#include "Math.hpp" #include "RigidBody.hpp" namespace yasim { RigidBody::RigidBody() { // Allocate space for 16 masses initially. More space will be // allocated dynamically. _nMasses = 0; _massesAlloced = 16; _masses = new Mass[_massesAlloced]; _gyro[0] = _gyro[1] = _gyro[2] = 0; _spin[0] = _spin[1] = _spin[2] = 0; } RigidBody::~RigidBody() { delete[] _masses; } int RigidBody::addMass(float mass, float* pos) { // If out of space, reallocate twice as much if(_nMasses == _massesAlloced) { _massesAlloced *= 2; Mass *m2 = new Mass[_massesAlloced]; int i; for(i=0; i<_nMasses; i++) m2[i] = _masses[i]; delete[] _masses; _masses = m2; } _masses[_nMasses].m = mass; Math::set3(pos, _masses[_nMasses].p); return _nMasses++; } void RigidBody::setMass(int handle, float mass) { _masses[handle].m = mass; } void RigidBody::setMass(int handle, float mass, float* pos) { _masses[handle].m = mass; Math::set3(pos, _masses[handle].p); } int RigidBody::numMasses() { return _nMasses; } float RigidBody::getMass(int handle) { return _masses[handle].m; } void RigidBody::getMassPosition(int handle, float* out) { out[0] = _masses[handle].p[0]; out[1] = _masses[handle].p[1]; out[2] = _masses[handle].p[2]; } float RigidBody::getTotalMass() { return _totalMass; } // Calcualtes the rotational velocity of a particular point. All // coordinates are local! void RigidBody::pointVelocity(float* pos, float* rot, float* out) { Math::sub3(pos, _cg, out); // out = pos-cg Math::cross3(rot, out, out); // = rot cross (pos-cg) } void RigidBody::setGyro(float* angularMomentum) { Math::set3(angularMomentum, _gyro); } void RigidBody::recalc() { // Calculate the c.g and total mass: _totalMass = 0; _cg[0] = _cg[1] = _cg[2] = 0; int i; for(i=0; i<_nMasses; i++) { float m = _masses[i].m; _totalMass += m; _cg[0] += m * _masses[i].p[0]; _cg[1] += m * _masses[i].p[1]; _cg[2] += m * _masses[i].p[2]; } Math::mul3(1/_totalMass, _cg, _cg); // Now the inertia tensor: for(i=0; i<9; i++) _tI[i] = 0; for(i=0; i<_nMasses; i++) { float m = _masses[i].m; float x = _masses[i].p[0] - _cg[0]; float y = _masses[i].p[1] - _cg[1]; float z = _masses[i].p[2] - _cg[2]; float xy = m*x*y; float yz = m*y*z; float zx = m*z*x; float x2 = m*x*x; float y2 = m*y*y; float z2 = m*z*z; _tI[0] += y2+z2; _tI[1] -= xy; _tI[2] -= zx; _tI[3] -= xy; _tI[4] += x2+z2; _tI[5] -= yz; _tI[6] -= zx; _tI[7] -= yz; _tI[8] += x2+y2; } // And its inverse Math::invert33(_tI, _invI); } void RigidBody::reset() { _torque[0] = _torque[1] = _torque[2] = 0; _force[0] = _force[1] = _force[2] = 0; } void RigidBody::addForce(float* force) { Math::add3(_force, force, _force); } void RigidBody::addTorque(float* torque) { Math::add3(_torque, torque, _torque); } void RigidBody::addForce(float* pos, float* force) { addForce(force); // For a force F at position X, the torque about the c.g C is: // torque = F cross (C - X) float v[3], t[3]; Math::sub3(_cg, pos, v); Math::cross3(force, v, t); addTorque(t); } void RigidBody::setBodySpin(float* rotation) { Math::set3(rotation, _spin); } void RigidBody::getCG(float* cgOut) { Math::set3(_cg, cgOut); } void RigidBody::getAccel(float* accelOut) { Math::mul3(1/_totalMass, _force, accelOut); } void RigidBody::getAccel(float* pos, float* accelOut) { getAccel(accelOut); // Turn the "spin" vector into a normalized spin axis "a" and a // radians/sec scalar "rate". float a[3]; float rate = Math::mag3(_spin); Math::set3(_spin, a); Math::mul3(1/rate, a, a); float v[3]; Math::sub3(_cg, pos, v); // v = cg - pos Math::mul3(Math::dot3(v, a), a, a); // a = a * (v dot a) Math::add3(v, a, v); // v = v + a // Now v contains the vector from pos to the rotation axis. // Multiply by the square of the rotation rate to get the linear // acceleration. Math::mul3(rate*rate, v, v); Math::add3(v, accelOut, accelOut); } void RigidBody::getAngularAccel(float* accelOut) { // Compute "tau" as the externally applied torque, plus the // counter-torque due to the internal gyro. float tau[3]; // torque Math::cross3(_gyro, _spin, tau); Math::add3(_torque, tau, tau); // Now work the equation of motion. Use "v" as a notational // shorthand, as the value isn't an acceleration until the end. float *v = accelOut; Math::vmul33(_tI, _spin, v); // v = I*omega Math::cross3(_spin, v, v); // v = omega X I*omega Math::add3(tau, v, v); // v = tau + (omega X I*omega) Math::vmul33(_invI, v, v); // v = invI*(tau + (omega X I*omega)) } }; // namespace yasim