// ATCProjection.cxx - A convienience projection class for the ATC/AI system. // // Written by David Luff, started 2002. // // Copyright (C) 2002 David C Luff - david.luff@nottingham.ac.uk // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. #include "ATCProjection.hxx" #include #include #include SG_USING_STD(cout); #define DCL_PI 3.1415926535f //#define SG_PI ((SGfloat) M_PI) #define DCL_DEGREES_TO_RADIANS (DCL_PI/180.0) #define DCL_RADIANS_TO_DEGREES (180.0/DCL_PI) FGATCProjection::FGATCProjection() { origin.setlat(0.0); origin.setlon(0.0); origin.setelev(0.0); correction_factor = cos(origin.lat() * DCL_DEGREES_TO_RADIANS); } FGATCProjection::~FGATCProjection() { } void FGATCProjection::Init(Point3D centre) { origin = centre; correction_factor = cos(origin.lat() * DCL_DEGREES_TO_RADIANS); } Point3D FGATCProjection::ConvertToLocal(Point3D pt) { double delta_lat = pt.lat() - origin.lat(); double delta_lon = pt.lon() - origin.lon(); double y = sin(delta_lat * DCL_DEGREES_TO_RADIANS) * SG_EQUATORIAL_RADIUS_M; double x = sin(delta_lon * DCL_DEGREES_TO_RADIANS) * SG_EQUATORIAL_RADIUS_M * correction_factor; return(Point3D(x,y,0.0)); } Point3D FGATCProjection::ConvertFromLocal(Point3D pt) { double delta_lat = asin(pt.y() / SG_EQUATORIAL_RADIUS_M) * DCL_RADIANS_TO_DEGREES; double delta_lon = (asin(pt.x() / SG_EQUATORIAL_RADIUS_M) * DCL_RADIANS_TO_DEGREES) / correction_factor; return(Point3D(origin.lon()+delta_lon, origin.lat()+delta_lat, 0.0)); } /**********************************************************************************/ FGATCAlignedProjection::FGATCAlignedProjection() { origin.setlat(0.0); origin.setlon(0.0); origin.setelev(0.0); correction_factor = cos(origin.lat() * DCL_DEGREES_TO_RADIANS); } FGATCAlignedProjection::~FGATCAlignedProjection() { } void FGATCAlignedProjection::Init(Point3D centre, double heading) { origin = centre; theta = heading * DCL_DEGREES_TO_RADIANS; correction_factor = cos(origin.lat() * DCL_DEGREES_TO_RADIANS); } Point3D FGATCAlignedProjection::ConvertToLocal(Point3D pt) { // convert from lat/lon to orthogonal double delta_lat = pt.lat() - origin.lat(); double delta_lon = pt.lon() - origin.lon(); double y = sin(delta_lat * DCL_DEGREES_TO_RADIANS) * SG_EQUATORIAL_RADIUS_M; double x = sin(delta_lon * DCL_DEGREES_TO_RADIANS) * SG_EQUATORIAL_RADIUS_M * correction_factor; // Align double xbar = x; x = x*cos(theta) - y*sin(theta); y = (xbar*sin(theta)) + (y*cos(theta)); return(Point3D(x,y,pt.elev())); } Point3D FGATCAlignedProjection::ConvertFromLocal(Point3D pt) { //cout << "theta = " << theta << '\n'; //cout << "origin = " << origin << '\n'; // de-align double thi = theta * -1.0; double x = pt.x()*cos(thi) - pt.y()*sin(thi); double y = (pt.x()*sin(thi)) + (pt.y()*cos(thi)); // convert from orthogonal to lat/lon double delta_lat = asin(y / SG_EQUATORIAL_RADIUS_M) * DCL_RADIANS_TO_DEGREES; double delta_lon = (asin(x / SG_EQUATORIAL_RADIUS_M) * DCL_RADIANS_TO_DEGREES) / correction_factor; return(Point3D(origin.lon()+delta_lon, origin.lat()+delta_lat, pt.elev())); }