad; if (Aircraft->GetWingSpan() > 0) { vTurbPQR(eP) = vBodyTurbGrad(eY)/Aircraft->GetWingSpan(); } else { vTurbPQR(eP) = vBodyTurbGrad(eY)/30.0; } // if (Aircraft->GetHTailArm() != 0.0) // vTurbPQR(eQ) = vBodyTurbGrad(eZ)/Aircraft->GetHTailArm(); // else // vTurbPQR(eQ) = vBodyTurbGrad(eZ)/10.0; if (Aircraft->GetVTailArm() > 0) vTurbPQR(eR) = vBodyTurbGrad(eX)/Aircraft->GetVTailArm(); else vTurbPQR(eR) = vBodyTurbGrad(eX)/10.0; // Clear the horizontal forces // actually felt by the plane, now // that we've used them to calculate // moments. vTurbulence(eX) = 0.0; vTurbulence(eY) = 0.0; break; } case ttBerndt: { vDirectiondAccelDt(eX) = 1 - 2.0*(double(rand())/double(RAND_MAX)); vDirectiondAccelDt(eY) = 1 - 2.0*(double(rand())/double(RAND_MAX)); vDirectiondAccelDt(eZ) = 1 - 2.0*(double(rand())/double(RAND_MAX)); MagnitudedAccelDt = 1 - 2.0*(double(rand())/double(RAND_MAX)) - Magnitude; MagnitudeAccel += MagnitudedAccelDt*rate*State->Getdt(); Magnitude += MagnitudeAccel*rate*State->Getdt(); vDirectiondAccelDt.Normalize(); vDirectionAccel += vDirectiondAccelDt*rate*State->Getdt(); vDirectionAccel.Normalize(); vDirection += vDirectionAccel*rate*State->Getdt(); // Diminish z-vector within two wingspans // of the ground double HOverBMAC = Auxiliary->GetHOverBMAC(); if (HOverBMAC < 2.0) vDirection(eZ) *= HOverBMAC / 2.0; vDirection.Normalize(); vTurbulence = TurbGain*Magnitude * vDirection; vTurbulenceGrad = TurbGain*MagnitudeAccel * vDirection; vBodyTurbGrad = Propagate->GetTl2b()*vTurbulenceGrad; vTurbPQR(eP) = vBodyTurbGrad(eY)/Aircraft->GetWingSpan(); if (Aircraft->GetHTailArm() > 0) vTurbPQR(eQ) = vBodyTurbGrad(eZ)/Aircraft->GetHTailArm(); else vTurbPQR(eQ) = vBodyTurbGrad(eZ)/10.0; if (Aircraft->GetVTailArm() > 0) vTurbPQR(eR) = vBodyTurbGrad(eX)/Aircraft->GetVTailArm(); else vTurbPQR(eR) = vBodyTurbGrad(eX)/10.0; break; } default: break; } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGAtmosphere::UseExternal(void) { temperature=&exTemperature; pressure=&exPressure; density=&exDensity; useExternal=true; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGAtmosphere::UseInternal(void) { temperature=&intTemperature; pressure=&intPressure; density=&intDensity; useExternal=false; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGAtmosphere::bind(void) { typedef double (FGAtmosphere::*PMF)(int) const; PropertyManager->Tie("atmosphere/T-R", this, &FGAtmosphere::GetTemperature); PropertyManager->Tie("atmosphere/rho-slugs_ft3", this, &FGAtmosphere::GetDensity); // PropertyManager->Tie("atmosphere/P-psf", this, // &FGAtmosphere::GetPressure); PropertyManager->Tie("atmosphere/a-fps", this, &FGAtmosphere::GetSoundSpeed); PropertyManager->Tie("atmosphere/T-sl-R", this, &FGAtmosphere::GetTemperatureSL); PropertyManager->Tie("atmosphere/rho-sl-slugs_ft3", this, &FGAtmosphere::GetDensitySL); PropertyManager->Tie("atmosphere/P-sl-psf", this, &FGAtmosphere::GetPressureSL); PropertyManager->Tie("atmosphere/a-sl-fps", this, &FGAtmosphere::GetSoundSpeedSL); PropertyManager->Tie("atmosphere/theta-norm", this, &FGAtmosphere::GetTemperatureRatio); PropertyManager->Tie("atmosphere/sigma-norm", this, &FGAtmosphere::GetDensityRatio); PropertyManager->Tie("atmosphere/delta-norm", this, &FGAtmosphere::GetPressureRatio); PropertyManager->Tie("atmosphere/a-norm", this, &FGAtmosphere::GetSoundSpeedRatio); PropertyManager->Tie("atmosphere/psiw-rad", this, &FGAtmosphere::GetWindPsi); PropertyManager->Tie("atmosphere/delta-T", this, &FGAtmosphere::GetDeltaT, &FGAtmosphere::SetDeltaT); PropertyManager->Tie("atmosphere/T-sl-dev-F", this, &FGAtmosphere::GetSLTempDev, &FGAtmosphere::SetSLTempDev); PropertyManager->Tie("atmosphere/density-altitude", this, &FGAtmosphere::GetDensityAltitude); PropertyManager->Tie("atmosphere/p-turb-rad_sec", this,1, (PMF)&FGAtmosphere::GetTurbPQR); PropertyManager->Tie("atmosphere/q-turb-rad_sec", this,2, (PMF)&FGAtmosphere::GetTurbPQR); PropertyManager->Tie("atmosphere/r-turb-rad_sec", this,3, (PMF)&FGAtmosphere::GetTurbPQR); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGAtmosphere::unbind(void) { PropertyManager->Untie("atmosphere/T-R"); PropertyManager->Untie("atmosphere/rho-slugs_ft3"); // PropertyManager->Untie("atmosphere/P-psf"); PropertyManager->Untie("atmosphere/a-fps"); PropertyManager->Untie("atmosphere/T-sl-R"); PropertyManager->Untie("atmosphere/rho-sl-slugs_ft3"); PropertyManager->Untie("atmosphere/P-sl-psf"); PropertyManager->Untie("atmosphere/a-sl-fps"); PropertyManager->Untie("atmosphere/delta-T"); PropertyManager->Untie("atmosphere/T-sl-dev-F"); PropertyManager->Untie("atmosphere/density-altitude"); PropertyManager->Untie("atmosphere/theta-norm"); PropertyManager->Untie("atmosphere/sigma-norm"); PropertyManager->Untie("atmosphere/delta-norm"); PropertyManager->Untie("atmosphere/a-norm"); PropertyManager->Untie("atmosphere/psiw-rad"); PropertyManager->Untie("atmosphere/p-turb-rad_sec"); PropertyManager->Untie("atmosphere/q-turb-rad_sec"); PropertyManager->Untie("atmosphere/r-turb-rad_sec"); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // The bitmasked value choices are as follows: // unset: In this case (the default) JSBSim would only print // out the normally expected messages, essentially echoing // the config files as they are read. If the environment // variable is not set, debug_lvl is set to 1 internally // 0: This requests JSBSim not to output any messages // whatsoever. // 1: This value explicity requests the normal JSBSim // startup messages // 2: This value asks for a message to be printed out when // a class is instantiated // 4: When this value is set, a message is displayed when a // FGModel object executes its Run() method // 8: When this value is set, various runtime state variables // are printed out periodically // 16: When set various parameters are sanity checked and // a message is printed out when they go out of bounds void FGAtmosphere::Debug(int from) { if (debug_lvl <= 0) return; if (debug_lvl & 1) { // Standard console startup message output if (from == 0) { // Constructor } } if (debug_lvl & 2 ) { // Instantiation/Destruction notification if (from == 0) cout << "Instantiated: FGAtmosphere" << endl; if (from == 1) cout << "Destroyed: FGAtmosphere" << endl; } if (debug_lvl & 4 ) { // Run() method entry print for FGModel-derived objects } if (debug_lvl & 8 ) { // Runtime state variables } if (debug_lvl & 16) { // Sanity checking } if (debug_lvl & 32) { // Turbulence if (frame == 0 && from == 2) { cout << "vTurbulence(X), vTurbulence(Y), vTurbulence(Z), " << "vTurbulenceGrad(X), vTurbulenceGrad(Y), vTurbulenceGrad(Z), " << "vDirection(X), vDirection(Y), vDirection(Z), " << "Magnitude, " << "vTurbPQR(P), vTurbPQR(Q), vTurbPQR(R), " << endl; } else if (from == 2) { cout << vTurbulence << ", " << vTurbulenceGrad << ", " << vDirection << ", " << Magnitude << ", " << vTurbPQR << endl; } } if (debug_lvl & 64) { if (from == 0) { // Constructor cout << IdSrc << endl; cout << IdHdr << endl; } } } } // namespace JSBSim