// leastsqs.c -- Implements a simple linear least squares best fit routine // // Written by Curtis Olson, started September 1997. // // Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ // #include #include "leastsqs.hxx" /* Least squares fit: y = b0 + b1x n*sum(xi*yi) - (sum(xi)*sum(yi)) b1 = -------------------------------- n*sum(xi^2) - (sum(xi))^2 b0 = sum(yi)/n - b1*(sum(xi)/n) */ double sum_xi, sum_yi, sum_xi_2, sum_xi_yi; int sum_n; void least_squares(double *x, double *y, int n, double *m, double *b) { int i; sum_xi = sum_yi = sum_xi_2 = sum_xi_yi = 0.0; sum_n = n; for ( i = 0; i < n; i++ ) { sum_xi += x[i]; sum_yi += y[i]; sum_xi_2 += x[i] * x[i]; sum_xi_yi += x[i] * y[i]; } /* printf("sum(xi)=%.2f sum(yi)=%.2f sum(xi^2)=%.2f sum(xi*yi)=%.2f\n", sum_xi, sum_yi, sum_xi_2, sum_xi_yi); */ *m = ( (double)sum_n * sum_xi_yi - sum_xi * sum_yi ) / ( (double)sum_n * sum_xi_2 - sum_xi * sum_xi ); *b = (sum_yi / (double)sum_n) - (*m) * (sum_xi / (double)sum_n); /* printf("slope = %.2f intercept = %.2f\n", *m, *b); */ } /* incrimentally update existing values with a new data point */ void least_squares_update(double x, double y, double *m, double *b) { ++sum_n; sum_xi += x; sum_yi += y; sum_xi_2 += x * x; sum_xi_yi += x * y; /* printf("sum(xi)=%.2f sum(yi)=%.2f sum(xi^2)=%.2f sum(xi*yi)=%.2f\n", sum_xi, sum_yi, sum_xi_2, sum_xi_yi); */ *m = ( (double)sum_n * sum_xi_yi - sum_xi * sum_yi ) / ( (double)sum_n * sum_xi_2 - sum_xi * sum_xi ); *b = (sum_yi / (double)sum_n) - (*m) * (sum_xi / (double)sum_n); /* printf("slope = %.2f intercept = %.2f\n", *m, *b); */ } /* return the least squares error: (y[i] - y_hat[i])^2 ------------------- n */ double least_squares_error(double *x, double *y, int n, double m, double b) { int i; double error, sum; sum = 0.0; for ( i = 0; i < n; i++ ) { error = y[i] - (m * x[i] + b); sum += error * error; // printf("%.2f %.2f\n", error, sum); } return ( sum / (double)n ); } /* return the maximum least squares error: (y[i] - y_hat[i])^2 */ double least_squares_max_error(double *x, double *y, int n, double m, double b){ int i; double error, max_error; max_error = 0.0; for ( i = 0; i < n; i++ ) { error = y[i] - (m * x[i] + b); error = error * error; if ( error > max_error ) { max_error = error; } } return ( max_error ); }