// panel_io.cxx - I/O for 2D panel. // // Written by David Megginson, started January 2000. // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ #ifdef HAVE_CONFIG_H # include #endif #ifdef HAVE_WINDOWS_H # include #endif #include #include #include #include #include #include #include #include
#include "panel.hxx" #include "steam.hxx" #include "panel_io.hxx" using std::istream; using std::ifstream; using std::string; //////////////////////////////////////////////////////////////////////// // Built-in layer for the magnetic compass ribbon layer. // // TODO: move this out into a special directory for built-in // layers of various sorts. //////////////////////////////////////////////////////////////////////// class FGMagRibbon : public FGTexturedLayer { public: FGMagRibbon (int w, int h); virtual ~FGMagRibbon () {} virtual void draw (); }; FGMagRibbon::FGMagRibbon (int w, int h) : FGTexturedLayer(w, h) { CroppedTexture texture("Textures/Panel/compass-ribbon.rgb"); setTexture(texture); } void FGMagRibbon::draw () { double heading = FGSteam::get_MH_deg(); double xoffset, yoffset; while (heading >= 360.0) { heading -= 360.0; } while (heading < 0.0) { heading += 360.0; } if (heading >= 60.0 && heading <= 180.0) { xoffset = heading / 240.0; yoffset = 0.75; } else if (heading >= 150.0 && heading <= 270.0) { xoffset = (heading - 90.0) / 240.0; yoffset = 0.50; } else if (heading >= 240.0 && heading <= 360.0) { xoffset = (heading - 180.0) / 240.0; yoffset = 0.25; } else { if (heading < 270.0) heading += 360.0; xoffset = (heading - 270.0) / 240.0; yoffset = 0.0; } xoffset = 1.0 - xoffset; // Adjust to put the number in the centre xoffset -= 0.25; CroppedTexture &t = getTexture(); t.minX = xoffset; t.minY = yoffset; t.maxX = xoffset + 0.5; t.maxY = yoffset + 0.25; FGTexturedLayer::draw(); } //////////////////////////////////////////////////////////////////////// // Read and construct a panel. // // The panel is specified as a regular property list, and each of the // instruments is its own, separate property list (and thus, a separate // XML document). The functions in this section read in the files // as property lists, then extract properties to set up the panel // itself. // // A panel contains zero or more instruments. // // An instrument contains one or more layers and zero or more actions. // // A layer contains zero or more transformations. // // Some special types of layers also contain other objects, such as // chunks of text or other layers. // // There are currently four types of layers: // // 1. Textured Layer (type="texture"), the default // 2. Text Layer (type="text") // 3. Switch Layer (type="switch") // 4. Built-in Layer (type="built-in", must also specify class) // // The only built-in layer so far is the ribbon for the magnetic compass // (class="compass-ribbon"). // // There are three types of actions: // // 1. Adjust (type="adjust"), the default // 2. Swap (type="swap") // 3. Toggle (type="toggle") // // There are three types of transformations: // // 1. X shift (type="x-shift"), the default // 2. Y shift (type="y-shift") // 3. Rotation (type="rotation") // // Each of these may be associated with a property, so that a needle // will rotate with the airspeed, for example, or may have a fixed // floating-point value. //////////////////////////////////////////////////////////////////////// /** * Read a cropped texture from the instrument's property list. * * The x1 and y1 properties give the starting position of the texture * (between 0.0 and 1.0), and the the x2 and y2 properties give the * ending position. For example, to use the bottom-left quarter of a * texture, x1=0.0, y1=0.0, x2=0.5, y2=0.5. */ static CroppedTexture readTexture (SGPropertyNode node) { CroppedTexture texture(node.getStringValue("path"), node.getFloatValue("x1"), node.getFloatValue("y1"), node.getFloatValue("x2", 1.0), node.getFloatValue("y2", 1.0)); FG_LOG(FG_INPUT, FG_INFO, "Read texture " << node.getName()); return texture; } /** * Read an action from the instrument's property list. * * The action will be performed when the user clicks a mouse button * within the specified region of the instrument. Actions always * work by modifying the value of a property (see the SGValue class). * * The following action types are defined: * * "adjust" - modify the value of a floating-point property by * the increment specified. This is the default. * * "swap" - swap the values of two-floating-point properties. * * "toggle" - toggle the value of a boolean property between true and * false. * * For the adjust action, it is possible to specify an increment * (use a negative number for a decrement), a minimum allowed value, * a maximum allowed value, and a flag to indicate whether the value * should freeze or wrap-around when it reachs the minimum or maximum. * * The action will be scaled automatically if the instrument is not * being drawn at its regular size. */ static FGPanelAction * readAction (SGPropertyNode node, float hscale, float vscale) { FGPanelAction * action = 0; string name = node.getStringValue("name"); string type = node.getStringValue("type"); int button = node.getIntValue("button"); int x = int(node.getIntValue("x") * hscale); int y = int(node.getIntValue("y") * vscale); int w = int(node.getIntValue("w") * hscale); int h = int(node.getIntValue("h") * vscale); if (type == "") { FG_LOG(FG_INPUT, FG_ALERT, "No type supplied for action " << name << " assuming \"adjust\""); type = "adjust"; } // Adjust a property value if (type == "adjust") { string propName = node.getStringValue("property"); SGValue * value = current_properties.getValue(propName, true); float increment = node.getFloatValue("increment", 1.0); float min = node.getFloatValue("min", 0.0); float max = node.getFloatValue("max", 0.0); bool wrap = node.getBoolValue("wrap", false); if (min == max) FG_LOG(FG_INPUT, FG_ALERT, "Action " << node.getName() << " has same min and max value"); action = new FGAdjustAction(button, x, y, w, h, value, increment, min, max, wrap); } // Swap two property values else if (type == "swap") { string propName1 = node.getStringValue("property1"); string propName2 = node.getStringValue("property2"); SGValue * value1 = current_properties.getValue(propName1, true); SGValue * value2 = current_properties.getValue(propName2, true); action = new FGSwapAction(button, x, y, w, h, value1, value2); } // Toggle a boolean value else if (type == "toggle") { string propName = node.getStringValue("property"); SGValue * value = current_properties.getValue(propName, true); action = new FGToggleAction(button, x, y, w, h, value); } // Unrecognized type else { FG_LOG(FG_INPUT, FG_ALERT, "Unrecognized action type " << type); return 0; } return action; } /** * Read a transformation from the instrument's property list. * * The panel module uses the transformations to slide or spin needles, * knobs, and other indicators, and to place layers in the correct * positions. Every layer starts centered exactly on the x,y co-ordinate, * and many layers need to be moved or rotated simply to display the * instrument correctly. * * There are three types of transformations: * * "x-shift" - move the layer horizontally. * * "y-shift" - move the layer vertically. * * "rotation" - rotate the layer. * * Each transformation may have a fixed offset, and may also have * a floating-point property value to add to the offset. The * floating-point property may be clamped to a minimum and/or * maximum range and scaled (after clamping). * * Note that because of the way OpenGL works, transformations will * appear to be applied backwards. */ static FGPanelTransformation * readTransformation (SGPropertyNode node, float hscale, float vscale) { FGPanelTransformation * t = new FGPanelTransformation; string name = node.getName(); string type = node.getStringValue("type"); string propName = node.getStringValue("property", ""); SGValue * value = 0; if (type == "") { FG_LOG(FG_INPUT, FG_ALERT, "No type supplied for transformation " << name << " assuming \"rotation\""); type = "rotation"; } if (propName != "") { value = current_properties.getValue(propName, true); } t->value = value; t->min = node.getFloatValue("min", -9999999); t->max = node.getFloatValue("max", 99999999); t->factor = node.getFloatValue("scale", 1.0); t->offset = node.getFloatValue("offset", 0.0); // Move the layer horizontally. if (type == "x-shift") { t->type = FGPanelTransformation::XSHIFT; t->min *= hscale; t->max *= hscale; t->offset *= hscale; } // Move the layer vertically. else if (type == "y-shift") { t->type = FGPanelTransformation::YSHIFT; t->min *= vscale; t->max *= vscale; t->offset *= vscale; } // Rotate the layer. The rotation // is in degrees, and does not need // to scale with the instrument size. else if (type == "rotation") { t->type = FGPanelTransformation::ROTATION; } else { FG_LOG(FG_INPUT, FG_ALERT, "Unrecognized transformation type " << type); delete t; return 0; } FG_LOG(FG_INPUT, FG_INFO, "Read transformation " << name); return t; } /** * Read a chunk of text from the instrument's property list. * * A text layer consists of one or more chunks of text. All chunks * share the same font size and color (and eventually, font), but * each can come from a different source. There are three types of * text chunks: * * "literal" - a literal text string (the default) * * "text-value" - the current value of a string property * * "number-value" - the current value of a floating-point property. * * All three may also include a printf-style format string. */ FGTextLayer::Chunk * readTextChunk (SGPropertyNode node) { FGTextLayer::Chunk * chunk; string name = node.getStringValue("name"); string type = node.getStringValue("type"); string format = node.getStringValue("format"); // Default to literal text. if (type == "") { FG_LOG(FG_INPUT, FG_INFO, "No type provided for text chunk " << name << " assuming \"literal\""); type = "literal"; } // A literal text string. if (type == "literal") { string text = node.getStringValue("text"); chunk = new FGTextLayer::Chunk(text, format); } // The value of a string property. else if (type == "text-value") { SGValue * value = current_properties.getValue(node.getStringValue("property"), true); chunk = new FGTextLayer::Chunk(FGTextLayer::TEXT_VALUE, value, format); } // The value of a float property. else if (type == "number-value") { string propName = node.getStringValue("property"); float scale = node.getFloatValue("scale", 1.0); SGValue * value = current_properties.getValue(propName, true); chunk = new FGTextLayer::Chunk(FGTextLayer::DOUBLE_VALUE, value, format, scale); } // Unknown type. else { FG_LOG(FG_INPUT, FG_ALERT, "Unrecognized type " << type << " for text chunk " << name); return 0; } return chunk; } /** * Read a single layer from an instrument's property list. * * Each instrument consists of one or more layers stacked on top * of each other; the lower layers show through only where the upper * layers contain an alpha component. Each layer can be moved * horizontally and vertically and rotated using transformations. * * This module currently recognizes four kinds of layers: * * "texture" - a layer containing a texture (the default) * * "text" - a layer containing text * * "switch" - a layer that switches between two other layers * based on the current value of a boolean property. * * "built-in" - a hard-coded layer supported by C++ code in FlightGear. * * Currently, the only built-in layer class is "compass-ribbon". */ static FGInstrumentLayer * readLayer (SGPropertyNode node, float hscale, float vscale) { FGInstrumentLayer * layer; string name = node.getStringValue("name"); string type = node.getStringValue("type"); int w = node.getIntValue("w", -1); int h = node.getIntValue("h", -1); if (w != -1) w = int(w * hscale); if (h != -1) h = int(h * vscale); if (type == "") { FG_LOG(FG_INPUT, FG_ALERT, "No type supplied for layer " << name << " assuming \"texture\""); type = "texture"; } // A textured instrument layer. if (type == "texture") { CroppedTexture texture = readTexture(node.getSubNode("texture")); layer = new FGTexturedLayer(texture, w, h); } // A textual instrument layer. else if (type == "text") { FGTextLayer * tlayer = new FGTextLayer(w, h); // FIXME // Set the text color. float red = node.getFloatValue("color/red", 0.0); float green = node.getFloatValue("color/green", 0.0); float blue = node.getFloatValue("color/blue", 0.0); tlayer->setColor(red, green, blue); // Set the point size. float pointSize = node.getFloatValue("point-size", 10.0) * hscale; tlayer->setPointSize(pointSize); // Set the font. // TODO SGPropertyNode chunk_group = node.getSubNode("chunks"); int nChunks = chunk_group.size(); for (int i = 0; i < nChunks; i++) { FGTextLayer::Chunk * chunk = readTextChunk(chunk_group.getChild(i)); if (chunk == 0) { delete layer; return 0; } tlayer->addChunk(chunk); } layer = tlayer; } // A switch instrument layer. else if (type == "switch") { SGValue * value = current_properties.getValue(node.getStringValue("property")); FGInstrumentLayer * layer1 = readLayer(node.getSubNode("layer1"), hscale, vscale); FGInstrumentLayer * layer2 = readLayer(node.getSubNode("layer2"), hscale, vscale); layer = new FGSwitchLayer(w, h, value, layer1, layer2); } // A built-in instrument layer. else if (type == "built-in") { string layerclass = node.getStringValue("class"); if (layerclass == "mag-ribbon") { layer = new FGMagRibbon(w, h); } else if (layerclass == "") { FG_LOG(FG_INPUT, FG_ALERT, "No class provided for built-in layer " << name); return 0; } else { FG_LOG(FG_INPUT, FG_ALERT, "Unknown built-in layer class " << layerclass); return 0; } } // An unknown type. else { FG_LOG(FG_INPUT, FG_ALERT, "Unrecognized layer type " << type); delete layer; return 0; } // // Get the transformations for each layer. // SGPropertyNode trans_group = node.getSubNode("transformations"); int nTransformations = trans_group.size(); for (int k = 0; k < nTransformations; k++) { FGPanelTransformation * t = readTransformation(trans_group.getChild(k), hscale, vscale); if (t == 0) { delete layer; return 0; } layer->addTransformation(t); } FG_LOG(FG_INPUT, FG_INFO, "Read layer " << name); return layer; } /** * Read an instrument from a property list. * * The instrument consists of a preferred width and height * (the panel may override these), together with a list of layers * and a list of actions to be performed when the user clicks * the mouse over the instrument. All co-ordinates are relative * to the instrument's position, so instruments are fully relocatable; * likewise, co-ordinates for actions and transformations will be * scaled automatically if the instrument is not at its preferred size. */ static FGPanelInstrument * readInstrument (SGPropertyNode node, int x, int y, int real_w, int real_h) { int w = node.getIntValue("w"); int h = node.getIntValue("h"); const string &name = node.getStringValue("name"); float hscale = 1.0; float vscale = 1.0; if (real_w != -1) { hscale = float(real_w) / float(w); w = real_w; cerr << "hscale is " << hscale << endl; } if (real_h != -1) { vscale = float(real_h) / float(h); h = real_h; cerr << "vscale is " << hscale << endl; } FG_LOG(FG_INPUT, FG_INFO, "Reading instrument " << name); FGLayeredInstrument * instrument = new FGLayeredInstrument(x, y, w, h); // // Get the actions for the instrument. // SGPropertyNode action_group = node.getSubNode("actions"); int nActions = action_group.size(); for (int j = 0; j < nActions; j++) { FGPanelAction * action = readAction(action_group.getChild(j), hscale, vscale); if (action == 0) { delete instrument; return 0; } instrument->addAction(action); } // // Get the layers for the instrument. // SGPropertyNode layer_group = node.getSubNode("layers"); int nLayers = layer_group.size(); for (int j = 0; j < nLayers; j++) { FGInstrumentLayer * layer = readLayer(layer_group.getChild(j), hscale, vscale); if (layer == 0) { delete instrument; return 0; } instrument->addLayer(layer); } FG_LOG(FG_INPUT, FG_INFO, "Done reading instrument " << name); return instrument; } /** * Read a panel from a property list. * * Each panel instrument will appear in its own, separate * property list. The top level simply names the panel and * places the instruments in their appropriate locations (and * optionally resizes them if necessary). * * Returns 0 if the read fails for any reason. */ FGPanel * fgReadPanel (istream &input) { SGPropertyList props; // // Read the property list from disk. // if (!readPropertyList(input, &props)) { FG_LOG(FG_INPUT, FG_ALERT, "Malformed property list for panel."); return 0; } FG_LOG(FG_INPUT, FG_INFO, "Read properties for panel " << props.getStringValue("/name")); // // Construct a new, empty panel. // FGPanel * panel = new FGPanel(0, 0, 1024, 768);// FIXME: use variable size // // Assign the background texture, if any, or a bogus chequerboard. // string bgTexture = props.getStringValue("/background"); if (bgTexture == "") bgTexture = "FOO"; panel->setBackground(FGTextureManager::createTexture(bgTexture.c_str())); FG_LOG(FG_INPUT, FG_INFO, "Set background texture to " << bgTexture); // // Create each instrument. // FG_LOG(FG_INPUT, FG_INFO, "Reading panel instruments"); SGPropertyNode instrument_group("/instruments", &props); int nInstruments = instrument_group.size(); for (int i = 0; i < nInstruments; i++) { SGPropertyList props2; SGPropertyNode node = instrument_group.getChild(i); FGPath path(current_options.get_fg_root()); path.append(node.getStringValue("path")); FG_LOG(FG_INPUT, FG_INFO, "Reading instrument " << node.getName() << " from " << path.str()); int x = node.getIntValue("x", -1); int y = node.getIntValue("y", -1); int w = node.getIntValue("w", -1); int h = node.getIntValue("h", -1); if (x == -1 || y == -1) { FG_LOG(FG_INPUT, FG_ALERT, "x and y positions must be specified and >0"); delete panel; return 0; } if (!readPropertyList(path.str(), &props2)) { delete panel; return 0; } FGPanelInstrument * instrument = readInstrument(SGPropertyNode("/", &props2), x, y, w, h); if (instrument == 0) { delete instrument; delete panel; return 0; } panel->addInstrument(instrument); } FG_LOG(FG_INPUT, FG_INFO, "Done reading panel instruments"); // // Return the new panel. // return panel; } /** * Read a panel from a property list. * * This function opens a stream to a file, then invokes the * main fgReadPanel() function. */ FGPanel * fgReadPanel (const string &relative_path) { FGPath path(current_options.get_fg_root()); path.append(relative_path); ifstream input(path.c_str()); if (!input.good()) { FG_LOG(FG_INPUT, FG_ALERT, "Cannot read panel configuration from " << path.str()); return 0; } FGPanel * panel = fgReadPanel(input); input.close(); return panel; } // end of panel_io.cxx