// atc610x.cxx -- FGFS interface to ATC 610x hardware // // Written by Curtis Olson, started January 2002 // // Copyright (C) 2002 Curtis L. Olson - curt@flightgear.org // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ #ifdef HAVE_CONFIG_H # include #endif #include #include // atoi() atof() abs() #include #include #include #include STL_STRING #include #include #include #include #include
#include
#include "atc610x.hxx" SG_USING_STD(string); // Lock the ATC 610 hardware static int ATC610xLock( int fd ) { // rewind lseek( fd, 0, SEEK_SET ); char tmp[2]; int result = read( fd, tmp, 1 ); if ( result != 1 ) { SG_LOG( SG_IO, SG_DEBUG, "Lock failed" ); } return result; } // Write a radios command static int ATC610xRelease( int fd ) { // rewind lseek( fd, 0, SEEK_SET ); char tmp[2]; tmp[0] = tmp[1] = 0; int result = write( fd, tmp, 1 ); if ( result != 1 ) { SG_LOG( SG_IO, SG_DEBUG, "Release failed" ); } return result; } // Read analog inputs static void ATC610xReadAnalogInputs( int fd, unsigned char *analog_in_bytes ) { // rewind lseek( fd, 0, SEEK_SET ); int result = read( fd, analog_in_bytes, ATC_ANAL_IN_BYTES ); if ( result != ATC_ANAL_IN_BYTES ) { SG_LOG( SG_IO, SG_ALERT, "Read failed" ); exit( -1 ); } } // Write a radios command static int ATC610xSetRadios( int fd, unsigned char data[ATC_RADIO_DISPLAY_BYTES] ) { // rewind lseek( fd, 0, SEEK_SET ); int result = write( fd, data, ATC_RADIO_DISPLAY_BYTES ); if ( result != ATC_RADIO_DISPLAY_BYTES ) { SG_LOG( SG_IO, SG_DEBUG, "Write failed" ); } return result; } // Read status of last radios written to static void ATC610xReadRadios( int fd, unsigned char *switch_data ) { // rewind lseek( fd, 0, SEEK_SET ); int result = read( fd, switch_data, ATC_RADIO_SWITCH_BYTES ); if ( result != ATC_RADIO_SWITCH_BYTES ) { SG_LOG( SG_IO, SG_ALERT, "Read failed" ); exit( -1 ); } } // Write a stepper command static int ATC610xSetStepper( int fd, unsigned char channel, unsigned char value ) { // rewind lseek( fd, 0, SEEK_SET ); // Write the value unsigned char buf[3]; buf[0] = channel; buf[1] = value; buf[2] = 0; int result = write( fd, buf, 2 ); if ( result != 2 ) { SG_LOG( SG_IO, SG_INFO, "Write failed" ); } SG_LOG( SG_IO, SG_DEBUG, "Sent cmd = " << (int)channel << " value = " << (int)value ); return result; } // Read status of last stepper written to static unsigned char ATC610xReadStepper( int fd ) { int result; // rewind lseek( fd, 0, SEEK_SET ); // Write the value unsigned char buf[2]; result = read( fd, buf, 1 ); if ( result != 1 ) { SG_LOG( SG_IO, SG_ALERT, "Read failed" ); exit( -1 ); } SG_LOG( SG_IO, SG_DEBUG, "Read result = " << (int)buf[0] ); return buf[0]; } // Read switch inputs static void ATC610xReadSwitches( int fd, unsigned char *switch_bytes ) { // rewind lseek( fd, 0, SEEK_SET ); int result = read( fd, switch_bytes, ATC_SWITCH_BYTES ); if ( result != ATC_SWITCH_BYTES ) { SG_LOG( SG_IO, SG_ALERT, "Read failed" ); exit( -1 ); } } // Open and initialize ATC 610x hardware bool FGATC610x::open() { if ( is_enabled() ) { SG_LOG( SG_IO, SG_ALERT, "This shouldn't happen, but the channel " << "is already in use, ignoring" ); return false; } SG_LOG( SG_IO, SG_ALERT, "Initializing ATC 610x hardware, please wait ..." ); set_hz( 30 ); // default to processing requests @ 30Hz set_enabled( true ); board = 0; // 610x uses a single board number = 0 snprintf( lock_file, 256, "/proc/atc610x/board%d/lock", board ); snprintf( analog_in_file, 256, "/proc/atc610x/board%d/analog_in", board ); snprintf( radios_file, 256, "/proc/atc610x/board%d/radios", board ); snprintf( stepper_file, 256, "/proc/atc610x/board%d/steppers", board ); snprintf( switches_file, 256, "/proc/atc610x/board%d/switches", board ); ///////////////////////////////////////////////////////////////////// // Open the /proc files ///////////////////////////////////////////////////////////////////// lock_fd = ::open( lock_file, O_RDWR ); if ( lock_fd == -1 ) { SG_LOG( SG_IO, SG_ALERT, "errno = " << errno ); char msg[256]; snprintf( msg, 256, "Error opening %s", lock_file ); perror( msg ); exit( -1 ); } analog_in_fd = ::open( analog_in_file, O_RDONLY ); if ( analog_in_fd == -1 ) { SG_LOG( SG_IO, SG_ALERT, "errno = " << errno ); char msg[256]; snprintf( msg, 256, "Error opening %s", analog_in_file ); perror( msg ); exit( -1 ); } radios_fd = ::open( radios_file, O_RDWR ); if ( radios_fd == -1 ) { SG_LOG( SG_IO, SG_ALERT, "errno = " << errno ); char msg[256]; snprintf( msg, 256, "Error opening %s", radios_file ); perror( msg ); exit( -1 ); } stepper_fd = ::open( stepper_file, O_RDWR ); if ( stepper_fd == -1 ) { SG_LOG( SG_IO, SG_ALERT, "errno = " << errno ); char msg[256]; snprintf( msg, 256, "Error opening %s", stepper_file ); perror( msg ); exit( -1 ); } switches_fd = ::open( switches_file, O_RDONLY ); if ( switches_fd == -1 ) { SG_LOG( SG_IO, SG_ALERT, "errno = " << errno ); char msg[256]; snprintf( msg, 256, "Error opening %s", switches_file ); perror( msg ); exit( -1 ); } ///////////////////////////////////////////////////////////////////// // Home the compass stepper motor ///////////////////////////////////////////////////////////////////// SG_LOG( SG_IO, SG_ALERT, " - Homing the compass stepper motor" ); // Lock the hardware, keep trying until we succeed while ( ATC610xLock( lock_fd ) <= 0 ); // Send the stepper home command ATC610xSetStepper( stepper_fd, ATC_COMPASS_CH, ATC_STEPPER_HOME ); // Release the hardware ATC610xRelease( lock_fd ); bool home = false; while ( ! home ) { SG_LOG( SG_IO, SG_DEBUG, "Checking if compass home ..." ); while ( ATC610xLock( lock_fd ) <= 0 ); unsigned char result = ATC610xReadStepper( stepper_fd ); if ( result == 0 ) { home = true; } ATC610xRelease( lock_fd ); usleep(33); } compass_position = 0.0; ///////////////////////////////////////////////////////////////////// // Blank the radio display ///////////////////////////////////////////////////////////////////// SG_LOG( SG_IO, SG_ALERT, " - Clearing the radios displays." ); // Prepair the data unsigned char value = 0xff; for ( int channel = 0; channel < ATC_RADIO_DISPLAY_BYTES; ++channel ) { radio_display_data[channel] = value; } // Lock the hardware, keep trying until we succeed while ( ATC610xLock( lock_fd ) <= 0 ); // Set radio display ATC610xSetRadios( radios_fd, radio_display_data ); ATC610xRelease( lock_fd ); ///////////////////////////////////////////////////////////////////// // Finished initing hardware ///////////////////////////////////////////////////////////////////// SG_LOG( SG_IO, SG_ALERT, "Done initializing ATC 610x hardware." ); ///////////////////////////////////////////////////////////////////// // Connect up to property values ///////////////////////////////////////////////////////////////////// mag_compass = fgGetNode( "/steam/mag-compass-deg", true ); dme_min = fgGetNode( "/radios/dme/ete-min", true ); dme_kt = fgGetNode( "/radios/dme/speed-kt", true ); dme_nm = fgGetNode( "/radios/dme/distance-nm", true ); com1_freq = fgGetNode( "/radios/comm[0]/frequencies/selected-mhz", true ); com1_stby_freq = fgGetNode( "/radios/comm[0]/frequencies/standby-mhz", true ); com2_freq = fgGetNode( "/radios/comm[1]/frequencies/selected-mhz", true ); com2_stby_freq = fgGetNode( "/radios/comm[1]/frequencies/standby-mhz", true ); nav1_freq = fgGetNode( "/radios/nav[0]/frequencies/selected-mhz", true ); nav1_stby_freq = fgGetNode( "/radios/nav[0]/frequencies/standby-mhz", true ); nav2_freq = fgGetNode( "/radios/nav[1]/frequencies/selected-mhz", true ); nav2_stby_freq = fgGetNode( "/radios/nav[1]/frequencies/standby-mhz", true ); adf_freq = fgGetNode( "/radios/adf/frequencies/selected-khz", true ); adf_stby_freq = fgGetNode( "/radios/adf/frequencies/standby-khz", true ); return true; } ///////////////////////////////////////////////////////////////////// // Read analog inputs ///////////////////////////////////////////////////////////////////// #define ATC_AILERON_CENTER 535 #define ATC_ELEVATOR_TRIM_CENTER 512 #define ATC_ELEVATOR_CENTER 543 bool FGATC610x::do_analog_in() { // Read raw data in byte form ATC610xReadAnalogInputs( analog_in_fd, analog_in_bytes ); // Convert to integer values for ( int channel = 0; channel < ATC_ANAL_IN_VALUES; ++channel ) { unsigned char hi = analog_in_bytes[2 * channel] & 0x03; unsigned char lo = analog_in_bytes[2 * channel + 1]; analog_in_data[channel] = hi * 256 + lo; // printf("%02x %02x ", hi, lo ); // printf("%04d ", value ); } float tmp, tmp1, tmp2; // aileron tmp = (float)(analog_in_data[0] - ATC_AILERON_CENTER) / 256.0f; fgSetFloat( "/controls/aileron", tmp ); // cout << "aileron = " << analog_in_data[0] << " = " << tmp; // elevator tmp = (float)(analog_in_data[4] - ATC_ELEVATOR_TRIM_CENTER) / 512.0f; fgSetFloat( "/controls/elevator-trim", tmp ); // cout << "trim = " << analog_in_data[4] << " = " << tmp; // trim tmp = (float)(ATC_ELEVATOR_CENTER - analog_in_data[5]) / 100.0f; fgSetFloat( "/controls/elevator", tmp ); // cout << " elev = " << analog_in_data[5] << " = " << tmp << endl; // mixture tmp = (float)analog_in_data[7] / 680.0f; fgSetFloat( "/controls/mixture[0]", tmp ); // throttle tmp = (float)analog_in_data[8] / 690.0f; fgSetFloat( "/controls/throttle[0]", tmp ); // nav1 volume tmp = (float)analog_in_data[25] / 1024.0f; fgSetFloat( "/radios/nav[0]/volume", tmp ); // nav2 volume tmp = (float)analog_in_data[24] / 1024.0f; fgSetFloat( "/radios/nav[1]/volume", tmp ); // adf volume tmp = (float)analog_in_data[26] / 1024.0f; fgSetFloat( "/radios/adf/volume", tmp ); // nav2 obs tuner tmp = (float)analog_in_data[29] * 360.0f / 1024.0f; fgSetFloat( "/radios/nav[1]/radials/selected-deg", tmp ); // nav1 obs tuner tmp1 = (float)analog_in_data[30] * 360.0f / 1024.0f; tmp2 = (float)analog_in_data[31] * 360.0f / 1024.0f; fgSetFloat( "/radios/nav[0]/radials/selected-deg", tmp1 ); return true; } ///////////////////////////////////////////////////////////////////// // Read radio switches ///////////////////////////////////////////////////////////////////// bool FGATC610x::do_radio_switches() { float freq, inc; ATC610xReadRadios( radios_fd, radio_switch_data ); // DME Switch dme_switch = (radio_switch_data[7] >> 4) & 0x03; if ( dme_switch == 0 ) { // off fgSetInt( "/radios/dme/switch-position", 0 ); } else if ( dme_switch == 2 ) { // nav1 fgSetInt( "/radios/dme/switch-position", 1 ); } else if ( dme_switch == 1 ) { // nav2 fgSetInt( "/radios/dme/switch-position", 3 ); } // Com1 Swap int com1_swap = !((radio_switch_data[7] >> 1) & 0x01); static int last_com1_swap; if ( com1_swap && (last_com1_swap != com1_swap) ) { float tmp = com1_freq->getFloatValue(); fgSetFloat( "/radios/comm[0]/frequencies/selected-mhz", com1_stby_freq->getFloatValue() ); fgSetFloat( "/radios/comm[0]/frequencies/standby-mhz", tmp ); } last_com1_swap = com1_swap; // Com2 Swap int com2_swap = !((radio_switch_data[15] >> 1) & 0x01); static int last_com2_swap; if ( com2_swap && (last_com2_swap != com2_swap) ) { float tmp = com2_freq->getFloatValue(); fgSetFloat( "/radios/comm[1]/frequencies/selected-mhz", com2_stby_freq->getFloatValue() ); fgSetFloat( "/radios/comm[1]/frequencies/standby-mhz", tmp ); } last_com2_swap = com2_swap; // Nav1 Swap int nav1_swap = radio_switch_data[11] & 0x01; static int last_nav1_swap; if ( nav1_swap && (last_nav1_swap != nav1_swap) ) { float tmp = nav1_freq->getFloatValue(); fgSetFloat( "/radios/nav[0]/frequencies/selected-mhz", nav1_stby_freq->getFloatValue() ); fgSetFloat( "/radios/nav[0]/frequencies/standby-mhz", tmp ); } last_nav1_swap = nav1_swap; // Nav2 Swap int nav2_swap = !(radio_switch_data[19] & 0x01); static int last_nav2_swap; if ( nav2_swap && (last_nav2_swap != nav2_swap) ) { float tmp = nav2_freq->getFloatValue(); fgSetFloat( "/radios/nav[1]/frequencies/selected-mhz", nav2_stby_freq->getFloatValue() ); fgSetFloat( "/radios/nav[1]/frequencies/standby-mhz", tmp ); } last_nav2_swap = nav2_swap; // Com1 Tuner int com1_tuner_fine = (radio_switch_data[5] >> 4) & 0x0f; int com1_tuner_course = radio_switch_data[5] & 0x0f; // cout << "com1 = " << com1_tuner_fine << " " << com1_tuner_course << endl; static int last_com1_tuner_fine = com1_tuner_fine; static int last_com1_tuner_course = com1_tuner_course; inc = 0.0; if ( com1_tuner_fine != last_com1_tuner_fine ) { if ( com1_tuner_fine == 0x0c && last_com1_tuner_fine == 0x01 ) { inc = -0.025; } else if ( com1_tuner_fine == 0x01 && last_com1_tuner_fine == 0x0c ) { inc = -0.025; } else if ( com1_tuner_fine > last_com1_tuner_fine ) { inc = 0.025; } else { inc = -0.025; } } if ( com1_tuner_course != last_com1_tuner_course ) { if ( com1_tuner_course == 0x0c && last_com1_tuner_course == 0x01 ) { inc = -1.0; } else if ( com1_tuner_course == 0x01 && last_com1_tuner_course == 0x0c ) { inc = -1.0; } else if ( com1_tuner_course > last_com1_tuner_course ) { inc = 1.0; } else { inc = -1.0; } } last_com1_tuner_fine = com1_tuner_fine; last_com1_tuner_course = com1_tuner_course; freq = com1_stby_freq->getFloatValue() + inc; if ( freq < 0.0 ) { freq = 140.0; } if ( freq > 140.0 ) { freq = 0.0; } fgSetFloat( "/radios/comm[0]/frequencies/standby-mhz", freq ); // Com2 Tuner int com2_tuner_fine = (radio_switch_data[13] >> 4) & 0x0f; int com2_tuner_course = radio_switch_data[13] & 0x0f; static int last_com2_tuner_fine = com2_tuner_fine; static int last_com2_tuner_course = com2_tuner_course; inc = 0.0; if ( com2_tuner_fine != last_com2_tuner_fine ) { if ( com2_tuner_fine == 0x0c && last_com2_tuner_fine == 0x01 ) { inc = -0.025; } else if ( com2_tuner_fine == 0x01 && last_com2_tuner_fine == 0x0c ) { inc = -0.025; } else if ( com2_tuner_fine > last_com2_tuner_fine ) { inc = 0.025; } else { inc = -0.025; } } if ( com2_tuner_course != last_com2_tuner_course ) { if ( com2_tuner_course == 0x0c && last_com2_tuner_course == 0x01 ) { inc = -1.0; } else if ( com2_tuner_course == 0x01 && last_com2_tuner_course == 0x0c ) { inc = -1.0; } else if ( com2_tuner_course > last_com2_tuner_course ) { inc = 1.0; } else { inc = -1.0; } } last_com2_tuner_fine = com2_tuner_fine; last_com2_tuner_course = com2_tuner_course; freq = com2_stby_freq->getFloatValue() + inc; if ( freq < 0.0 ) { freq = 140.0; } if ( freq > 140.0 ) { freq = 0.0; } fgSetFloat( "/radios/comm[1]/frequencies/standby-mhz", freq ); // Nav1 Tuner int nav1_tuner_fine = (radio_switch_data[9] >> 4) & 0x0f; int nav1_tuner_course = radio_switch_data[9] & 0x0f; static int last_nav1_tuner_fine = nav1_tuner_fine; static int last_nav1_tuner_course = nav1_tuner_course; inc = 0.0; if ( nav1_tuner_fine != last_nav1_tuner_fine ) { if ( nav1_tuner_fine == 0x0c && last_nav1_tuner_fine == 0x01 ) { inc = -0.05; } else if ( nav1_tuner_fine == 0x01 && last_nav1_tuner_fine == 0x0c ) { inc = -0.05; } else if ( nav1_tuner_fine > last_nav1_tuner_fine ) { inc = 0.05; } else { inc = -0.05; } } if ( nav1_tuner_course != last_nav1_tuner_course ) { if ( nav1_tuner_course == 0x0c && last_nav1_tuner_course == 0x01 ) { inc = -1.0; } else if ( nav1_tuner_course == 0x01 && last_nav1_tuner_course == 0x0c ) { inc = -1.0; } else if ( nav1_tuner_course > last_nav1_tuner_course ) { inc = 1.0; } else { inc = -1.0; } } last_nav1_tuner_fine = nav1_tuner_fine; last_nav1_tuner_course = nav1_tuner_course; freq = nav1_stby_freq->getFloatValue() + inc; if ( freq < 108.0 ) { freq = 117.95; } if ( freq > 117.95 ) { freq = 108.0; } fgSetFloat( "/radios/nav[0]/frequencies/standby-mhz", freq ); // Nav2 Tuner int nav2_tuner_fine = (radio_switch_data[17] >> 4) & 0x0f; int nav2_tuner_course = radio_switch_data[17] & 0x0f; static int last_nav2_tuner_fine = nav2_tuner_fine; static int last_nav2_tuner_course = nav2_tuner_course; inc = 0.0; if ( nav2_tuner_fine != last_nav2_tuner_fine ) { if ( nav2_tuner_fine == 0x0c && last_nav2_tuner_fine == 0x01 ) { inc = -0.05; } else if ( nav2_tuner_fine == 0x01 && last_nav2_tuner_fine == 0x0c ) { inc = -0.05; } else if ( nav2_tuner_fine > last_nav2_tuner_fine ) { inc = 0.05; } else { inc = -0.05; } } if ( nav2_tuner_course != last_nav2_tuner_course ) { if ( nav2_tuner_course == 0x0c && last_nav2_tuner_course == 0x01 ) { inc = -1.0; } else if ( nav2_tuner_course == 0x01 && last_nav2_tuner_course == 0x0c ) { inc = -1.0; } else if ( nav2_tuner_course > last_nav2_tuner_course ) { inc = 1.0; } else { inc = -1.0; } } last_nav2_tuner_fine = nav2_tuner_fine; last_nav2_tuner_course = nav2_tuner_course; freq = nav2_stby_freq->getFloatValue() + inc; if ( freq < 108.0 ) { freq = 117.95; } if ( freq > 117.95 ) { freq = 108.0; } fgSetFloat( "/radios/nav[1]/frequencies/standby-mhz", freq ); // ADF Tuner int adf_tuner_fine = (radio_switch_data[21] >> 4) & 0x0f; int adf_tuner_course = radio_switch_data[21] & 0x0f; // cout << "adf = " << adf_tuner_fine << " " << adf_tuner_course << endl; static int last_adf_tuner_fine = adf_tuner_fine; static int last_adf_tuner_course = adf_tuner_course; inc = 0.0; if ( adf_tuner_fine != last_adf_tuner_fine ) { if ( adf_tuner_fine == 0x0c && last_adf_tuner_fine == 0x01 ) { inc = -1.0; } else if ( adf_tuner_fine == 0x01 && last_adf_tuner_fine == 0x0c ) { inc = -1.0; } else if ( adf_tuner_fine > last_adf_tuner_fine ) { inc = 1.0; } else { inc = -1.0; } } if ( adf_tuner_course != last_adf_tuner_course ) { if ( adf_tuner_course == 0x0c && last_adf_tuner_course == 0x01 ) { inc = -25.0; } else if ( adf_tuner_course == 0x01 && last_adf_tuner_course == 0x0c ) { inc = -25.0; } else if ( adf_tuner_course > last_adf_tuner_course ) { inc = 25.0; } else { inc = -25.0; } } last_adf_tuner_fine = adf_tuner_fine; last_adf_tuner_course = adf_tuner_course; freq = adf_freq->getFloatValue() + inc; if ( freq < 100.0 ) { freq = 1299; } if ( freq > 1299 ) { freq = 100.0; } fgSetFloat( "/radios/adf/frequencies/selected-khz", freq ); return true; } ///////////////////////////////////////////////////////////////////// // Update the radio display ///////////////////////////////////////////////////////////////////// bool FGATC610x::do_radio_display() { char digits[10]; if ( dme_switch != 0 ) { // DME minutes float minutes = dme_min->getFloatValue(); if ( minutes > 999 ) { minutes = 999.0; } sprintf(digits, "%03.0f", minutes); for ( int i = 0; i < 6; ++i ) { digits[i] -= '0'; } radio_display_data[0] = digits[1] << 4 | digits[2]; radio_display_data[1] = 0xf0 | digits[0]; // DME knots float knots = dme_kt->getFloatValue(); if ( knots > 999 ) { knots = 999.0; } sprintf(digits, "%03.0f", knots); for ( int i = 0; i < 6; ++i ) { digits[i] -= '0'; } radio_display_data[2] = digits[1] << 4 | digits[2]; radio_display_data[3] = 0xf0 | digits[0]; // DME distance (nm) float nm = dme_nm->getFloatValue(); if ( nm > 99 ) { nm = 99.0; } sprintf(digits, "%04.1f", nm); for ( int i = 0; i < 6; ++i ) { digits[i] -= '0'; } radio_display_data[4] = digits[1] << 4 | digits[3]; radio_display_data[5] = 0x00 | digits[0]; // the 0x00 in the upper nibble of the 6th byte of each // display turns on the decimal point } else { // blank dem display for ( int i = 0; i < 6; ++i ) { radio_display_data[i] = 0xff; } } // Com1 standby frequency float com1_stby = com1_stby_freq->getFloatValue(); if ( fabs(com1_stby) > 999.99 ) { com1_stby = 0.0; } sprintf(digits, "%06.3f", com1_stby); for ( int i = 0; i < 6; ++i ) { digits[i] -= '0'; } radio_display_data[6] = digits[4] << 4 | digits[5]; radio_display_data[7] = digits[1] << 4 | digits[2]; radio_display_data[8] = 0xf0 | digits[0]; // Com1 in use frequency float com1 = com1_freq->getFloatValue(); if ( fabs(com1) > 999.99 ) { com1 = 0.0; } sprintf(digits, "%06.3f", com1); for ( int i = 0; i < 6; ++i ) { digits[i] -= '0'; } radio_display_data[9] = digits[4] << 4 | digits[5]; radio_display_data[10] = digits[1] << 4 | digits[2]; radio_display_data[11] = 0x00 | digits[0]; // the 0x00 in the upper nibble of the 6th byte of each display // turns on the decimal point // Com2 standby frequency float com2_stby = com2_stby_freq->getFloatValue(); if ( fabs(com2_stby) > 999.99 ) { com2_stby = 0.0; } sprintf(digits, "%06.3f", com2_stby); for ( int i = 0; i < 6; ++i ) { digits[i] -= '0'; } radio_display_data[18] = digits[4] << 4 | digits[5]; radio_display_data[19] = digits[1] << 4 | digits[2]; radio_display_data[20] = 0xf0 | digits[0]; // Com2 in use frequency float com2 = com2_freq->getFloatValue(); if ( fabs(com2) > 999.99 ) { com2 = 0.0; } sprintf(digits, "%06.3f", com2); for ( int i = 0; i < 6; ++i ) { digits[i] -= '0'; } radio_display_data[21] = digits[4] << 4 | digits[5]; radio_display_data[22] = digits[1] << 4 | digits[2]; radio_display_data[23] = 0x00 | digits[0]; // the 0x00 in the upper nibble of the 6th byte of each display // turns on the decimal point // Nav1 standby frequency float nav1_stby = nav1_stby_freq->getFloatValue(); if ( fabs(nav1_stby) > 999.99 ) { nav1_stby = 0.0; } sprintf(digits, "%06.2f", nav1_stby); for ( int i = 0; i < 6; ++i ) { digits[i] -= '0'; } radio_display_data[12] = digits[4] << 4 | digits[5]; radio_display_data[13] = digits[1] << 4 | digits[2]; radio_display_data[14] = 0xf0 | digits[0]; // Nav1 in use frequency float nav1 = nav1_freq->getFloatValue(); if ( fabs(nav1) > 999.99 ) { nav1 = 0.0; } sprintf(digits, "%06.2f", nav1); for ( int i = 0; i < 6; ++i ) { digits[i] -= '0'; } radio_display_data[15] = digits[4] << 4 | digits[5]; radio_display_data[16] = digits[1] << 4 | digits[2]; radio_display_data[17] = 0x00 | digits[0]; // the 0x00 in the upper nibble of the 6th byte of each display // turns on the decimal point // Nav2 standby frequency float nav2_stby = nav2_stby_freq->getFloatValue(); if ( fabs(nav2_stby) > 999.99 ) { nav2_stby = 0.0; } sprintf(digits, "%06.2f", nav2_stby); for ( int i = 0; i < 6; ++i ) { digits[i] -= '0'; } radio_display_data[24] = digits[4] << 4 | digits[5]; radio_display_data[25] = digits[1] << 4 | digits[2]; radio_display_data[26] = 0xf0 | digits[0]; // Nav2 in use frequency float nav2 = nav2_freq->getFloatValue(); if ( fabs(nav2) > 999.99 ) { nav2 = 0.0; } sprintf(digits, "%06.2f", nav2); for ( int i = 0; i < 6; ++i ) { digits[i] -= '0'; } radio_display_data[27] = digits[4] << 4 | digits[5]; radio_display_data[28] = digits[1] << 4 | digits[2]; radio_display_data[29] = 0x00 | digits[0]; // the 0x00 in the upper nibble of the 6th byte of each display // turns on the decimal point // ADF standby frequency float adf_stby = adf_stby_freq->getFloatValue(); if ( fabs(adf_stby) > 999.99 ) { adf_stby = 0.0; } sprintf(digits, "%03.0f", adf_stby); for ( int i = 0; i < 6; ++i ) { digits[i] -= '0'; } radio_display_data[30] = digits[2] << 4 | 0x0f; radio_display_data[31] = digits[0] << 4 | digits[1]; // ADF in use frequency float adf = adf_freq->getFloatValue(); if ( fabs(adf) > 999.99 ) { adf = 0.0; } sprintf(digits, "%03.0f", adf); for ( int i = 0; i < 6; ++i ) { digits[i] -= '0'; } radio_display_data[33] = digits[1] << 4 | digits[2]; radio_display_data[34] = 0xf0 | digits[0]; ATC610xSetRadios( radios_fd, radio_display_data ); return true; } ///////////////////////////////////////////////////////////////////// // Drive the stepper motors ///////////////////////////////////////////////////////////////////// bool FGATC610x::do_steppers() { float diff = mag_compass->getFloatValue() - compass_position; while ( diff < -180.0 ) { diff += 360.0; } while ( diff > 180.0 ) { diff -= 360.0; } int steps = (int)(diff * 4); // cout << "steps = " << steps << endl; if ( steps > 4 ) { steps = 4; } if ( steps < -4 ) { steps = -4; } if ( abs(steps) > 0 ) { unsigned char cmd = 0x80; // stepper command if ( steps > 0 ) { cmd |= 0x20; // go up } else { cmd |= 0x00; // go down } cmd |= abs(steps); // sync compass_position with hardware position compass_position += (float)steps / 4.0; ATC610xSetStepper( stepper_fd, ATC_COMPASS_CH, cmd ); } return true; } ///////////////////////////////////////////////////////////////////// // Read the switch positions ///////////////////////////////////////////////////////////////////// // decode the packed switch data static void update_switch_matrix( int board, unsigned char switch_data[ATC_SWITCH_BYTES], int switch_matrix[2][ATC_NUM_COLS][ATC_SWITCH_BYTES] ) { for ( int row = 0; row < ATC_SWITCH_BYTES; ++row ) { unsigned char switches = switch_data[row]; for( int column = 0; column < ATC_NUM_COLS; ++column ) { switch_matrix[board][column][row] = switches & 1; switches = switches >> 1; } } } bool FGATC610x::do_switches() { ATC610xReadSwitches( switches_fd, switch_data ); // unpack the switch data int switch_matrix[2][ATC_NUM_COLS][ATC_SWITCH_BYTES]; update_switch_matrix( board, switch_data, switch_matrix ); // magnetos and starter switch if ( switch_matrix[board][3][1] == 1 ) { fgSetInt( "/controls/magnetos[0]", 3 ); fgSetBool( "/controls/starter[0]", true ); } else if ( switch_matrix[board][2][1] == 1 ) { fgSetInt( "/controls/magnetos[0]", 3 ); fgSetBool( "/controls/starter[0]", false ); } else if ( switch_matrix[board][1][1] == 1 ) { fgSetInt( "/controls/magnetos[0]", 2 ); fgSetBool( "/controls/starter[0]", false ); } else if ( switch_matrix[board][0][1] == 1 ) { fgSetInt( "/controls/magnetos[0]", 1 ); fgSetBool( "/controls/starter[0]", false ); } else { fgSetInt( "/controls/magnetos[0]", 0 ); fgSetBool( "/controls/starter[0]", false ); } // flaps if ( switch_matrix[board][6][3] == 1 ) { fgSetFloat( "/controls/flaps", 1.0 ); } else if ( switch_matrix[board][5][3] == 1 ) { fgSetFloat( "/controls/flaps", 0.66 ); } else if ( switch_matrix[board][4][3] == 1 ) { fgSetFloat( "/controls/flaps", 0.33 ); } else if ( switch_matrix[board][4][3] == 0 ) { fgSetFloat( "/controls/flaps", 0.0 ); } return true; } bool FGATC610x::process() { // Lock the hardware, skip if it's not ready yet if ( ATC610xLock( lock_fd ) > 0 ) { do_analog_in(); do_radio_switches(); do_radio_display(); do_steppers(); do_switches(); ATC610xRelease( lock_fd ); return true; } else { return false; } } bool FGATC610x::close() { return true; }