// obj.cxx -- routines to handle "sorta" WaveFront .obj format files. // // Written by Curtis Olson, started October 1997. // // Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ #ifdef HAVE_CONFIG_H # include #endif #ifdef FG_MATH_EXCEPTION_CLASH # include #endif #ifdef HAVE_WINDOWS_H # include #endif #include #include #include #include // #if defined ( __sun__ ) // extern "C" void *memmove(void *, const void *, size_t); // extern "C" void *memset(void *, int, size_t); // #endif #include #include STL_STRING #include // STL #include // isdigit() #include #include #include #include
#include #include #include #include #include #include #include "material.hxx" #include "obj.hxx" FG_USING_STD(string); static double normals[FG_MAX_NODES][3]; static double tex_coords[FG_MAX_NODES*3][3]; // given three points defining a triangle, calculate the normal static void calc_normal(double p1[3], double p2[3], double p3[3], double normal[3]) { double v1[3], v2[3]; double temp; v1[0] = p2[0] - p1[0]; v1[1] = p2[1] - p1[1]; v1[2] = p2[2] - p1[2]; v2[0] = p3[0] - p1[0]; v2[1] = p3[1] - p1[1]; v2[2] = p3[2] - p1[2]; MAT3cross_product(normal, v1, v2); MAT3_NORMALIZE_VEC(normal,temp); // fgPrintf( FG_TERRAIN, FG_DEBUG, " Normal = %.2f %.2f %.2f\n", // normal[0], normal[1], normal[2]); } #define FG_TEX_CONSTANT 69.0 // Calculate texture coordinates for a given point. static Point3D calc_tex_coords(double *node, const Point3D& ref) { Point3D cp; Point3D pp; // double tmplon, tmplat; // cout << "-> " << node[0] << " " << node[1] << " " << node[2] << endl; // cout << "-> " << ref.x() << " " << ref.y() << " " << ref.z() << endl; cp = Point3D( node[0] + ref.x(), node[1] + ref.y(), node[2] + ref.z() ); pp = fgCartToPolar3d(cp); // tmplon = pp.lon() * RAD_TO_DEG; // tmplat = pp.lat() * RAD_TO_DEG; // cout << tmplon << " " << tmplat << endl; pp.setx( fmod(RAD_TO_DEG * FG_TEX_CONSTANT * pp.x(), 11.0) ); pp.sety( fmod(RAD_TO_DEG * FG_TEX_CONSTANT * pp.y(), 11.0) ); if ( pp.x() < 0.0 ) { pp.setx( pp.x() + 11.0 ); } if ( pp.y() < 0.0 ) { pp.sety( pp.y() + 11.0 ); } // cout << pp << endl; return(pp); } // Load a .obj file and build the GL fragment list int fgObjLoad( const string& path, fgTILE *t) { fgFRAGMENT fragment; Point3D pp; double approx_normal[3], normal[3] /*, scale = 0.0 */; // double x, y, z, xmax, xmin, ymax, ymin, zmax, zmin; // GLfloat sgenparams[] = { 1.0, 0.0, 0.0, 0.0 }; GLint display_list = 0; int shading; int in_fragment = 0, in_faces = 0, vncount, vtcount; int n1 = 0, n2 = 0, n3 = 0, n4 = 0; int tex; int last1 = 0, last2 = 0, odd = 0; double (*nodes)[3]; Point3D center; // printf("loading %s\n", path.c_str() ); // Attempt to open "path.gz" or "path" fg_gzifstream in( path ); if ( ! in ) { FG_LOG( FG_TERRAIN, FG_ALERT, "Cannot open file: " << path ); return 0; } shading = current_options.get_shading(); in_fragment = 0; t->ncount = 0; vncount = 0; vtcount = 0; t->bounding_radius = 0.0; nodes = t->nodes; center = t->center; StopWatch stopwatch; stopwatch.start(); // ignore initial comments and blank lines. (priming the pump) // in >> skipcomment; string line; while ( ! in.eof() ) { string token; char c; in >> skipws; if ( in.get( c ) && c == '#' ) { // process a comment line // getline( in, line ); // cout << "comment = " << line << endl; in >> token; if ( token == "gbs" ) { // reference point (center offset) in >> t->center >> t->bounding_radius; center = t->center; // cout << "center = " << center // << " radius = " << t->bounding_radius << endl; } else if ( token == "bs" ) { // reference point (center offset) in >> fragment.center; in >> fragment.bounding_radius; // cout << "center = " << fragment.center // << " radius = " << fragment.bounding_radius << endl; } else if ( token == "usemtl" ) { // material property specification // series of individual triangles if ( in_faces ) { xglEnd(); } // this also signals the start of a new fragment if ( in_fragment ) { // close out the previous structure and start the next xglEndList(); // printf("xglEnd(); xglEndList();\n"); // update fragment fragment.display_list = display_list; // push this fragment onto the tile's object list t->fragment_list.push_back(fragment); } else { in_fragment = 1; } // printf("start of fragment (usemtl)\n"); display_list = xglGenLists(1); xglNewList(display_list, GL_COMPILE); // printf("xglGenLists(); xglNewList();\n"); in_faces = 0; // reset the existing face list // printf("cleaning a fragment with %d faces\n", // fragment.faces.size()); fragment.init(); // scan the material line string material; in >> material; fragment.tile_ptr = t; // find this material in the properties list if ( ! material_mgr.find( material, fragment.material_ptr )) { FG_LOG( FG_TERRAIN, FG_ALERT, "Ack! unknown usemtl name = " << material << " in " << path ); } // initialize the fragment transformation matrix /* for ( i = 0; i < 16; i++ ) { fragment.matrix[i] = 0.0; } fragment.matrix[0] = fragment.matrix[5] = fragment.matrix[10] = fragment.matrix[15] = 1.0; */ } else { // unknown comment, just gobble the input untill the // end of line in >> skipeol; } } else { in.putback( c ); in >> token; // cout << "token = " << token << endl; if ( token == "vn" ) { // vertex normal if ( vncount < FG_MAX_NODES ) { in >> normals[vncount][0] >> normals[vncount][1] >> normals[vncount][2]; vncount++; } else { FG_LOG( FG_TERRAIN, FG_ALERT, "Read too many vertex normals ... dying :-(" ); exit(-1); } } else if ( token == "vt" ) { // vertex texture coordinate if ( vtcount < FG_MAX_NODES*3 ) { in >> tex_coords[vtcount][0] >> tex_coords[vtcount][1]; vtcount++; } else { FG_LOG( FG_TERRAIN, FG_ALERT, "Read too many vertex texture coords ... dying :-(" ); exit(-1); } } else if ( token == "v" ) { // node (vertex) if ( t->ncount < FG_MAX_NODES ) { in >> t->nodes[t->ncount][0] >> t->nodes[t->ncount][1] >> t->nodes[t->ncount][2]; t->ncount++; } else { FG_LOG( FG_TERRAIN, FG_ALERT, "Read too many nodes ... dying :-("); exit(-1); } } else if ( token == "t" ) { // start a new triangle strip n1 = n2 = n3 = n4 = 0; // fgPrintf( FG_TERRAIN, FG_DEBUG, // " new tri strip = %s", line); in >> n1 >> n2 >> n3; fragment.add_face(n1, n2, n3); // fgPrintf( FG_TERRAIN, FG_DEBUG, "(t) = "); xglBegin(GL_TRIANGLE_STRIP); // printf("xglBegin(tristrip) %d %d %d\n", n1, n2, n3); odd = 1; // scale = 1.0; if ( shading ) { // Shading model is "GL_SMOOTH" so use precalculated // (averaged) normals // MAT3_SCALE_VEC(normal, normals[n1], scale); xglNormal3dv(normal); pp = calc_tex_coords(nodes[n1], center); xglTexCoord2f(pp.lon(), pp.lat()); xglVertex3dv(nodes[n1]); // MAT3_SCALE_VEC(normal, normals[n2], scale); xglNormal3dv(normal); pp = calc_tex_coords(nodes[n2], center); xglTexCoord2f(pp.lon(), pp.lat()); xglVertex3dv(nodes[n2]); // MAT3_SCALE_VEC(normal, normals[n3], scale); xglNormal3dv(normal); pp = calc_tex_coords(nodes[n3], center); xglTexCoord2f(pp.lon(), pp.lat()); xglVertex3dv(nodes[n3]); } else { // Shading model is "GL_FLAT" so calculate per face // normals on the fly. if ( odd ) { calc_normal(nodes[n1], nodes[n2], nodes[n3], approx_normal); } else { calc_normal(nodes[n2], nodes[n1], nodes[n3], approx_normal); } // MAT3_SCALE_VEC(normal, approx_normal, scale); xglNormal3dv(normal); pp = calc_tex_coords(nodes[n1], center); xglTexCoord2f(pp.lon(), pp.lat()); xglVertex3dv(nodes[n1]); pp = calc_tex_coords(nodes[n2], center); xglTexCoord2f(pp.lon(), pp.lat()); xglVertex3dv(nodes[n2]); pp = calc_tex_coords(nodes[n3], center); xglTexCoord2f(pp.lon(), pp.lat()); xglVertex3dv(nodes[n3]); } // printf("some normals, texcoords, and vertices\n"); odd = 1 - odd; last1 = n2; last2 = n3; // There can be three or four values char c; while ( in.get(c) ) { if ( c == '\n' ) { break; // only the one } if ( isdigit(c) ){ in.putback(c); in >> n4; break; } } if ( n4 > 0 ) { fragment.add_face(n3, n2, n4); if ( shading ) { // Shading model is "GL_SMOOTH" // MAT3_SCALE_VEC(normal, normals[n4], scale); } else { // Shading model is "GL_FLAT" calc_normal(nodes[n3], nodes[n2], nodes[n4], approx_normal); // MAT3_SCALE_VEC(normal, approx_normal, scale); } xglNormal3dv(normal); pp = calc_tex_coords(nodes[n4], center); xglTexCoord2f(pp.lon(), pp.lat()); xglVertex3dv(nodes[n4]); odd = 1 - odd; last1 = n3; last2 = n4; // printf("a normal, texcoord, and vertex (4th)\n"); } } else if ( token == "tf" ) { // triangle fan // fgPrintf( FG_TERRAIN, FG_DEBUG, "new fan"); xglBegin(GL_TRIANGLE_FAN); in >> n1; xglNormal3dv(normals[n1]); if ( in.get( c ) && c == '/' ) { in >> tex; pp.setx( tex_coords[tex][0] ); pp.sety( tex_coords[tex][1] ); } else { in.putback( c ); pp = calc_tex_coords(nodes[n1], center); } xglTexCoord2f(pp.x(), pp.y()); xglVertex3dv(nodes[n1]); in >> n2; xglNormal3dv(normals[n2]); if ( in.get( c ) && c == '/' ) { in >> tex; pp.setx( tex_coords[tex][0] ); pp.sety( tex_coords[tex][1] ); } else { in.putback( c ); pp = calc_tex_coords(nodes[n2], center); } xglTexCoord2f(pp.x(), pp.y()); xglVertex3dv(nodes[n2]); // read all subsequent numbers until next thing isn't a number while ( true ) { in >> skipws; char c; in.get(c); in.putback(c); if ( ! isdigit(c) || in.eof() ) { break; } in >> n3; // cout << " triangle = " // << n1 << "," << n2 << "," << n3 // << endl; xglNormal3dv(normals[n3]); if ( in.get( c ) && c == '/' ) { in >> tex; pp.setx( tex_coords[tex][0] ); pp.sety( tex_coords[tex][1] ); } else { in.putback( c ); pp = calc_tex_coords(nodes[n3], center); } xglTexCoord2f(pp.x(), pp.y()); xglVertex3dv(nodes[n3]); fragment.add_face(n1, n2, n3); n2 = n3; } xglEnd(); } else if ( token == "f" ) { // unoptimized face if ( !in_faces ) { xglBegin(GL_TRIANGLES); // printf("xglBegin(triangles)\n"); in_faces = 1; } // fgPrintf( FG_TERRAIN, FG_DEBUG, "new triangle = %s", line);*/ in >> n1 >> n2 >> n3; fragment.add_face(n1, n2, n3); // xglNormal3d(normals[n1][0], normals[n1][1], normals[n1][2]); xglNormal3dv(normals[n1]); pp = calc_tex_coords(nodes[n1], center); xglTexCoord2f(pp.lon(), pp.lat()); xglVertex3dv(nodes[n1]); xglNormal3dv(normals[n2]); pp = calc_tex_coords(nodes[n2], center); xglTexCoord2f(pp.lon(), pp.lat()); xglVertex3dv(nodes[n2]); xglNormal3dv(normals[n3]); pp = calc_tex_coords(nodes[n3], center); xglTexCoord2f(pp.lon(), pp.lat()); xglVertex3dv(nodes[n3]); // printf("some normals, texcoords, and vertices (tris)\n"); } else if ( token == "q" ) { // continue a triangle strip n1 = n2 = 0; // fgPrintf( FG_TERRAIN, FG_DEBUG, "continued tri strip = %s ", // line); in >> n1; // There can be one or two values char c; while ( in.get(c) ) { if ( c == '\n' ) { break; // only the one } if ( isdigit(c) ) { in.putback(c); in >> n2; break; } } // fgPrintf( FG_TERRAIN, FG_DEBUG, "read %d %d\n", n1, n2); if ( odd ) { fragment.add_face(last1, last2, n1); } else { fragment.add_face(last2, last1, n1); } if ( shading ) { // Shading model is "GL_SMOOTH" // MAT3_SCALE_VEC(normal, normals[n1], scale); } else { // Shading model is "GL_FLAT" if ( odd ) { calc_normal(nodes[last1], nodes[last2], nodes[n1], approx_normal); } else { calc_normal(nodes[last2], nodes[last1], nodes[n1], approx_normal); } // MAT3_SCALE_VEC(normal, approx_normal, scale); } xglNormal3dv(normal); pp = calc_tex_coords(nodes[n1], center); xglTexCoord2f(pp.lon(), pp.lat()); xglVertex3dv(nodes[n1]); // printf("a normal, texcoord, and vertex (4th)\n"); odd = 1 - odd; last1 = last2; last2 = n1; if ( n2 > 0 ) { // fgPrintf( FG_TERRAIN, FG_DEBUG, " (cont)\n"); if ( odd ) { fragment.add_face(last1, last2, n2); } else { fragment.add_face(last2, last1, n2); } if ( shading ) { // Shading model is "GL_SMOOTH" // MAT3_SCALE_VEC(normal, normals[n2], scale); } else { // Shading model is "GL_FLAT" if ( odd ) { calc_normal(nodes[last1], nodes[last2], nodes[n2], approx_normal); } else { calc_normal(nodes[last2], nodes[last1], nodes[n2], approx_normal); } // MAT3_SCALE_VEC(normal, approx_normal, scale); } xglNormal3dv(normal); pp = calc_tex_coords(nodes[n2], center); xglTexCoord2f(pp.lon(), pp.lat()); xglVertex3dv(nodes[n2]); // printf("a normal, texcoord, and vertex (4th)\n"); odd = 1 -odd; last1 = last2; last2 = n2; } } else { FG_LOG( FG_TERRAIN, FG_WARN, "Unknown token in " << path << " = " << token ); } // eat white space before start of while loop so if we are // done with useful input it is noticed before hand. in >> skipws; } } if ( in_fragment ) { // close out the previous structure and start the next xglEnd(); xglEndList(); // printf("xglEnd(); xglEndList();\n"); // update fragment fragment.display_list = display_list; // push this fragment onto the tile's object list t->fragment_list.push_back(fragment); } #if 0 // Draw normal vectors (for visually verifying normals) xglBegin(GL_LINES); xglColor3f(0.0, 0.0, 0.0); for ( i = 0; i < t->ncount; i++ ) { xglVertex3d(t->nodes[i][0], t->nodes[i][1] , t->nodes[i][2]); xglVertex3d(t->nodes[i][0] + 500*normals[i][0], t->nodes[i][1] + 500*normals[i][1], t->nodes[i][2] + 500*normals[i][2]); } xglEnd(); #endif stopwatch.stop(); FG_LOG( FG_TERRAIN, FG_INFO, "Loaded " << path << " in " << stopwatch.elapsedSeconds() << " seconds" ); return 1; }